水产论文优选九篇

时间:2023-03-14 15:19:55

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇水产论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

水产论文

第1篇

1.1底部增氧方式

底部增氧方式是一种立体曝气增氧技术,是近几年从充气式增氧技术发展而来的增氧式技术。底部增氧方式的典型机型是微孔曝气增氧机,该增氧机由风机与管道构成。微孔曝气增氧机主要是在水体底部进行增氧,而风机的功率和管道布管的密度大大影响这增氧机的增氧能力。微孔曝气增氧机的安装过程比其他增氧机要复杂许多,第一步是在水体底部铺设微孔管道,然后利用风机对管道进行加压,使微孔中冒出的微细气泡呈现弥散状态,这样微细气泡可以一边上升一边与低溶氧水体进行融合,从而提高水体底部的溶氧水平。

1.2平衡增氧方式

平衡增氧方式是在水体净化技术基础上进行增氧设计的。该设备的典型代表是耕水机,耕水机的缺点是功率小、转速低,增氧能力和瞬时增氧的效果也不如传统的增氧机好。但该种设备也具有传统增氧机所不具有的优势,该设备能够24h不间断地低能耗运行,以使表层的富氧水与底层的缺氧水进行不间断的置换,从而提高水体的整体溶氧水平,缓解水体底部的缺氧状况。

2淡水水产养殖中机械增氧技术的应用现状

2.1机械增氧设备的总量仍然不足

当前我国在增氧机方面增长的速度很快,但是总量不足,现有设备数量难以满足高产高效养殖的需要。一般情况下,增氧机的数量是与淡水养殖的面积和养殖密度成正比的,也就是说,养殖水面越大、密度越高,那么对增氧机的需求量就会越大。但是按照我国现有增氧机的动力效率和有效的增氧面积计算,产量在15000kg/hm2以上的,每66.67hm2的养殖面积至少要配备3kw的增氧机134~167台,现有的设备数量是不能满足如此高产高效淡水养殖的需要的。

2.2设备结构不尽合理

当前的增氧机格局是叶轮式增氧机占主导地位,而其他增氧机的增速缓慢。这是由于淡水水产养殖户的从众心理,他们愿意选择大家都选择的增氧机,而忽略了水产养殖的品种问题。据相关统计显示,叶轮增氧机一度上升到增氧机总量的99%,这就导致设备的现状不仅与名特优水产养殖强劲的发展趋势相背离,其增氧方式也违反了淡水养殖品种的生活习性。

3几种机械增氧方式在池塘养殖中的增氧性能比较

3.1机械增氧方式对增氧性能的影响

3.1.1叶轮增氧机

叶轮增氧机在清水试验中的增氧能力和动力效率指标要高于水车增氧机和螺旋桨增氧机。这是由于叶轮增氧机在水体中的混合与提升能力较强,能获得较大的氧液接触面积,增氧性能会很好。

3.1.2水车增氧机

水车增氧机在清水试验中的增氧能力和动力效率指标略低于叶轮增氧机,而高于螺旋桨式增氧机。这是由于水车增氧机在水体的中上层的推流能力和混合能力较强,其氧液的接触面积也会较大。水车增氧的适用范围是水深1m左右的浅池。

3.1.3螺旋桨增氧机

螺旋桨增氧机在清水试验中的增氧能力和动力效率指标要远低于叶轮增氧机和水车增氧机。这是由于螺旋桨增氧机在整个水体中的推流能力和混合能力较弱,在池塘试验中底层的溶氧值有明显提升,但上下层溶解氧的均匀性较差。

3.2机械增氧方式对不同深度水层增氧能力的影响

由于淡水水产养殖中养殖品种的不同,那么对淡水增氧的方式要求也不尽相同。一般来说,叶轮增氧机的性能较好,能够同时提升淡水池塘中不同深度水层的溶解氧;水车式增氧机的优势是能提升水体中上层的溶解氧,而对水体底层溶解氧的提升能力较差;螺旋桨增氧机的突出优势则是提升水体底层的溶解氧,其对水体中上层溶解氧的提升能力则较弱。

4淡水水产养殖中机械增氧技术的发展趋势

4.1增氧设备的节能低耗、高效可控发展趋势

淡水水产养殖中机械增氧技术的发展趋势是向着低耗、高效的方向发展。这是由于传统的增氧设备具有高耗能低效率、依靠人工操作的缺点。因此,要致力于机械增氧设备水平的提升和智能操控系统的研究,这将是今后机械增氧技术的发展重点和方向。

4.2混合增氧将成为未来发展的趋势

第2篇

可持续水产养殖是我国水产养殖业的发展方向。“种养结合”、“净水渔业”是我国发展现代渔业的必由之路;水产品质量安全的关键在于对养殖水环境修复和保护。我国渔养殖业的发展关键问题是水体富营养化。水体富营养化的治理,最主要是削减污染源的排放,必须内源与外源同时治理。发展净水渔业是治理内源污染的关键措施。一定要加大生物修复的投入,国家与民众共同参与修复水环境。只有走净水渔业之路,我国的水产养殖业才会可持续性发展。推广净水渔业养殖模式而需要各级政府部门在宏观上加以控制,微观上给予指导。控制有效养殖的面积。充分发挥政府职能,控制有效养殖面积,建立健全的法律法规体系,要合理的规划养殖面积及品种,建立渔业用药限制、制定养殖废水排放水质标准,一定要严格控制滥用渔药现象,加强养殖水处理及废水排放的管理,为发展净水渔业提供充足的法律保障。只有走了净水渔业之路,我国的水产养殖业才会可持续性发展。

二、水产生态健康养殖的探索

养殖业的健康发展,既要走对路子,也需要政府相关方面的保驾护航。

(一)必须搞好规划

养殖水域滩涂规划,就是各地人民政府在水域滩涂总体利用规划中制定的用于水产养殖的水域滩涂规划,这是渔业部门管理的用于水产养殖的法定地域范围。

(二)必须严格执行养殖生产管理制度

各地人民政府要继续推进渔民养殖的有效证明,做好核发工作,养殖证也是渔民开展养殖生产的基本依据。

(三)加强执法监督的体系建制

进一步加强病害防治、水产原良种,渔业主管部门一定要加大监督管理,加大对水域生态环境的监管力度等体系建制;加强养殖水域水质的监测、养殖生物疫病测报与防治工作,以提高从业人员岗位技术的培训,从业人员素质和职业资格鉴定,提高和专业技术水平;加强安全、环保型、高效的饲料和水产药物,实现技术推广和服务队伍建设的有效提高。

(四)加强管理

各地人民政府应加强环境监测,及时发现和处理渔业水域污染案件,保护养殖渔民的合法权益。而水产养殖业发展到今天,来之不易;将来向何处走,值得深思,努力建设现代水产养殖业,解决目前遇到的各种问题,使我国成为世界养殖强国,应该是我们为之努力奋斗的目标。而要实现这一目标,推进和发展生态健康养殖,是一条必由之路。

三、结语

第3篇

基于物联网的智能海洋水产养殖系统是专门为人工水产品养殖到销售环节设计的,采用无线传感技术、网络化管理等先进管理方法对养殖环境、水质、鱼类生长状况、药物使用、废水处理、运输环节等进行全方位管理、监测,具有数据实时采集及分析、食品溯源、生产基地远程监控等功能。海洋水产养殖物联网系统包含6个子系统及1个数据库,涵盖了渔业水产养殖、加工、运输及销售环节的物联网技术运用。

二、系统的组成

2.1水产品智能环境监测控制系统

水产品智能环境监测控制系统集成水质传感器、无线传感网、无线通信、嵌入式系统、自动控制等技术,可自动采集养殖水质参数,上报到智能平板终端及物联网云中心。并通过无线传输方式自动控制各继电器给给排水设备、增压泵、水温控制设备工作。

2.2水产品智能养殖管理系统

水产品智能养殖管理系统包含水产品养殖辅料管理、水产品管理及水产品出库管理。水产品养殖辅料管理主要针对饲料、药物的出入库、投饲进行登记。水产品管理主要通过在养殖池上放置RFID设备对鱼苗种类、数量、出入库等进行登记。水产品出库管理主要通过在水产品打捞网箱上放置RFID设备,读取并存储水产品出库时二维码条码信息。

2.3水产品加工管理系统

水产品加工管理系统主要分为入厂登记环节和出厂登记环节。对从养殖池运输来的水产品进行相关检疫并在电脑客户端软件上登记水产品来源信息,把信息通过RFID写入到挂钩上的RFID条形卡上,同时上传到云中心进行储存。待加工好后的水产品出厂时,对包装好后的成品进行称重,读取批发商的IC卡信息生成水产品质量安全信息追溯码并打印,在水产品包装上赋码,并上传到云中心进行储存。

2.4水产品冷链物流管理系统

水产品冷链物流管理系统主要通过在车辆运输中使用的水产品包装箱上放置RFID温度采集标签,通过无线网络手持式交易监管终端读取数据传输至物联网云中心。

2.5水产品交易零售系统

批发商对所批发的水产品进行零售时,利用智能溯源电子台秤上配置的手持式条码扫描枪扫描条码,打印出小票。

2.6水产品溯源查询系统

客户通过在销售商处购买水产品时拿到销售票据,登录查询追溯网站输入相应的追溯码可以查询到从水产品养殖生产到消费者购买为止的过程中的相关信息。

三、结语

第4篇

1.1鱼塘清淤

鱼、虾、蟹等经1年的饲养后,池底往往沉积着大量的食物残渣和排泄物,这些有机废物经腐烂、分解后在池底形成淤泥,而淤泥是细菌很好的培养基。因此,当淤泥沉积到一定厚度时,必须及时清除。银鲫类的出血病及罗氏沼虾、青虾等细菌性病害的发病率的上升与池底淤泥不及时清理有一定的关系。按国外对虾养殖经验来看,高密度虾类养殖,最好每年将池底的1层浮泥予以清除,其目的也是去除细菌滋生所需的营养源。另外,淤泥中有大量的寄生虫卵及孢子等,挖除多余的淤泥亦可大大减低侵袭性病害的发生率。一般来讲,池底淤泥厚度只需15cm左右即可。这样既使水体有一定肥度培育浮游生物,满足水产养殖类对天然饵料的需求,又可减少致病菌的滋生场所和细菌密度。因此,每年对鱼池清整时,必须清除池底多余的淤泥。

1.2池底曝晒与冰冻

池底每年需经15d左右的曝晒和冰冻,一是改良池底的土质,二是使池底淤泥中的致病菌和寄生虫卵及孢子的密度下降。池底经曝晒和冰冻的鱼池,养殖病害的发病率明显下降。但池底干枯时间过长则易引起草荒。

1.3药物清塘

生石灰清塘可有效地杀灭致病菌、寄生虫及孢子等,同时可改善池底土质。

2放养健壮苗种

选择的标准:体质健壮,无畸型苗,且规格均匀。体表、鳍条或附肢无炎症,无烂鳃、白肝等异常病症。苗种游动(或爬行)灵活,无病态。有条件的单位或个人可用显微镜对体表、鳃、肝等部位取样进行镜检,应无寄生虫或致病菌。对罗氏沼虾和南美白对虾来讲,应选购经过检疫不带病毒的虾苗。

3种苗放养前药浴

对鱼类可用15~20mg/kg浓度的高锰酸钾溶液药浴15~20min,具体视鱼类对药物的忍受力而定。蟹种放养前,在水温5~8℃时,用高锰酸钾20g/m3浸洗3~5min,或用3%~5%的食盐水溶液药浴消毒,用来杀灭河蟹体表上的细菌和寄生虫。虾苗进池后即用二溴海因等(浓度达0.3mg/kg)进行全池泼洒4食台或食场消毒

用250g左右的漂白粉对水,泼洒在食台或食场的周围,一般从4~9月每月2次;石灰轻消可有效地抑制致病菌,并可及时补充水体中的钙质,使水体常年呈偏碱性。这对养特种品甲壳类尤为重要。生石灰轻消方法:常规养鱼池一般每米水深为225kg/hm2,特种水产品(如鳜鱼、虾、蟹等)一般每米水深为75~105kg/hm2。

5选购优质配合饵料

要求颗粒均匀、水中稳定性好、营养全面、饵料系数低等,并添加诱食剂及稳定维生素C等,促进养殖品种的摄食、消化和吸收,促进其生长,增强抗病力,提高成活率。要注意投喂饲料的科学性,不要投喂单一饲料,避免缺少某种营养元素而引起营养性疾病。如虾、蟹养殖中,除投喂动物性饵料和全价配合饲料外,还应保证充足的植物性饲料。

6采用生物调控水质

采用生物调控水质,确保有一个良好的生态环境,从而提高鱼、虾、蟹等水产品的体质和抗病力。生物调控水质可采用种植水草、放养螺蛳、添加有益菌和培育浮游生物(如施肥)等。可根据养殖品种选择相应的生物调控法。浮游植物的光合作用能使水体富含氧气,减少氨氮、硫化氢等有毒物质的生成,创造良好的生态环境,抑制致病微生物的滋生。定期用有益活性微生物制剂施放光合细菌、复合型活菌生物净水剂(如西菲利)等,它们在水体中能快速将有机物质彻底分解成单细胞藻类可利用的无机营养盐,减轻有机废弃物的污染,而本身对养殖品种无害,同时自身在水体中能迅速繁殖生长形成优势菌群,通过食物、场所竞争及分泌类抗生素物质,直接或间接抑制有害菌群的繁殖生长。生物调控水质的方法可减少池水排换量,从而减少从外界水源带来的污染。研究和实践证明,通过大排大灌换水的方法改善底质,效果不佳,会造成南美白对虾生长不适,应激生病。

7配套增氧机械

通过增氧机的打水作用,增加水体的溶解氧,使底质中的有机物和水中鱼、虾、蟹的排泄物及残饵等充分氧化分解成单细胞藻类所需的无机营养盐,减少有机废弃物的污染,保持水质条件良好,从而避免诱发疾病的应激条件产生。

8掌握病害发病规律

掌握某些水产养殖病害的发病规律,定期在水体中施用药物或投喂药饵,杀灭病菌,减少致病因素,但需注意药物的拮抗作用和协同作用,并且不能与微生物制剂同时使用。如银鲫的出血症,在发病季节每隔15~20d对水体消毒1次,并投喂药饵2~3d。

论文关键词水产养殖;病害预防;鱼塘清整与消毒;药浴;食场消毒

论文摘要总结了水产养殖中病害的预防措施,包括鱼塘清整与消毒、放养健壮苗种、种苗放养前药浴、食台或食场消毒、选购优质配合饵料、采用生物调控水质、配套增氧机械、掌握病害发病规律等内容,以供水产养殖者参考。

第5篇

1.1信息采集智能体设计信息采集智能体由信息采集模块和CC2530芯片组成,两者通过CC2530芯片的通用I/O口相连接,结构如图2所示。其控制核心为CC2530芯片,该芯片内部集成有A/D转换器、增强型8051处理器和ZigBee无线单元,负责对各类传感器进行管理,实现环境因子信息的采集、预处理和发送。信息采集模块中的温度传感器、溶解氧传感器、pH传感器等采集到的环境因子数据,通过调理电路,进行滤波和电压整定,并通过I/O口送入A/D转换器;增强型8051处理器读取A/D转换器数字化处理后的环境因子信息,最终送入ZigBee无线单元,该单元通过射频信号将数据传给该养殖池内的信息汇聚智能体。每个养殖池内可以在不同区域设有多个信息采集智能体,供信息汇聚智能体读取数据,以保证采集数据的可信度。

1.2信息汇聚智能体设计信息汇聚智能体结构如图3所示。该结构具有两项功能:一方面起到环境因子数据的中转作用,按现场监控智能体的要求,采用轮询的方式读取本池中各信息采集智能体发送来的数据,并发送给现场监控智能体;另一方面兼有图像采集与发送功能,利用串口CMOS摄像头进行养殖物图像采集,摄像头通过RS232与CC2530中的无线单元ZigBee相连,由无线单元ZigBee完成图像向现场监控智能体的传输。

1.3环境调节智能体设计环境调节智能体由无线收发模块和工控机组成,两者通过RS485相连,如图4所示。无线收发模块负责接收现场监控智能体通过无线通信发送过来的环境因子数据,进行解调,最终上传给工控机。工控机接收到数据后,首先根据其具备的知识对数据进行推理(推理模块),并将推理结果(调节任务)交给决策模块进行评价和决策。决策模块利用已有的知识和各种状态数据对推理结果进行评价和决策,如果具备执行该任务的能力,则交给控制模块去执行,否则启动通信模块与现场监控智能体进行协商。控制模块通过设备接口把任务交给执行机构去完成。决策模块还能通过人机界面向操作员分发报警、决策请求等事件,并接收操作员的输入信息。工控机强大的控制功能和可扩展性,使得一个环境调节智能体能够对所有养殖池的环境参数进行调节。系统中的执行机构主要有电磁阀(温度和pH调节)、水泵、增氧机、搅拌机等,用于调节养殖池中各环境因子,以提供养殖物生长的最佳环境。环境调节智能体对养殖环境的调节采取闭环控制,即执行机构在进行环境调节的同时,该智能体中的无线收发模块实时读取养殖池中的各项环境参数,并进行判断,任一项参数达到调节要求即关闭相应的执行机构。

1.4现场监控智能体设计现场监控智能体由信息收发单元和监控计算机组成,两者之间通过RS232/485总线连接,其功能结构与环境调节智能体基本相同。信息收发单元负责接收各养殖池中的IGA上传来的信号,并传送给监控计算机进行保存,监控计算机通过比较判断,如需要对环境进行调节,则通过信息收发单元以无线方式通知环境调节智能体工作,实现对养殖环境的闭环控制。监控计算机的另一项任务,是通过信息汇聚智能体定期采集养殖物质体的图像(此时信息采集智能体处于休眠状态),并利用专用软件对采集到的图像进行处理与诊断,如发现有病变嫌疑则及时报警,避免重大损失的发生。

1.5各智能体间的协作基于多智能体的协同水产养殖监控系统,通过多智能体之间的相互协作,来增强系统的监控能力,系统具有更好的灵活性和鲁棒性,便于适应多变的养殖环境,其协作模型如图5所示。下级智能体接收到上级智能体的任务请求后,根据自身的能力描述和当前状态,判断任务是否可以接受:如果处于故障状态或忙碌状态,则对该请求进行回绝;如果能接受这项请求,则返回接受信号,对请求的任务进行评

2监控软件设计

现场监控智能体的监控软件采用C语言编制,具有参数配置、实时监控、历史数据和系统说明4个模块的功能。实时监控模块用于对养殖水体的溶解氧、温度、pH以及水位等关键因子进行自动监测。每台计算机同时监测6个养殖池,分池、分监测点以数值的形式显示关键因子,并通过算法综合判断,给出养殖环境状态的提示。如图6所示为1号池的实时监控界面。历史数据模块用于对历史数据进行查询。参数配置模块用于对各养殖池的理想参数进行设置。系统说明模块提供相关信息服务,并对软件的使用提供帮助。

3现场试验

试验现场选在山东省日照市的某水产养殖有限公司,试验鱼池规格为6m×6m,水深0.5m。鱼池中养殖大菱鲆,其适宜的养殖环境为:温度10~20℃,溶解氧大于6mg/L,pH为7.6~8.2。据此,试验鱼池的初始环境因子参数设置为:温度17℃,溶解氧7mg/L,pH为7.9。试验以温度值的变化为观测点,以验证环境调节智能体的工作性能。

(1)系统的测量精度满足要求。

(2)通过人工措施在10:30的时候使水体温度降低到15.7℃,此时环境调节智能体开始工作,起动加热系统给水体加热,11:21池中的测量温度为16.6℃。试验测得加热时间约为56min42s,水温达到设定温度要求,加热系统自动停止。系统工作效率高于一般的在线监测系统,满足环境调节要求。

4结论与讨论

第6篇

1.1材料

1.1.1实验装置膜生物反应器(MBR)处理水产养殖废水的工艺流程如图1所示。反应主体为圆柱形有机玻璃容器,有效体积为70L。膜组件为杭州捷滤膜分离技术有限公司生产的聚偏氟乙烯(PVDF)+特种纳米材料材质的中空纤维膜,截留孔径为0.1μm,中空纤维内径为0.9mm,中空纤维外径为1.5mm,膜面积为2m2,出水方式为负压抽吸。正常运行时反应器采用间歇运行,每隔6h抽2h水。出水时间和停抽时间8min和2min。水力停留时间为8h。

1.1.2培养基(1)牛肉膏蛋白胨硝酸盐固体培养基:5g牛肉浸膏,10g蛋白胨,1gKNO3,20g琼脂,1000mL自来水,pH7.2~7.4。(2)硝酸盐葡萄糖反硝化培养基:5g葡萄糖,2gKNO3,1gK2HPO4,1gKH2PO4,0.20gMgSO4•7H2O,1000mL蒸馏水,pH7.2~7.5。(3)DM培养基:4.70g琥珀酸,7.90gNa2HPO4•7H2O,1.00gKNO3,1.50gKH2PO4,0.30gNH4Cl,0.10gMgSO4•7H2O,2mL微量元素溶液。微量元素溶液:50gEDTA,2.20gZnSO4,5.06gMnC12•4H2O,5.50gCaC12,5gFeSO4•7H2O,1.10g(NH4)6Mo7O24•4H2O,1.61gCoC12•6H2O,1.57gCuSO4•5H2O,1000mL蒸馏水,pH7.0。

1.1.3检测试剂(1)格里斯试剂(GriessReagent)Ⅰ和Ⅱ:试剂Ⅰ:将0.5g的对氨基苯磺酸(SulfanilicAcid)加到150mL的30%稀醋酸溶液中,保存于棕色瓶中。试剂Ⅱ:将0.5gα-萘胺(α-naphthylamine)加到50mL蒸馏水中,煮沸后,缓慢加入150mL的20%稀醋酸溶液中,保存于棕色瓶中。(2)二苯胺试剂:溶1.0g无色的二苯胺(Diphenylamine)于20mL蒸馏水中,然后徐徐加入100mL浓硫酸(相对密度1.84)中,保存于棕色瓶中。

1.2实验方法

1.2.1活性污泥的培养驯化实验所用的污泥为哈尔滨市文昌污水处理厂间歇曝气池的活性污泥,其MLVSS/MLSS为45%,SV为34%,MLSS为5296mg/L。在活性污泥中好氧反硝化菌的富集驯化是通过MBR装置驯化上述活性污泥。操作过程为瞬时进水(水产养殖废水添加营养液配制而成)、曝气、出水。曝气期间,监测DO的浓度,保持DO浓度在2mg/L,温度保持28~30℃,pH为7左右。进水COD值在250~350mg/L,氨氮值在20mg/L左右,MLSS值为350mg/L。好氧反硝化菌污泥的驯化富集过程采用的COD和氨氮浓度逐步提高的方法,最后达到COD800mg/L,氨氮70mg/L;曝气时间从开始每个周期(24h)曝气6h,逐步增加到8、12、18、24h,使系统逐渐适应,最后保持好氧状态。为了加强好氧反硝化菌的优势,每隔24h向培养液中加入适量5%硫酸铵溶液、5%硝酸钾溶液和5%亚硝酸钠溶液,培养60d。

1.2.2菌株的分离、纯化与筛选取膜生物反应器中驯化60d的活性污泥10mL,经过充分打碎,用无菌水制备稀释液,取稀释倍数10-2、10-3、10-4稀释液在牛肉膏蛋白胨硝酸盐固体培养基平板上涂布,于30℃培养48h。挑取形状各异的菌株纯化数次,获得36株菌株。将此36株菌株分别接种于装有5mL的以硝酸钾为氮源的反硝化培养基的试管中,反硝化培养基的试管中应放入一倒置杜氏发酵管,以检测气体的生成。试管置于30℃恒温箱中培养。培养14d后,各取培养液5滴于白色比色皿上,加入格利斯试剂Ⅰ和Ⅱ各2滴,只有F20、F21、F28三株菌接种的试管中培养液(分别记为F20培养液、F21培养液、F28培养液,下同)呈红色,说明培养液中的硝酸盐被还原成亚硝酸盐,这3株菌具有好氧反硝化作用。再分别取这3支试管中培养液5滴于白瓷比色板上,加二苯胺试剂2滴,F20培养液和F21培养液呈蓝色,而F28未变色。说明F20培养液和F21培养液中仍有硝酸盐未被转化,F28培养液中没有硝酸盐;F28培养液中反硝化进行程度比F20培养液、F21培养液中反硝化程度高,F28菌株好氧反硝化能力较强。从而筛选获得一株好氧反硝化能力较强的菌株F28。将菌株F28接种于硝酸盐葡萄糖反硝化培养基斜面上扩大培养备用。

1.2.3菌株的鉴定从硝酸盐葡萄糖反硝化斜面上挑取菌株F28,做平板划线培养。待长出菌落后,观察菌落的形状、颜色等特征。采用革兰染色,显微镜观察其个体形态。另外,进行硝酸盐还原试验、淀粉水解试验、葡萄糖发酵试验、吲哚试验、乙酰甲基甲醇试验、甲基红试验、柠檬酸盐试验、产硫化氢试验、过氧化氢酶试验等生理生化鉴定。并同时进行16SrDNA基因序列分析。使用DNA提取试剂盒(E.Z.N.A.BacterialDNAkit,购自美国Omega生物技术公司)提取F28菌株基因组DNA。对该菌的基因组DNA进行PCR扩增的引物采用27F:5''''-AGAGTTTGATCCTGGCTCAG-3''''和1492R:5''''-GGTTACCTTGTTACGACTT-3''''。PCR反应体系(25μL):2.5μL10×PCR缓冲液,3.5μLMgCl2,0.5μL模板DNA,0.5μLPF和PR,1μLdNTP,0.5μLTaqDNA聚合酶,16μL超纯水。PCR反应条件为:98℃5min;95℃35s,55℃35s,72℃1min,35个循环;72℃8min。得到的PCR扩增产物经琼脂糖凝胶电泳检测。测序由上海生工生物工程有限公司完成。测序结果通过NCBI的BLAST检索程序与GenBank中已知16SrRNA序列进行同源性分析。通过MEGA5.05软件用NJ法构建系统发育树。

1.2.4菌株的反硝化性能实验从硝酸盐葡萄糖反硝化斜面上挑取菌株F28接种于DM液体培养基中,200r/min、37℃摇床中培养,测OD600值,在OD600值0.4左右,按1%(V/V)接种量接种于DM液体培养基中,200r/min下恒温振荡培养3d,每隔2h测定培养液OD600值、培养液中硝酸盐以确定菌株F28的生长情况和反硝化能力。

1.2.5菌株F28对水产养殖废水的净化效果采集集约化水产养殖车间水处理过滤装置中的混合液,充分搅拌后,静置,取上清液过滤,装过滤液2L于5L三角瓶中。以5%(V/V)的接种量接种于上述污水中。每隔1d取样测定培养液中COD、硝酸盐、氨氮含量。

1.3分析方法硝酸盐的测定用紫外分光光度法;氨氮的测定用纳氏分光光度法;OD600采用分光光度计在600nm波长下,以未接种的培养液为参比,测量菌液的吸光度。COD的测定采用重铬酸钾法。

2结果与讨论

2.1含好氧反硝化菌污泥的培养驯化经过60d的不断调试,曝气时间由开始的每个周期(24h)6h变为24h。活性污泥里的菌群以好氧菌为主。此时进水营养液的COD为800mg/L,氨氮为70mg/L左右。系统稳定,COD去除率在80%以上,氨氮的去除率在80%以上,总氮的出去除率在55%以上。驯化结果良好。

2.2菌种鉴定菌落呈圆形,乳白色,表面光滑。生理生化检测表明,菌株F28革兰氏染色反应呈阴性,硝酸盐还原试验、葡萄糖发酵试验、柠檬酸盐试验、产硫化氢试验、过氧化氢酶试验呈阳性,淀粉水解试验、吲哚试验、乙酰甲基甲醇试验、甲基红试验呈阴性。经过对菌株F28菌株DNA的提取及PCR扩增,得到了一定长度的DN段,16SrRNA的PCR扩增产物电泳照片见图2。通过与左侧的Marker对照,可知目标扩增产物的片段长度约1500bp。对菌株F28的DNA进行测序研究,得到长度为1442bp的16SRNA基因序列,将获得的基因序列与GenBank数据库中序列比对,结果表明,菌株F28与多株假单胞菌属的菌株具有高度同源性,同源性均在99%以上,结合生理生化检测推断菌F28为Pseudomonassp。应用MEGA5.05软件采用NJ法构建系统发育树,确定其进化地位.结果如图3所示。

2.3菌株的反硝化作用菌株F28在DM液体培养基上培养生长时,溶液中硝酸盐浓度的变化曲线以及菌体生长变化曲线如图4所示。由图4可知,菌株F28延迟期内硝酸盐浓度有下降,但反硝化过程主要发生在对数期,对数生长期时间较长。在稳定期和衰亡期之后菌量不再增加,并在后期略有下降,但仍具有较强的反硝化能力。F28的延迟期较长,为7h。当菌种接种到新培养基之后,需要经过一段时间的调整和适应,以合成多种酶和细胞其它成分。F28的对数期相对较长,约持续9h,反硝化主要发生在这个时期,这可能是因为对数期生长速率最大,细胞合成所需要的能量和还原力主要在这一阶段被消耗,因此指数期是反硝化效率最高的时期。

2.4菌株F28对水产养殖废水的净化作用由表1可以看出,菌株F28对于集约化水产养殖废水处理2d后,NO3--N、NH4+-N浓度由初始77.1mg/L、46.3mg/L分别降至7.4mg/L、1.59mg/L,去除率分别为90.4%、96.6%。同时,菌株对废水中COD具有一定去除作用,处理2d后的去除率为33.7%。处理第3天基本上和第2天变化不大。因此,菌株F28在处理水产养殖废水处理中具有相当好的效果,在实际工程应用中具有较大潜力。本研究针对MBR反应器处理水产养殖废水系统,逐步提高反应器COD和氨氮的负荷,逐步增加活性污泥曝气时间以至全时段曝气,反应器内菌群以好氧菌为主,污泥驯化结果良好,系统稳定,MBR反应器的总氮的去除率在55%以上。经过稀释、平板划线分离纯化与筛选,从MBR处理水产养殖废水体系中获得的适合水产养殖废水处理的好氧反硝化菌F28。结合生理生化试验和16SrRNA基因序列分析及同源性对比确定所筛得的菌株F28为一株假单胞菌(Pseudomonassp)。好氧反硝化细菌广泛存在于自然生态系统中,目前分离出的好氧反硝化菌归属于多个属,假单胞菌是主要的属之一。从土壤、城市污水处理厂污泥中分离好氧反硝化菌常见报道。但适用于水产养殖系统的好养反硝化菌报道不多,李卫芬等从草鱼养殖池水中分离出一株高效好氧反硝化作用的施氏假单胞菌(Pseudomonasstutzeri),杨小龙等从富营养化的鱼塘中分离出一株好养反消菌鉴定为不动杆菌属(Acinetobactersp)。分离好氧反硝化菌的常规方法是根据Takaya等建立的有氧反硝化菌平板分离法。有氧反硝化菌平板分离方法是基于溴百里酚(BTB)培养基的指示剂溴百里酚蓝在pH大于7.6时呈蓝色,而细菌的反硝化过程伴随着产碱,当平板培养基内有反硝化菌生长时,pH升高,菌落呈现蓝色晕圈或者出现蓝色。

全向春、李卫芬、杨小龙和姜磊等是基于有氧反硝化菌平板分离法进行好氧反硝化菌分离实验。本实验采用一种不同的高效分离好氧反硝化细菌方法。先使用牛肉膏蛋白胨固体培养基平板划线法,将驯化良好MBR反应器中的活性污泥可分离细菌分离出来,分别接种于内置有杜氏发酵管的DM液体培养基中。培养12d后,用格里斯试剂溶液Ⅰ和Ⅱ检测培养液中是否有亚硝酸盐产生和观察杜氏发酵管中气泡的产生以及培养液变浑浊情况,用二苯胺试剂检测培养液中硝酸盐消耗情况。Takaya等建立的有氧反硝化菌平板分离方法,是间接利用碱指示剂筛选出好氧反硝化菌。与有氧反硝化菌平板分离法本实验直接使用格利斯试剂Ⅰ及Ⅱ检测有无亚硝酸盐生成以及用二苯胺试剂检测硝酸盐更科学合理、准确度更高,且周期短,操作性强。对菌株F28反硝化作用研究,显示其反硝化作用主要发生在细菌的对数生长期,随着细菌快速增殖,硝酸盐氮迅速下降,验证了李卫芬等报道的,好氧反硝化菌反硝化特性主要发生在对数期。菌株F28对水产养殖废水处理结果表明,24h时反硝化率去除率在70%以上;48h菌株对于水产养殖废水中硝酸盐、氨氮去除效果明显,去除率均在90%以上,同时碳的去除率达到30%以上。文献报道的适用于废水处理系统的好氧反硝化菌对氮去除率达到82%,菌株F28对氮的去除效率更高,适用于水产养殖废水处理。本研究分离出的适用于水产养殖废水处理系统的好氧反硝化细菌F28,对氮有良好的去除作用,同时对碳有一定的去除作用。集约化水产养殖用水量较大,养殖废水水质恶劣,利用生物方法处理水产养殖废水循环利用是降低养殖成本、控制环境条件、保护生态环境的有效途径。水产养殖废水中氮含量对养殖对象具有较大毒害作用,研究工艺中好氧反硝化菌对于水产养殖废水处理具有重要意义。菌株F28在水产养殖废水处理特别是集约化水产养殖废水处理实际工程应用中具有实际潜力与价值。

3结论

第7篇

1.1混凝沉淀技术

混凝沉淀技术就是利用化学原理,将混凝剂加入水中,对水中的污染物进行有效去除,石灰铁盐与有机絮凝剂等常用的混凝剂因为其具有一定的毒性,所以不能直接在养殖用水中应用,而是用在水产养殖排水水质的处理上。

1.2臭氧氧化技术

臭氧如果具有强氧化性,就能在水中迅速自行分解,避免造成二次污染,具有除臭、杀菌、脱色以及去除有机物的作用,是一种比较有效的绿色氧化药剂,这种技术主要运用于海水工厂养殖排水水质的处理中,具有较强的氧化作用,能够有效分解、溶解以及降解水中的有机物。

1.3紫外辐射技术

紫外辐射技术利用紫外辐射对水体进行消毒,不仅能够破坏水中残留的臭氧,还能将大量的病菌杀死,具有无毒、高效以及低成本的特征,紫外辐射技术是一种比较成熟的养殖排水水质改善技术,主要应用于水产生殖排水的循环过程中。

1.4其他处理技术

在对水产养殖排水水质进行改善处理的过程中,离子交换技术以及电化学技术也是一种水质处理技术,但是离子交换技术主要在水族馆或者科研项目中运用,应用范围较小,而电化学技术还处于试验阶段,不完全适用于生态农业园的需求。

2生物处理技术

2.1人工浮床净化技术

人工浮床净化技术通过模拟自然界的各种变化规律,利用高分子材料和混凝土等载体,对水生植物进行种植,使其发挥清除水体污染物的作用,这种技术能够净化水质、美化水体景观,为生物创造生存空间的功能,促进周围生物的多样性发展,加强其生态系统的完善,能够很好地适用于生态农业园区的水产养殖排水中。

2.2人工湿地净化技术

人工湿地净化技术能够按照水体的具置和实际情况,模拟湿地的结构与功能,综合净化与处理污水,构成水体、基层、微生物以及水生植物等人工湿地的主要元素,对铵、氮、硝酸盐以及亚硝酸盐等化学物质进行有效清除。

2.3水生动物净化技术

水生动物净化技术就是将水生动物放养于水产养殖所用水体中,不仅能够起到净化水质的作用,还能提高生态农业园水产养殖的经济效益,是一种兼具实用性与经济性的水质净化技术。

2.4水生植物净化技术

水生植物主要有沉水植物、浮叶植物以及漂浮植物,通过水生植物在生态农业园水产养殖区域的种植,能够抑制水体中藻类的生长,并且具有一定的观赏价值,同时能够有效起到净化水体的作用,实现一定的经济效益。

3结语

第8篇

首先,只重视养殖产量而不重视养殖水环境的保护,造成渔业水质环境日益恶化。在水产养殖过程中,养殖户对水产质量和饲料的选择都有着较为严格的质量要求,但是,则对养殖过程中水环境的重视程度较低,很多渔民认为自己养殖的时间有几十年,经验十分丰富,但是在实际的养殖过程中却不能培育一塘水,甚至在养殖过程中,水的质量越来越低,这种现象导致了水中的病菌滋生。随着养殖规模不断扩大,病情一旦发生,会给养殖户带来严重的经济损失;其次,无病不妨,病急乱投医。目前,很多渔民在养殖过程中对疾病的预防工作不够重视。引种时不对种苗进行检疫,入箱(池)前对动物不进行彻底的消毒和疫苗注射。不勤于清洗网衣,甚至从一开始养殖到最后都没有进行过一次清洗工作。此外,在养殖过程中也不针对发病的流行趋势及时的做好防治工作,造成病害年年发生。而在养殖过程中一旦发现大量死鱼,养殖户就无应对之策,对各种药物各种消毒剂胡乱使用,这种无病不防治,有病乱投医的做法,不仅会导致病菌的耐药性增加,还会导致给养殖对象造成药源性的伤害,导致生物中毒,同时还会导致形成新的病害,严重危害到渔业的发展;最后,生态意识差,有害药物使用十分普遍。在进行病害防治的过程中,由于人们对有害药物的认识不足,无公害防治意识较差,一些高毒、对人体有害的药物仍然在使用,最终将成为影响到人类生活环境,危害人类身体健康的一大危险因素。

二、防治措施

1.细菌性病害的防治对策

在防治过程中只要能够掌握其发病规律,就可有效的避免此类疾病的发生。在防治过程中主要有以下几方面的措施。网箱是设置在大水体中且鱼群密度很高,因此预防不能照搬池塘养鱼的方法,如不宜使用全箱泼洒等方法。首先,饵料配方要合理,投饵量要适当,防止因饵料配方不当引起鱼的营养缺乏症或因饵料不足使鱼体消瘦,发生鱼病。饵料加工杜绝使用霉烂、变质原料,混合各种添加剂时,要搅拌均匀,否则也是引起鱼病的原因。其次,发现病鱼、死鱼及时捞出,要深埋不能乱丢,防止传播病菌或败坏水质。其次,种苗的消毒。种苗消毒可以采用复合型的二氧化氯或者高效的菌毒消毒剂进消毒处理,采用还需要此阿勇肠炎灵、鳃病灵、克血灵或者烂尾灵拌饵喂食。当鱼苗处于发病季节前后,应该每隔半个月使用高氯精、溴氯海因、二溴海因等药物进行消毒。并使用大蒜素和克血灵拌饵投喂两天,同时还可以在发病季节每隔两周左右用新鲜生石灰化水泼洒一次,调节水的PH值。

2.病毒病的防治措施

继发性的感染细菌性疾病是水产感染病毒后死亡的主要原因,这些水产疾病主要包括河蟹抖抖病、虾类肌肉白灼病以及病毒性的败血症等疾病。预防该种疾病的重点是要做好细菌性病害的防治工作,同时,还需要采用相应病毒的预防措施。首先,在对鱼塘彻底清塘之后,在放养的前一周之内,采用精碘进行消毒一次,精碘对病毒病的预防有着优良的治疗效果;其次,在发病季节来临之前,应该加强对网箱(鱼塘)进行消毒处理,以增加消毒的次数。在发病季节之前采用精碘消毒两次;最后,对已经发病的鱼应该积极的采用内服药物进行防治,以防止病害的发生。

3.寄生虫防治措施

第9篇

加强重点水产养殖区域和养殖户规范化管理,确保全市水产品质量安全,避免发生质量安全事故。一是对重点养殖户进行登记造册,发放水产养殖记录本,督促填写鱼塘日志。二是通过水质检测服务及时检查病害发生情况和用药情况,促进水产品质量安全。与106户水产养殖户签订标准化养殖协议,发放养殖规范操作技术资料210份,发放池塘日志350本,基本涵盖全市高产养殖池塘。

二、引进新技术加强示范基地建设

水产苗种生产供应和示范基地是水产业发展的基础。2014年,争取并实施了省无公害水产品基地建设项目,依据永城市池塘面积大(30亩以上)、水位深(3米以上)的特点,投资10万元,开展了网箱培育鱼种及商品鱼养殖试验,培育黄颡鱼种37.6万尾、黄河鲤鱼种26万尾,网箱养殖黄颡鱼试验产量达到2.7kg/m3,取得理想效果,为水产养殖结构调整积累了经验。实施了农业部渔业标准化健康养殖项目,投资50万元扶持永城市康丰渔业养殖专业合作社渔场标准化建设。建设内容分二个方面。一是道路交通、输电线路改造、池塘护坡、仓储房建设、渔业机械、新品种、新技术应用;二是现代渔业信息化装备。完善了无公害水产品生产基地标准化建设,提高对周边水产养殖带动、示范作用。

三、完成了《永城市现代渔业发展规划》

在永城市政府大力支持下,安排专项资金,委托河南省水产科学研究院,在调查全市渔业现状,研究分析永城市现代农业规划、土地规划等规划的基础上,编制了《永城市现代渔业发展规划》。经过资源普查、综合评估、系统诊断提出永城市现代渔业发展战略方针、区域布局、建设重点等一系列规划,编写出《永城市现代渔业发展规划》(2013—2030)讨论稿。内容分十部分,包括永城市渔业现状、发展潜力分析、发展思路和目标、区域布局和建设重点、投资规模与资金筹措、经济社会生态效益评估、保障措施,以及规划图、重点项目投资核算表。

四、认真谋划2015年重点工作

1.加强水产品质量安全管理

结合水产技术服务促进标准化养殖,提高水产品质量安全。扩大渔业水质检测范围,把中高产池塘全面纳入检测范围,帮助养殖户池塘水质调控;加强渔业病害检测,促进针对性用药,改变过去凭经验、盲目用药、滥用药物,推广科学鱼病防治技术,推进标准化水产养殖;对河道、沉陷区、人工湖等国有渔业水域水质实施监控,加强渔业资源保护。

2.贯彻落实发展规划

进一步加大宣传力度,认真贯彻落实新制定的《永城市2013—2030年现代渔业发展规划》,依据规划发展要求,制定年度水产技术推广工作计划。

3.加强水产苗种与高产示范基地建设

继续加强水产苗种与高产示范基地建设,促进永城市渔业产业化发展。指导、帮助现有的三户水产苗种养殖场扩大生产能力、规范培育管理,提高永城市水产苗种供应能力;重点帮助致信水产良种场完成申报省级水产良种场建设,缓解永城市水产苗种不足的局面。

4.充分发挥养殖协会作用

引导水产养殖协会,促进永城市渔业产业化发展。目前,已经起草了协会章程,召开了部分养殖户座谈会,群众反映积极,正在进行会员报名、审查工作。计划2015年初,完成协会注册,召开协会成立大会,推选协会领导机构,建立正常运行机制,确定渔业用电价格优惠政策落实、水产养殖户小额贷款使用、饲料集团购买等几件事实。

5.多元化促进永城水产业发展

免责声明以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
相关文章
相关期刊
服务与支付
发表咨询 润稿咨询 文秘咨询 购买杂志