欢迎来到易发表网,发表咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

影像学与影像技术优选九篇

时间:2023-09-25 11:23:40

影像学与影像技术

影像学与影像技术第1篇

【关键词】医学影像技术;医学影像诊断;关系

1医学影像技术与医学影像诊断专业特性

现阶段我国医疗机构的医学影像技术人员处于饱和状态,但在影像诊断人员十分稀少,一方面由于医学院中影像诊断人才较少,由于医学影像技术的发展,对于影像急速以及诊断的培养目标发生改变,多数院校注重于影像技术的掌握,对于影像诊断的培养实践性不足,因此比较符合医疗结构医学影像技术人员的需求,导致影像诊断人员出现断层现象。熟悉医学影像技术以及医学影响诊断的专业人才处于缺失状态,能够在临床中具备生物医学工程能力的专业人才是医疗体制改革的社会急需人才。因此在医疗改革背景下,医学院校应该强化对影响诊断以及影像技术人才的综合性培养,从培养目标到课程体系实现改革与发展,针对各级医疗机构的需求实现人才与医疗设备的共同发展,从影像诊断与影像技术的关联性入手,实现综合性课程的设定,通过医院实践以及案例分析等等,提高医学诊断技术人才的培养,是提高医学影像诊断以及医学影像技术发展的根本,也是联系两者和谐共进的必要条件。专业独立性是医学影像诊断技术的人才培养特点,由于涉及到多个学科内容,因此人才培养中,既需要从电子学,临床医学以及基础医学理论知识入手,提高对医学影响诊断技术以及临床影像诊断知识的了解,从X线影像技术,超声、SPECT、ECT、PET、MRI等设备以及技术掌握入手,强化基础理论与操作技巧的提升,实现医学影像学的各个分支理论知识与发展方向,从而促进影像诊断技术人才的培养,提高其对疾病诊断以及医疗设备使用的准确性,提高临床诊断正确率以及提高患者治疗的针对性。这是目前论医学影像技术与医学影像诊断的综合型人才培养的社会需求,高校需要进一步提高对医学影像人才的培养。

2医学影像技术与医学影像诊断的专业互补性

2.1影像技术与影像诊断实践工作整体性

在医疗机构中医学影像诊断与影像技术的工作是紧密连接的整体,患者通过影像技术的医疗设备进行影响诊断疾病,然后反馈给医生进行治疗,这是医院医疗过程中常见的流程。实际工作中影像诊断工作的开展需要影像技术的支持,患者以及医院对高水平影像诊断的需求,反馈到影像技术的拓展与发展中,伴随着影像技术的创新,影像诊断标准亦会逐渐上升,如此影像技术与影像诊断之间构成良性循环,互为整体,虽然具有一定的负面影响,但是双方共同制约以及促进对方的发展。实际工作中纵使成像原理存在本质差异,但是影像技术的局限性以及专业性都会在实际应用中展现出现,无论是超声、SPECT、ECT、PET、MRI还是计算机X线技术,都具有自身的特性以及整体的共性,所以在临床诊断中,需要根据实惠、方便以及影响最小原则进行选取,以影像金叉信息的客观性和互补性进行综合利用,确保现代医疗技术促进医学影像诊断技术与医学影像诊断的融合,满足医疗体制改革下临床治疗融合整体的形成,提提高治疗效果以及诊断效率,实现医疗诊断技术整体的共同发展。

2.2医学影像诊断中常见的影像技术临床应用

临床诊断中医学影像诊断技术的应用,是提高工作效率以及实现医疗质量提升的关键,在影像诊断中需要减少对人体的辐射与损伤,软组织鉴别中需要优化工作机制,利用影像技术的先进行以及患者诊断的需求,针对性影像技术的使用。(1)CT技术的应用主要是针对于骨骼肌肉或是心脑血管系统疾病的诊断效率,例如重视系统以及寄生虫等等疾病而言,临床应用价值较高,故而常用鼻窦疾病、鼻咽早期肿瘤疾病。(2)CR技术的临床应用十分广泛,多数临床诊断中都会采用这类工具,因为鉴别能力较高,及时对人体造成一定的损伤,却可以有效发现软组织中的疾病,所以常用与骨骼或是神经系统的疾病诊断。(3)磁共振技术,对直肠的检查效果高于CT,但肺部的检查低于CT与CR,因此在实际应用过程中看需要根据实际需求,多用于人体创伤情况、炎症情况、肿瘤情况、子宫情况,肝脏与胰腺检查中不推荐使用。

3展望

影像学与影像技术第2篇

【摘要】:在医学影像成像技术日新月异,计算机技术与影像设备的融合,已逐步由数字化成像替代模拟成像的发展趋势,特别是CR、DR、CT 、MRI、DSA等等各种检查技术的普及和应用,越来越彰显数字化成像的魅力和优势,数字化成像替代模拟成像在医学影像领域已成共识。同时在数字化成像技术日趋成熟,影像设施千姿百态的今天,影像摄影师如何操作好各种不同设备与被检者的投照关系,完成高水准的摄影,如实显示被检组织正常解剖结构与不同疾病的病理改变导致的异常影像表现,为临床提供可靠的诊断依据,显得十分重要和迫切,鉴此,根据多年的工作经验,对人体三维立体结构与其构成的点、线、面、体与摄影的关系进行了多方面的探究,求其抛砖引玉之效。

【关键词】 点、线、面、体、摄影

1 点 一般用来表示位置,是物质的浓缩,也是人类的微号点,具有空间位置的视角单位。点在人体三维立体结构的不同部位,具可代表不同组织器官的表面位置,同时可以通过点与点之间不同角度的投影、折射、或者立体交叉连接,推断出不同组织器官彼此间的相互关系,从而确定相应组织器官的三维立体空间位置。例如:头颅骨的“翼点”投影到体表相当于太阳穴,本身又是蝶骨、颧骨和颞骨的交汇点,不仅结构薄弱,同时下方还有脑膜中动脉经过,向深部垂直矢状面投影可以经过蝶鞍与对侧“翼点”相连。其次:肚脐位于腹前壁中线体表,其上方3cm处平第3腰椎,下方3cm经过第4腰椎。再次,胸骨剑突末端点,平第11胸椎。很明显,点在人体三维立体结构中代表着无数组织器官的位置或参照物。

2 线 有关线的解释和意义繁多,这里主要针对立体几何里点与点之间的连接线段,即直线或弧形,在人体三维立体结构中,无论从体表或深部组织器官,从解剖学的角度看,无处不体现出线的存在和相应的意义,如:人体正中线,与正中矢状面重合,将人体分为左右两半。其次:水平线,与水平面重合,至上而下有无数条。最后,在头颅还有瞳间线、听鼻线、听口线、听眦线等等。

3 面可以是点的密集,也可以由直线的移动而构成。从解剖学的角度看,人体三维立体结构,就是由无数个大小不等,形态不一,方向不同的面与面相互架构而成。如:矢状面,将人体分为左右两部分的所有平面。其次:冠状面,将人体分为前后两部分的所有平面。再次:水平面,将人体分为上下两部分所有的平面。最后,在矢状面与冠状面之间,根据其夹角大小不同存在着无数个平面等等。更为重要的是,我们必须认清,不同的部位和不同厚度的断面,其间包含着各种不同的组织器官。

4 体 有关体的含义解释繁多,这里我们主要指三维立体空间,即点、线、面相互间的演变和转化最终而来。如点:指物象特定空间中所处的位置,它没有长宽厚度,常常也指线段的起点和末端. 其点的移动形成线,线的移动变为面,面的转变成为体。很显然,体就是点、线、面立体交叉的融合,只有正确理解和掌握点、线、面、体相互间的关系,同时与人体三维立体结构紧密结合,用立体的三维思维来分析和5 理解人体不同组织器官,这样才能从不同的方位、角度、平面全方位判断把握不同组织器官的准确位置。

摄影 即X线束经过人体被检部位,由于不同结构的组织器官,对X线的吸收存在差异,当这些带有被检组织信息的剩余射线作用于胶片或探测器,经过暗室处理或计算机转换,即可获得相应部位的X光照片,其照片显示的组织器官影像形态,由不同的摄影所决定。现就不同摄影与点、线、面、体的关系作如下的探究。

5.1 针对三维立体的人体组织结构,怎样把握摄影与“点”的关系,首先确定不同摄影的“点”在人体体表或深部的位置,明确“点”与暗合(IP板或FPD)的关系(将相应的“点”投影在暗合相应的位置),确定“点”与球管焦点的中心线的入射方位,根据不同的要求,可以垂直或倾斜一定的角度经该“点”进行入射。例如:头颅正位,中心线经眉间垂直射入暗盒。汤氏位,中心线向足端倾斜30°夹角与两外耳孔连续中点入射。这方面的例子举无盛举。

5.2 线 在摄影中,主要针对人体体表或深部的各种连线与暗盒或摄影床面的标线的关系。例如:常规胸片与腹部平片摄影时,人体正中线必须与胸片架或摄影床的中线重合,摄头颅标准侧位时,瞳间线需垂直暗盒等等。

影像学与影像技术第3篇

【关键词】医学影像技术

医学影像技术主要是应用工程学的概念及方法,并基于工程学原理发展起来的一种技术,其实医学影像技术还是医学物理的重要组成部分,它是用物理学的概念和方法及物理原理发展起来的先进技术手段。医学影像信息包括传统X线、CT、MRI、超声、同位素、电子内窥镜和手术摄影等影像信息。它们是窥测人体内部各组织,脏器的形态,功能及诊断疾病的重要方法。随着医疗卫生事业的发展,以胶片为主要方式的显示、存储、传递X-ray摄像技术已不能满足临床诊断和治疗发展的需求,医疗设备的数字化要求日益强烈,全数字化放射学、图像导引和远程放射医学将是放射医学影像发展的必然趋势。

1 传统摄影技术在摸索中进行

1.1 计算机X线摄影

X射线是发展最早的图像装置。它在医学上的应用使医生能观察到人体内部结构,这为医生进行疾病诊断提供了重要的信息。在1895年后的几十年中,X射线摄影技术有不少的发展,包括使用影像增强管、增感屏、旋转阳极X射线管及断层摄影等。但是,由于这种常规X射线成像技术是将三维人体结构显示在二维平面上,加之其对软组织的诊断能力差,使整个成像系统的性能受到限制。从50年代开始,医学成像技术进入一个革命性的发展时期,新的成像系统相继出现。70年代早期,由于计算机断层技术的出现使飞速发展的医学成像技术达到了一个高峰。到整个80年代,除了X射线以外,超声、磁共振、单光子、正电子等的断层成像技术和系统大量出现。这些方法各有所长,互相补充,能为医生做出确切诊断,提供愈来愈详细和精确的信息。在医院全部图像中X射线图像占80%,是目前医院图像的主要来源。在本世纪50年代以前,X射线机的结构简单,图像分辨率也较低。在50年代以后, 分辨率与清晰度得到了改善,而病人受照射剂量却减小了。时至今日,各种专用X射线机不断出现,X光电视设备正在逐步代替常规的X射线透视设备,它既减轻了医务人员的劳动强度,降低了病人的X线剂量;又为数字图像处理技术的应用创造了条件。随着计算机的发展数字成像技术越来越广泛地代替传统的屏片摄影现阶段,用于数字摄影的探测系统有以下几种: (1)存储荧光体增感屏[计算机X射线摄影系统(computer Radiography.CR)]。

(2)硒鼓探测器。(3)以电荷耦合技术(charge Coupled Derices.CCD)为基础的探测器 。(4)平板探测器(Flat panel Detector)a:直接转换(非晶体硒)b:非直接转换(闪烁晶体)。这些系统实现了自动化、遥控化和明室化,减少了操作者的辐射损伤。

1.2 X-CT

CT的问世被公认为伦琴发现X射线以来的重大突破,因为他标志了医学影像设备与计算机相结合的里程碑。这种技术有两种模式,一种是所谓“先到断层成像”(FAT),另一种模式是“光子迁移成像”(PMI)。

1.3 磁共振成像

核磁共振成像,现称为磁共振成像。它无放射线损害,无骨性伪影,能多方面、多参数成像,有高度的软组织分辨能力,不需使用对比剂即可显示血管结构等独特的优点。

1.4 数字减影血管造影

它是利用计算机系统将造影部位注射造影剂的透视影像转换成数字形式贮存于记忆盘中,称作蒙片。然后将注入造影剂后的造影区的透视影像也转换成数字,并减去蒙片的数字,将剩余数字再转换成图像,即成为除去了注射造影剂前透视图像上所见的骨骼和软组织影像,剩下的只是清晰的纯血管造影像。

2 数字化摄影技术

数字X射线摄影的成像技术包括成像板技术、平行板检测技术和采用电荷耦合器或CMOS器件以及线扫描等技术。成像板技术是代替传统的胶片增感屏来照相,然后记录于胶片的一种方法。平行板检测技术又可分为直接和间接两种结构类型。直接FPT结构主要是由非品硒和薄膜半导体阵列构成的平板检测器。间接FPT结构主要是由闪烁体或荧光体层加具有光电二极管作用的非品硅层在加TFT阵列构成的平板检测器。电荷耦合器或CMOS器件以及线扫描等技术结构上包括可见光转换屏,光学系统和CCD或CMOS。

3 成像的快捷阅读

由于成像方法的改进,除了在成像质量方面有明显提高外,图像数量也急剧增加。例如随着多层CT的问世,每次CT检查的图像可多达千幅以上,因此,无法想象用传统方法能读取这些图像中蕴含的动态信息。这时在显示器上进行的“软阅读”正在逐渐显示出其无可比拟的优越性。软拷贝阅读是指在工作站图像显示屏上观察影像,就X线摄影而言这种阅读方式能充分利用数字影像大得多的动态范围,获取丰富的诊断信息。

4 PACS的广阔发展空间

随着计算机和网络技术的飞速发展,现有医学影像设备延续了几十年的数据采集和成像方式,已经远远无法满足现代医学的发展和临床医生的需求。PACS系统应运而生。PACS系统是图像的存储、传输和通讯系统,主要应用于医学影像图像和病人信息的实时采集、处理、存储、传输,并且可以与医院的医院信息管理系统放射信息管理系统等系统相连,实现整个医院的无胶片化、无纸化和资源共享,还可以利用网络技术实现远程会诊,或国际间的信息交流。PACS系统的产生标志着网络影像学和无胶片时代的到来。完整的PACS系统应包含影像采集系统,数据的存储、管理,数据传输系统,影像的分析和处理系统。数据采集系统是整个PACS系统的核心,是决定系统质量的关键部分,可将各种不同成像系统生成的图象采入计算机网络。由于医学图像的数据量非常大,数据存储方法的选择至关重要。光盘塔、磁带库、磁盘陈列等都是目前较好的存储方法。数据传输主要用于院内的急救、会诊,还有可以通过互联网、微波等技术,以数据的远距离传输,实现远程诊断。影像的分析和处理系统是临床医生、放射科医生直接使用的工具,它的功能和质量对于医生利用临床影像资源的效率起了决定作用。综上所述,PACS技术可分为三个阶段,(1)用户查找数据库;(2)数据查找设备;(3)图像信息与文本信息主动寻找用户。

5 技术----分子影像

随着医学影像技术的飞速发展,在今天已具有显微分辨能力,其可视范围已扩展至细胞、分子水平,从而改变了传统医学影像学只能显示解剖学及病理学改变的形态显像能力。由于与分子生物学等基础学科相互交叉融合,奠定了分子影像学的物质基础。Weissleder氏于1999年提出了分子影像学的概念:活体状态下在细胞及分子水平应用影像学对生物过程进行定性和定量研究。

分子成像的出现,为新的医学影像时代到来带来曙光。基因表达、治疗则为彻底治愈某些疾病提供可能,因此目前全世界都在致力于研究、开创分子影像与基因治疗,这就是21世纪的影像学。 新的医学影像的观察要超出目前的解剖学、病理学概念,要深入到组织的分子、原子中去。其关键是借助神奇的探针--即分子探针。到目前为止,分子影像学的成像技术主要包括MRI、核医学及光学成像技术。一些有识之士认为;由于诊治兼备的介入放射学已深入至分子生物学的层面,因此,分子影像学应包括分子水平的介入放射学研究。

6 学科的交叉结合

交叉学科、边缘学科是当今科学发展的趋势。影像技术学最邻近的学科应为影像诊断学。前者致力于解决信息的获取、存储、传输、管理及研发新的技术方法;后者则将信息与知识、经验结合,着重于信息的内容,根据影像做出正常解剖结构的辨认及病变的诊断。两者相辅相成,互为依托。所以,影像技术学的发展离不开影像诊断学更密切地沟通与结合将为提高、拓展原有成像方式及开辟新的成像方式做出有益的贡献。医用影像诊断装置用于详细地观察人体内部各器官的结构,找出病灶的位置毫克大小,有的还可以进行器

官功能的判断 。还有医用影像诊断装备情况,已成了衡量医院现代化水平的标志。

7 浅谈医学影像技术的下一个热点

医疗保健事业在经济上的窘迫使得90年代以来,成为一个没有大规模推广一种新的影像技术的、相对沉寂的时期,延续了一些现有影像技术的发展,使得他们中至今还没有一种影像技术能对影像学产生巨大的影响。随着科技的发展,最近逐渐发展起来的一批有希望的影像技术。如:磁共振谱(MRS),正电子发射成像(PET)单光子发射成像(SPECT),阻抗成像(EIT)和光学成像(OCT或NRI)。他们有可能很快成为大规模应用的影像技术,将为脑、肺、及其他部位的成像提供新的信息。

7.1 磁源成像

人体体内细胞膜内外的离子运动可形成生物电流。这种生物电流可产生磁现象,检测心脏或脑的生物电流产生的磁场可以得到心磁图或脑磁图。这类磁现象可反映出电子活动发生的深度,携带有人体组织和器官的大量信息。

7.2 PET和SPECT

单光子发射成像(SPECT)和正电子成像(PET)是核医学的两种CT技术。由于它们都是接受病人体内发射的射线成像,故统称为发射型计算机断层成像(ECT)。ECT依据核医学的放射性示踪原理进行体内诊断,要在人体中使用放射性核素。ECT存在的主要问题是空间分辨率低。最近的技术发展可能促进推广ECT的应用。

7.3 阻抗成像(EIT)

EIT是通过对人体加电压,测量在电极间流动的电流,得到组织电导率变化的图像。 目的在于形成对体内某点阻抗的估计。这种技术的优点是,所采用的电流对人体是无害的,因而对成像对象无任何限制。这种技术的时间分辨率很好,因而可连续监测实际的应用,已实现以视频帧速的医用EIT的实验样机。

7.4 光学成像(OTC或NIR)

近期的一些实质性的进展表明,光学成像有可能在最近几年内发展成为一种能真正用于临床的影像设备。它的优点是:光波长的辐射是非离子化的,因而对人体是无伤害的,可重复曝光;它们可区分那些在光波长下具有不同吸收与散射,但不能由其它技术识别的软组织;天然色团所特有的吸收使得能够获得功能信息。它正在开辟它的临床领域。

7.5 MRS

影像学与影像技术第4篇

[关键词]全息影像技术;教学辅助;教学研究

doi:10.3969/j.issn.1673 - 0194.2017.04.154

[中图分类号]G642.4 [文献标识码]A [文章编号]1673-0194(2017)06-0-02

1 全息影像技术概述

全息技术在三维立体空间对真实物体,利用波的干涉原理和衍射原理进行记录,并通过三维全息投影实现真实事物的虚拟和再现技术,其成像过程包括两步。第一步,全息摄影。图1给出全息投影的拍摄过程,如图1所示激光束被分成两部分,一部分作为参考光,另一部分经被摄物体形成漫反射,两部分光束叠加产生漫反射记录在全息干版上,经后期处理形成全息照片。第二步,物体全息影像的虚拟再现。全息图的衍射光波一般可给出两个象,即原始象(又称初始象)和共轭象,再现的图像具有较强的立体感。其优势主要体现在三个方面:一是形成真实物品的立体影像资料,尤其是珍贵物品的立体影像资料,使探讨和交流可以脱离真实物体;二是全息投影产生的虚拟立体影像,立体感强、虚拟逼真并可借助激光束和360度全息显示屏在各种场合进行展示;三是记录物体信息时全息底片可以记录任何一点的信息,因此具有较强的纠错和修复能力。

全息影像技术经过一段时间的发展,已从理论研究走向应用研究领域,其应用范围广泛。全息影像基于波的干涉和衍射原理,适合各种形式的波动,如光波、超声波、电子波、X射线等。其应用可以渗入到影视等媒体、展览、医学3D影像、内部结构探测、珍贵物品信息存档等各个方面。目前,相对成熟的应用,首先是基于360度幻影成像系统的三维悬浮影像显示,系统可以在舞台等场地构建逼真的、具有特殊氛围的、可视化虚拟化立体影像,在真实的情境中植入虚拟的视觉立体影像,二者相互结合。其次,其在医疗领域的应用,如以色列开发了一种用于医疗手术模拟的立体影像模拟系统。系统的主要功能是通过全息影像技术构建虚拟化的手术模拟环境,医生或医学生可以在虚拟的、可视化立体幻境中进行方针演示或模拟,其在手术方案演练和医学手术实践等方面具有独到的作用,是医学教学辅助的理想形式。随着研究的不断深入和与各行业的融合,其他领域的应用研究也不断进行。成晋军 等就重点剖析了全息影像技术在教学中的应用。本文在此基础上进一步探讨了全息影像技术在辅助医学教育中的应用方向、应用形式和存在的相关问题,旨在用新技术推动医学相关教育的发展。

2 全息影像技术在辅助医学教育中的应用

2.1 应用形式

全息影像信息技术应用的核心是3D全息投影,其在辅助医学教育中的应用目标是构建及生产医学教育中高清晰的、色域逼真的、立体感强的三维医学影像,用于平时的医学教学,给医学学习者以强烈、新奇的视觉冲击,进而加深学习的印象,提高学习者的学习欲望,并最终取得较好的医学教学效果。其最主要的应用形式是在现代化的全息教室中,构建虚拟化的立体虚拟场景,并进行医学的侵入式、体验式、观摩式教学。

2.2 应用方向

要探讨全息影像技术在辅助医学教育中的应用,就要明确医学教育中哪些教学领域需要或可以引入全息影像辅助教学,明确其在辅助医学教学中的应用方向。就此问题,研究者对医学课程和具体教学内容进行了相关调研,分析得出其应用领域主要集中在以下几个方面。

2.2.1 医学解剖教学领域

人体解剖属于生物形态学范畴,是医学教育中一门最基本和最重要的课程。医学解剖理论与实践教学中最重要的问题有以下几个。首先,解剖图像是平面图像难以形成多角度、多方向、多层次的教学信息,视觉冲击力弱,难以激发学生的学习兴趣。其次,可供于课程实践的人体标本资源严重紧张,以南京医科大学为例,每年接收的可供解剖的遗体不足70具,国内多数医学院校几十名学生才有机会解剖一具遗体,这种情况非常普遍,严重影响了解剖的教学质量。为此,李一帆 等提出了采用三维虚拟数字化可视人体进行解剖教学的方案。全息影像技术的出现正好迎合了相应的教学解决方案,在教学中通过全息成像技术或者在已有断层扫描三维重建技术的基础上构建全息解剖影像,并在全息教室进行三维悬浮立体再现。在教学中教师可以就虚拟人体光学影像进行解剖讲解和虚拟实践演示,使教学摆脱稀有的遗体限制。

2.2.2 医学手术实践教学领域

t学手术实践是演练和提高医生(尤其是外科医生)的关键专业性技能,同时也是执业医师不断提升自身素质的关键,但其教学与实践却陷入了“瓶颈”。医院的手术室不可能让大量学生实时、长时间观摩,因为手术风险和医患关系问题也难给机会于学生实践锻炼,全程的手术影像视频出于患者隐私的要求和摄像角度等问题,很少具有可用性,有的即使可以播放、传播,但效果一般。全息影像技术为打破“瓶颈”带来了契机。如文中提到的由以色列“真实影像”公司和科技巨头飞利浦公司联合开发的医用3D全息投影系统,系统一方面是计算,也就是接收3D数据并算出全息图;另一方面是电光系统根据全息图把光线射入空间,并在真实环境中重建影像,这为使用者提供了极大的便利。基于全新的全息影像技术,医生可以用3D全息投影进行模拟操刀手术练习,从自身角度通过手术模拟练习可以在一定程度上降低手术风险,另一方面手术医师可以形象生动地给学习者进行生动的演示教学。从学生角度,首先其获得了最直观的手术观摩。其次,可以无压力、无限制地进行实践演练。总之,这些对医学手术教学具有极其重要的意义。

2.2.3 其他

全息影像技术在医学教学领域的方向同样还可以延伸到需要医学数字图像的领域。如在生物学和显微学中大大量的二维病理图片实例,借助全息技术可以实现2D到3D的转化,使教学更加生动、逼真。吴育民 等探讨了“数字全息显微在医学影像中的发展与最新应用”。如在医学诊断教育中同样可以应用全息影像技术构建虚拟病人进行诊疗模拟。

2.3 关键问题

全息影像技术在辅助医学教育中应用的主要问题包括两个方面。首先,全新医学教学影像的获取或生成。全息影像技术目前还是一个相对全新的应用领域,全息影像的生产需要一支全息影像建设队伍专门进行医学辅助教学影像的摄影与制作,这些需要教师、学校、研究机构等进行多方的沟通与协作,非教师个人力量所能完成,严重制约了其发展。其次,全息影像技术作为新技术,其应用还需医学院校在教学中进行大量的资金投入,一部分用来构建教学资源,一部分进行全息教学的基础设施建设,主要是构建全息教学多功能教室。

这些问题制约着全息影像技术在辅助医学教育的发展,要想突破还需做到以下几点。一是政府部门的政策性导向和激励。政府部门应鼓励相应的技术企业进入到医学及教育领域。二是提供资金支持,全息教育的引入,单靠学校本身的资金投入是远远不够的。三是做好试点。新事物的发展需要一个验证和带动的过程,试点无疑是最好的形式。

3 结 语

全息技术是光学技术、信息技术、多媒体技术和计算机技术等高度发展下的全新领域。相关技术发展趋于成熟,其应用的领域也在不断扩大。当前在各种商业广告和大型演出中都能看到相应的应用,其发展势头迅猛。全息影像技术在医学以及教育领域的发展也已经进入了起步状态,相关的研究和应用不断涌现。本文从辅助医学教育教学的视角,对此进行了探究式的讨论,其内容涉及全息影像技术在辅助医学教育中的应用形式、应用方向和主要问题。但探讨只是未来发展的一个起步,未来全息影像技术在辅助医学教育方向走向实处还有较多的问题需要进一步研究。因此,笔者希望本文可以对全息影像技术在医学辅助教育的应用、发展具有一定的借鉴和指导意义。

主要参考文献

[1]成晋军,张晓娟.全息影像技术在未来教学中的应用[J].农业网络信息,2014(11).

影像学与影像技术第5篇

关键词: 数字影像技术 排球教学 应用研究

1 前言

随着信息技术的迅猛发展,数字化技术已被广泛地应用于各个领域,同时也推动了视听技术与计算机技术的融合,产生了数字影像技术,为现代教育技术提供了更加丰富多彩的手段。教育的概念发生了新的变化,把现代教育推向崭新的阶段。

在现代教育中,计算机辅助教学成为现代教育技术兴起的重要标志,代表了教育信息的发展方向,充分发挥数字影像技术在排球技术教学中的作用,将加快技术动作的正确掌握,促进课堂教学的效率与效益,提高练习效果。

为了深化体育教学与校本课程的改革,我校体育组依靠自身力量,运用计算机集成文字、图形、图像、动画、音频和视频的数字影像资料,完成了一系列课件的创作与实践,并对此进行了研究。

2 研究对象与方法

2.1研究对象

学校04、05、06级各两个班,共245人(实验组)。

2.2研究方法

文献资料法:在实践之前,查阅了近几年来大量的有关资料。

实验法:先制作排球垫球、传球、扣球三个项目的数字影像资料,对实验班级进行辅助教学,在同样的时间内与传统教学班级进行比较。比较的方法有测试法、调查问卷法。

3 实验过程

3.1查阅有关资料,掌握数字影像技术制作方法。

为达到创作高质量数字影像技术的需要,我们的运行环境以Windows2000操作系统为本体多媒体软件环境,在此基础上选择了Broad-WAY动态视频图像采集与编辑软件,编辑软件Premiere、图镶编辑软件Photoshop、三维动画制作软件3DsMax和多媒体创作集中软件Authorware。

3.2确定排球的主要技术动作,制作相应的数字影像资料。

根据教学大纲内容,以及排球项目动作的难易程度,先制作排球垫球、传球、扣球三个项目的数字影像资料,然后对各项运用文字、动画、图片或实例录相显示说明。实例录像需通过Broad-way软件制作动态视频,动画制作用三维动画制作软件3DsMax。

导入:播放比赛录像片段和优秀运动员精彩动作画面,激发学生对排球运动的兴趣和练习的欲望。

基本技术:这一项是重点。第一步通过动画,完整示范。第二步慢放各个分解动作技术,并配音简要说明。第三步对单个技术动作或通过实例录像,或运用图片,或三维动画,或者几个手段综合起来再予以配音和文字显示,具体说明。如垫球位置,传球手型,运用图片和文字,扣球连贯动作用动画和录像。

练习方法:每个技术动作都配有练习方法,练习方法一般都用图片说明,特殊方法也可配以动画。

纠正方法:采用平时教学时拍摄下来的错误动作镜头显示。

竞赛规则:以文字显示说明为主。

3.3教学过程。

所要传授的技术内容,按教学计划分几次完成,如垫球,计划用4次完成,每次为45分钟,每次设定具体的目标,采用数字影像技术,在教学不同阶段分别与常规教学相结合进行辅助教学。

3.4测试。

在完成完整技术动作的教学后,分别进行技评和成绩测试,与同等素质、用同样时间进行传统教学的班级(常规组)相比较,得出结论。

4 结果与分析

4.1实验组和常规组身体基本素质的分析

实验组是各年级中模具和财会1班的学生,常规组是各年级中模具和财会2班的学生,身体基本素质、年龄、男女比例相差不大,进行分析比较,可比性合理。

4.2实验组与常规组教学效果的比较

实验组与常规组教学效果的比较

实验组运用常规组相同的教学时间,完成教学任务后,进行技评和测试次数。结果表明,实验组技评成绩明显好于常规组,同时实验组测试次数的均值也明显高于常规组。说明实验组对动作技术的掌握明显优于采用常规教学方法的常规组。

4.3数字影像技术对学生学习积极性的影响

调查结果表明,实验学生绝大多数对数字影像资料在排球教学中的应用持肯定积极的态度。

在教学过程中,将数字影像技术运用于体育教育具有生动、形象、直观的特点,采用动态视频图像进行完整演示、分解慢放、重新回放的教学手段,向学生提供大量直观的、规范化的技术动作示范,有助于学生建立完整、正确的动作概念,帮助学生更好地掌握动作,调动学生学习的积极性,从而提高学习效果。

5 结论

5.1在排球教学中使用数字影像技术,解决了在学习中感性认识和理性认识相统一的问题。

5.2数字影像技术既可以激发学生的学习兴趣,增强学生对具体动作的直观认识,形成动作完整概念,又有效地培了学生的学习自主性,充分发展学生的能力,使学生在较短的时间内掌握运动技术要领,接收更多有关的知识。

5.3数字影像技术需要体育教师花费时间和精力收集大量的知识和教学信息资料,同时还要及时更新充实进一步完善。

5.4数字影像技术必将成为今后体育教学中必不可少的辅助训练手段并得到广泛的应用,对教师的知识技术水平也将提出更高的要求。

参考文献:

[1]应国良:电视媒体与现代体育[J].体育文化导刊,2002.6.

影像学与影像技术第6篇

关键词: 医学影像技术专业 校院结合 工学交替 实施方案

医学职业教育是直接为地方卫生事业服务、融知识传授和技能培养于一体的职业教育,承担着健康所系、性命相托的责任,具有实践性很强的行业特点。而影像技术专业又是一门技术性很强的学科,且该课程涉及理、工、医等领域,课程技术种类多,学习内容抽象难懂,不易理解,因此,此项学科的实践就显得尤为重要。医学影像学具有自己独立的理论体系,是理、工、医结合的产物。现在培养医学影像复合型人才的问题,已经引起教育工作者、教育理论界和国家教育行政部门越来越密切的关注。

计算机技术的飞速发展使人类数据存储与处理的硬件环境有了质的飞跃;人工智能、模式识别、计算机视觉、图像处理、计算机图形学和数据库等学科的发展,又为数据处理提供了有力的软支持。因此,借助于已有的各种计算方法,更加充分、高效和客观地提取出医学图像中的有用信息,提高医生的诊断效率己势在必行。计算机辅助医学图像分析正是基于上述背景产生的一门充满活力的交叉学科。

为了缩短教学与临床的距离,以更好地适应临床实践的需要,我们对周口市市、县、乡各级医院医学影像科室进行了调查,确定临床对中职影像人才的需要,在此基础上,我们为使“校院结合、工学交替”教学模式顺利进行,以更好地与临床影像工作对接,特制定了符合中职教学特点的医学影像技术人才培养方案,培养目标定位为各级医疗机构X线、CT等医学影像技术岗位培养知识技能型人才,课程围绕医学影像技术岗位的医学影像检查技术、医学影像诊断学及医学影像设备学进行设置,课程改革基于影像技术岗位工作过程,突出“教、学、做”一体化,最终形成“校院结合、工学交替”的人才培养模式,即学生第一年的基础课程教育、专业思想教育在校内进行;第二年的专业课教学在我校医学影像实训基地和临床教学医院(周口市中心医院)交替进行,且学生利用周六、周日时间,分批次进入教学医院完成专业课技能见习,强化训练临床基本技能。医院临床指导教师一对一地对学生开展真实病例教学,学生直接接触患者进行临床实践,这使见习效果明显得到增强,既缩短了学生进入医院实习的适应期,又为其临床顶岗实习打下了扎实的基础。并且通过让学生早期接触临床,将课堂教学改为临床真实教学环境,利用先进齐全的仪器、设备,加上医学影像技术人员丰富的工作经验和充足的临床病例资源,师生共同参与教学和临床实践,以增强教学效果。第三学年的顶岗实习在实习医院进行,由实习医院实训指导老师带教,按照实习的教学大纲,明确实习操作项目,强化学生对专业技术的实践,指导学生把专业知识与技能应用于临床工作中,并接受医院和学校的双向考核。实习结束以后,由各科带教教师按照项目操作给出各科成绩,医院根据学生的操行表现评出优秀、良好、合格、不合格的等级。实习返校后参加毕业综合考试,这样培养的学生能适应医学影像岗位的工作。

同时注重理论教学与临床实践的结合。理论教学应为临床实践服务,学好该课程的根本目的是更好地为临床诊断奠定基础。教学和临床实践相结合是医学教育的总趋势和最终目标,应将目前医院检验科常规应用的检验技术与开展的检验项目作为检验岗位需求的技能标准,做到教学内容与临床岗位需求的接轨,使理论教学更好地适应当代临床的发展。

医学影像领域作为一个完整的体系,其教学课程的设置应遵循连续性和系统性。例如,应先让学生掌握信号分析基础理论知识,然后进一步提高专业技能。在硬件方面,完成各种电子技术知识的学习之后,重点掌握医学成像设备的特点与成像原理;软件方面,完成计算机应用和基本语言程序设计的学习后,结合医学图像处理技术重点培养医学图像分析技能。因此,要合理安排以上相关课程的顺序,使学生循序渐进地掌握较为熟练的操作技能和应用能力,达到在具有较广知识面的同时具备一定专业深度的水平。

现代医学影像技术学借助各种不同的成像原理与方法,使医生能观察到肉眼不及的人体内部器官结构,并了解其生理功能和病理变化,在影像监视下采集活体标本,达到活体诊断和介入治疗的目的。因此,基础专业理论和临床相关学科知识及专业本身各内容如何合理安排教学和突出重点至关重要。以理论联系实际、教学与临床相结合为重点,在教学过程中尽量采用多媒体教学,其获取的丰富影像资料、体现计算机强大后处理和图像重建能力都是传统放射学无法比拟的。多媒体影视资料可以更直观地显示设备的检查过程,部分甚至可代替现场实习,缓解教学实习与临床工作的矛盾,在临床教学过程中取得良好的效果。

为了真正做到“校院结合、工学交替”,我校特指定了本学年的实施方案,我们将组织2011级学生进行阶段培养,通过理论教授,实验室练习,到实习医院实地操作演示及练习,医院实地操作考试等途径,使学生学习兴趣提高,理论知识易于理解。

总体框架如下:

第一步:2012年9月~2012年10月15日

进行理论教授与实验室实践练习

第二步:2012年10月15日~11月15日

到周口市中心医院进行现场教授与独立操作

第三步:2012年11月15日~12月15日

到周口市中心医院进行现场操作考试

第四步:2012年12月15日~2013年1月

影像学与影像技术第7篇

一、高水平运动队运用影像技术辅助训练和比赛带来的启示

在体育比赛中我们常可以看到教练员运用摄像机对比赛进行实时拍摄。实际在平时训练中教练员也经常有类似的拍摄,有时甚至是多角度、全方位的拍摄。高水平专业运动队拍摄动态影像资料其意义在于它可以帮助教练员和运动员更加直观和全面的分析对手、了解自己,还可以对运动员进行技术诊断、改进技术动作、防止运动损伤等方面。当前影像器材已成为竞技体育训练、比赛必不可少的装备。

影像技术在竞技体育领域已经得到了长期广泛的应用,但是在体育专业技战术教学中运用却较少,分析原因我们认为:受以前影像器材体积大、价格高,磁带等耗材后期投入大等因素影响,制约了影像技术在体育专业技战术教学中的应用。由于科学的进步,数码影像器材逐步取代了传统胶片影像器材,并朝着小巧便携,存储设备容量大,价格也日趋大众化等方向发展。随着数码技术不断更新和迅速普及、功能日益强大,数码影像技术显现出明显优势:数码设备把声、像、视频信号转换成数字信号便于编辑与保存,配合小巧的移动存储设备如U盘、移动硬盘等可以实现数码资料的快速交流与传播,学生电脑的迅速普及为数码影像辅助体育技战术教学提供了方便。上述变化,使影像辅助技战术练习不再是专业运动队特有,体育专业技战术教学中运用影像设备也成为可能。

二、数码影像辅助体育技战术教学的设计及其意义

(一)数码影像辅助体育技战术教学设计

数码影像辅助体育技战术教学设计具体可以分为以下几个步骤:首先,数码影像资料的采集,可以在运动场地固定位置与角度架设数码相机(有拍摄功能),拍摄学生技战术练习各环节实时资料。其次,把拍摄资料按学生进行剪辑并和标准示范动作影像资料一并保存,把个人技术动作影像资料和标准示范动作拷贝给每一名学生,让他们在课余时间通过个人电脑自行观看和分析。下次课采取集中分析和个别辅导相结合方式帮助学生尽快掌握上节课教授的特定技术动作。实践证明:体育专业技战术教学中引入数码影像技术,使每位学生有机会看到自己技术动作的实际情况。可以让学生直观了解自身技术动作、加深学生对该技术的理解与掌握,对学习复杂技术动作、强化动作熟练程度等方面均有辅助作用。

(二)数码影像辅助体育专业学生技战术教学的意义

体育专业学生与竞技运动员在技术水平、动作规格要求方面明显不同,但是,提高个人技战术水平,追求个人技战术动作的流畅与优美是体育专业学生在技战术学习中不变的目标。从某种程度上说,体育专业学生与竞技体育专业运动员在技术动作诊断与分析、改进与提高方面的诉求是一致的。只是水平存在差异罢了。因此,在体育专业学生技战术教学中运用数码影像技术辅助教学是适宜且有实际意义的。运用数码影像技术对体育专业技战术进行辅助教学符合直观教学的要求。它可以弥补传统技战术教学模式中学生本体感受差、不了解自身技术动作的缺陷与不足。

三、运用数码影像技术辅助体育专业技战术教学的优势

(一)再现优势

运用数码影像技术辅助体育专业技战术教学可以发挥影像资料的再现优势,例如在排球正面扣球技术教学过程中,可以对正确示范动作的重要技术环节如助跑、起跳、空中击球、落地缓冲等几个环节分别进行慢放、重放、定格等。充分展示排球正面扣球技术各环节动作的时空特征与有机联系,让学生立体的感知该技术动作的要领。对学生个体扣球技术动作摄像同样可以通过慢放、重放、定格等方法分析其技术动作的错误与不足。进而更准确的找到影响他们完成扣球技术动作的因素。通过数码影像拍摄与展示,使运动技术诸环节的时相变化过程演示更准确、清楚。运用数码影像的再现优势,能让学生直观的知道自身技术动作存在的不足,有利于他们纠正错误,建立正确的技术动作。

(二)直观教学的优势

运用数码影像技术有利于突出重点,帮助学生建立清晰、正确、完整的动作表象。学生可以多角度、全方位地观察完整的技术动作示范,有利于学生把握完整的技术动作时相,形成清晰、完整的动作表象和建立正确技术动作概念,还可以修正学生头脑中已经形成的错误运动表象进行自我调节,运用视频影像呈现给学生的动态学习教材,更接近现实情境,具有强烈的感官效果,能集中学生学习的注意力,接受能力强的学生必须按照正确动作示范要求准确地完成技术动作,使学习具有一定的难度,接受能力差的学生则解除了心理负担,可以仔细地把握观察演示动作,不会因教师的示范问题而遗漏技术动作细节。

(三)运动诊断与建立反馈机制的优势

运用数码影像多媒体技术,对学生技战术练习,教学比赛过程进行多角度拍摄,然后用计算机和多媒体软件进行编辑、播放,使影像资料直观反映每位学生的技战术动作掌握情况,把上述影像资料反馈给相应的学生,使他们清楚自己的技术动作情况,使每一名学生可以直观的看到自己整个身体的动态动作,起到动态、立体化反馈的效果。这是传统教学中讲解示范、语言法所达不到的,有明显的优势。通过动态地记录学生技战术学习过程中的时空特征和连续变化过程,可以帮助学生快速形成或纠正动作表象,强化动作概念,建立正确的技战术动力定型,提高直观教学的效果。同时数码影像多媒体技术应用于体育专业技战术课教学实践中,也是现代体育教学进步的一个显著特征。

(四)准确分析并纠正错误动作优势

通过数码影像拍摄学生技术动作,可以准确分析他们技术动作的不足与错误,可以就某一细节动作进行定点纠错。在分析个别学生错误或不合理技战术动作时,如何找到切实有效的辅助练习手段加以纠正和完善是整个教学改革的关键,也是难点。原因是错误动作的影响因素较复杂,存在许多不确定因素。这实际上也是检验体育专业教师教学经验和水平的重要方面,也是每一位专业教师努力的方向。

四、小结

数码影像技术辅助体育专业学生技战术教学可以为提高教学质量服务、并丰富教学方法与手段。可以建立体育专业学生技术运动表象诊断与实时纠正双向反馈机制,可以动态地记录学生技战术学习过程中的时空特征和连续变化过程,可以帮助学生建立正确的技战术动力定型,对教学具有显著的促进作用。因此,在体育技战术教学过程中值得广泛推广应用。通过观看相关影像资料,可以增强学生完成动作的信心,有助于发挥自身的运动能力,培养良好身心状态。运用数码影像辅助体育技战术教学需要处理好与传统教学方法的有效衔接,相互融合的问题。

参考文献:

[1] 杨跃飞,宋跃先.运动影像解析系统在体育领域的应用现状及发展趋势[J].山东体育学院学报.2005.21(4):110-112.

[2] 舒建平.影像测量数据在击剑弓步技术诊断中的应用[J].天津体育学院学报.2010.25(3):262-266.

影像学与影像技术第8篇

关键词:建设;开放;“理实一体”实训室

现代化职业技术教育担负着推动社会经济发展、适应产业结构调整的社会功能;医学类及医学技术类专业人才的培养担负着改善民生、提高基层卫生水平的历史使命;高职高专层次的医学影像技术专业重在培养医学影像技术领域生产、服务和管理第一线的高素质技能型专门人才,在具备一定专业理论基础上重点提升学生的技能成为了培养重心。为此,本人根据《国家中长期教育改革和发展规划纲要(2010-2020年)》的要求,适应国家高职高专教育发展规律,以提高学生的技能能力为出发点,建设好和使用好医学影像技术专业开放化、网络化的“理实一体”化实训室,谈谈体会。

1.开放性“理实一体”实训室构建背景

1.1开放性“理实一体实训室”的定义与意义

校内开放性“理实一体”实训室是指打破传统实验室的定式,在原有各类专业实验室资源基础上进行整合、共享,融入“以人才需求为依据,以职业能力为导向”的现代高职教育新元素,将其建设成为既具职业真实环境的,又围绕快速发展的现代化医学影像技术的开放式、多功能、共享性的医学影像专业校内教学实训中心,致力于发展成为服务于区域、行业各类岗前、在岗服务的职业人才培训基地。校内开放性“理实一体”实训室可以充分调动学生积极性,为专业学生提供发挥、发掘主体性和创造性学习模式的校内学习场所,同时掌握规范的操作方法、技能和灵活应对临床操作难题,最终达到充分利用校内资源,提高学生质量,服务区域经济,培养出适应岗位能力需求的具有创新与实践能力的高素质应用型人才。

1.2开放性“理实一体”实训室的特点

《医学影像技术学》作为高职高专医学影像技术专业的核心课程,是一门实践性较强的学科。在教学过程中必须将理论与实践相结合,通过真实环境下的模拟实践更有利于学生理解临床实际操作中的方法、原理。多年来我院医学影像技术专业建设进程中,根据我院所处地域特点及总体办学思路形成了较有特点的办学理念,逐步建立了较完整的校内、外实训室,并实现了实训室对学生开放,并且不断完善管理办法、实训项目内容,更加有利于学生成长,成才。

2.建成专业文化氛围深厚的实训室

2.1整合资源,建成“理实一体”的实训室

我们根据专业学生就业岗位能力特点,结合学院“工学结合,行校共建”办学理念,将原有各类医学影像实验室与附属医院影像科教学资源有机整合,建立了各类校内实训室,为专业教学环节中将理论与实践相融合,将学习与岗位相结合提供强有力的保障。同时依托学院区域、周边各型医院资源,建立了与职业岗位相对应的校外实训室,以满足在校理论学习期间学生见习、实训环节教学需求。

2.2健全管理与使用制度,提升实训室内涵

2.2.1完善管理制度,实施系统开放

征对实训室教学工作的特点,一方面对实训室设备,仪器分配专人管理,加强了实训室资源的利用率。依据现代化医学影像技术岗位能力要求将实训内容进行删减、优化、有序编排,形成了既与专业理论基础课程相结合又以临床影像技术实践技能为主体,注重创新能力培养的实训项目体系。另一方面对原有的实验室管理办法、学生守则、实训室仪器设备管理及使用办法等规章、制度进行了修订、完善,使其与时俱进,更加具有可实施性,更好的服务于开放性实训室管理。

2.2.2有计划安排课外开放实训室,提高实训的全面性与效率

校内实训室所承担的不仅是通过实训课程巩固理论知识,强化学生实训操作技能,而且还通过学生自由支配课外时间自主见习,培养学生创新实践能力,从而全面提高学生综合专业素质。

由于当前医疗服务形势特殊要求,依托学院附属医院资源建成的校内开放性“理实一体实训室”须征对学生进行有计划安排课外见习分组,学生也可根据自己的学习兴趣选择见习方向,在带教老师指导下适时进行临床操作实践。通过课外开放不仅可以为在校学生提供全面接触临床实际的机会,而且可以保证学生在课外见习环节总结、验证理论、实训课教学内容,完成校内学习向临床思维转变;每次见习后要求学生必须上交课外见习心得、实训报告等。通过实训室的全面开放,不仅可以使学生自主选择实训时间、实训任务,提高学生学习兴趣,同时为学生提供了充分接触设备的机会,大大提高了实训室利用率,最大限度提高实训室资源的效益。

2.2.3融入专业文化,丰富实训内涵

结合医学影像学发展历程不断提炼专业办学历史、实训室发展历程等专业文化内涵,让学生从入学开始对所面向的专业、行业、企业、岗位以及对本专业历史、课程、教师以及专业发展历程、方向等有一个较为清晰的认知。通过专业学习到专业实训环节,最终实现提高学生专业素养。

在长期的办学过程中,不断发展、壮大实训教学队伍,长期外聘临床一线专家,设备维修与维护行业高级技术人员充实到实训教学队伍中来,通过传、帮、带不断提高实训教学水平,同时也实现了专业教师理实互馈的良性循环,实训室运转效率和教学水平不断提高。

3.改变模式,设置项目化实训内容

医学影像技术专业实训教学始终坚持以“职业岗位能力需求”为依据,不断改革教学方法,加强开放力度,强调开放效果。

3.1设置任务化实训项目,提高实训教学效果

实训中心本着提高学生职业能力素质,满足临床岗位需求的宗旨,结合现代影像学发展特点,将原有综合性实验项目进行优化、删减,增设了目的性更强的任务化实训项目,通过实训教学,学生的实践操作能力更强,对临床工作特点有了充分的了解,并且在学习过程中信心更加充足,目的更加明确,思维更加开阔。

3.2创新设计性实训项目,提高学生临床思维能力

为提高学生实践、运用新知,形成临床思维能力,在原有实训教学基础上,结合临床实际特点,实训室创设了一些具有征对性的实训题目,要求学生自己创设,协作完成实训环节,抽选同学互评实训效果,最后写出总结报告。通过自主创设,充分发挥了学生的思维空间,激发了学生对医学影像技术专业的学习兴趣,也促进了医学影像技术专业教学的改革。

4开放“理实一体”实训室初见成效。

4.1构建了以学生为主题的和谐教学关系

实训室开放后,几乎每个学生都能亲身经历实践活动。多数学生对于专业的理解常是学而不知其实,随着实训室的开放,逐渐明确了学习目的,懂得了如何对待临床实际问题,为学生进入岗位打下了坚实的基础。学生想学,教师想教,这样更有利于建立和谐的师生关系。

4.2全面提升了学生的整体综合素质

以真实的职业环境组织教学工作,不仅培养学生对待科学的实事求是的态度,而且对于专业的理解也更加深刻,有利于激发学生思考问题,解决问题的能力,培养学生创新意识,以适应现代化医学影像技术发展的时代潮流。

影像学与影像技术第9篇

关键词:医学影像;后处理技术;方法;流程

针对医学影像,利用全网服务器向患者提供医学影像后处理技术,有效解决了大规模数据网络传递等重难点技术问题,为临床诊断和治疗提供了便捷。医学影像后处理技术在临床会诊中心、手术室、内外科中广泛应用,使得医学影像技术更好地服务于诊疗工作,进一步提升了医疗技术水平。

1 医学影像的简介

医学影像技术是当代医学主要的构成部分,而且是当前医学技术中发展最迅速的技术之一。其主要由医学影像分析处理技术、医学成像显示技术和医学图像压缩传输技术构 成[1]。传统医学成像技术是以现代电子计算机技术和物理学技术为理论指导,以成像机理将其划分为X射线计算机断层成像、X射线成像、放射性核素、超声成像、磁共振成像、红外线成像及放射性核素等。随着计算机技术的日益成熟,利用三息摄影为基础的三维成像技术被广泛应用,在很大程度上提高了医学诊断技术的准确度和清晰度。

2 医学影像后处理技术处理方法及流程介绍

在临床疾病诊断过程中,不管是采用功能影像技术还是结构影像技术,随着计算机技术的发展、网络信息技术的日益成熟,医学影像后处理技术在临床医学诊断中发挥着无法替代的作用。医学影像后怎样开展后处理,这是医学科研人员和临床工作人员重点思考的课题之一。

2.1医学影像后处理技术处理方法 医学影像后处理技术是在影像学检查结束后,为了对患者病情进行更加全面、准确的分析,应该对影像进行后续处理与加工的技术。后处理技术主要是全面分析、识别、分割、分类及解释医学影像技术呈现出的结果。该技术的额目的在于更好地分析患者病情,为临床诊断和治疗提供可靠、准确的影像识别。

医学影像后续处理方法主要分为两类,①直接处理技术,这一技术在患者影像学检查完成后,在影像设备上采用软件技术直接进行处理,例如在MRI和CT设备上直接生成血管成像等。但是这一处理方法的缺点在于无法改变影像,只有检查人员基于自身多年处理经验对病理学进行处理。②脱机应用工作站处理,该处理方法是在工作站或把胶片通过扫描仪对已经生成的医学影像进行数字化处理后,再对其进行影像后处理。例如多维影像(以MRI/PET/CT,SPECT)进行融合,同时采用专门软件自动识别、分割影像图。这种影像后处理方法的优势在于处理后的结果对于医护人员而言可靠性、准确性较高。

2.2医学影像后处理技术处理 对于医学影像技术而言,其同数字图像处理技术密切相关,尤其是在医学图像分析处理和图像压缩传递环节中,这一关系表现得更加密切。医学图像分析处理的流程示意图,见图1。

图1 医学图像分析处理的基本流程

3 医学影像后处理技术具体介绍

善于利用计算机软件处理医学影像,其目的在于为临床医学提供更加精确、可靠的判断依据,从而才能更加深入分析患者病情。按照医学影像特点和后处理的目的,医学影像的常见方法包括影像增强、影像分割、影像配准与融合、影像可视化、影像数据压缩等。

3.1医学影像增强 通过相关设备获取的医学影像主要分为CT片、X线片、MRI、B超等,然而这些医学影像成像普遍都是灰度图像。对于临床专业技能强、经验丰富的专家而言,便能够从图像中总结分析出患者准确的病情情况。然而,由于成像设备及其他因素的影响,在一定程度上造成医学影像质量的降低;即便是获得了高品质医学影像资料,但是对于临床技能和经验不足的医护人员而言,便难以从中分析出患者具体病情。所以,应该利用t学影像增强技术。医学影像增强主要是开展信噪比增强操作,对感兴趣对象区域或边缘予以突出,从而为患者病情分析和相关计算提供依据。

3.2医学影像分割 在医学临床实践和研究过程中,为了获取患者组织的功能或病理相关信息,一般需要准确测量人体某一种器官和组织的截面面积、边界、形状及体积等方面。医学影像分割操作过程中需要考虑到不同人体解剖结构不同,且采用设备获得的医学影像具有不均匀和模糊特征。基于此,采取分割技术重点突出医学影像中能够体现出患者病理的重要信息,从而有助于医护人员按照医学影像分析患者病理状况。

3.3医学影像配准与融合 医学影像成像模式较多,不同成像模式的影响包含了不同的病理、生理、解剖学或功能等方面的信息[2]。为了增强诊断可行性和效率,采用计算机图像处理方法对包括不同信息的医学影像进行人工综合方法,这就是医学影像配准和融合。

将具有不同信息来源的影像通过配准后融合在一起,便形成了多模式图像,便可以获得更多的信息,从而为医护人员在临床诊疗、治疗方案设计、外科手术和疗效评价方面更加准确、全面。例如,把密度分辨率最高、显示钙化和骨质结构最佳的CT同软组织对比分辨率最高的MRI,或者把解剖结构显示清晰的CT或MRI与显示功能和代谢改变的SPECT或PET影像进行融合,形成一种新的图像,增加了更多有价值的诊断信息,更加准确定位了病灶,或者更加直观地显示了形态结构,使得医务人员能够从代谢功能和心态学两方面全面判断患者的病灶。

3.4医学影像可视化及压缩 对于医学影像处理技术而言,医学影像可视化是一种价值较大的模块[3]。医学影像可视化的过程便是把CT、MRI等数字化成像技术获得人体信息在计算机上以三维模式呈现出来,利用三维模拟表现出传统手段难以获取的结构信息是该技术的最终目的。医学影像可视化是一种有效的辅助方法,能够有效弥补影像成像设备在成像方面的缺陷,在辅助医务人员诊断、引导治疗和手术仿真等方面发挥着重大价值。

当前,多排螺旋CT的广泛应用,CT/MRI在临床应用的范围越来越广,尤其是在数据采集与传输技术在三维世界中实现可视化的影像成为可能。为了适应CT/MRI技术的改革浪潮,作为临床医生和放射科医务人员必须深入了解医学影像后处理技术,并灵活运用到临床实践中。医学影像后处理技术是医学影像有效的补充,将其同传统影像诊断技术有机结合起来,进一步提高医疗技术水平。

参考文献:

[1]宁春玉.医学影像后处理技术的研究及其在X线影像优化中的应用[D].吉林大学,2011.