时间:2023-01-07 14:45:11
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇混凝土结构论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
论文摘要:混凝土结构被广泛应用于多种工程,解决开裂问题是决定混凝土结构是否能够满足使用需求和耐久性的关键。
0引言
混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而成的非均质脆性材料。由于混凝土施工、本身变形和约束等一系列问题,使混凝土裂缝成了土木、水利、桥梁、隧道等工程中最常见的工程病害。轻者使内部的钢筋等材料产生腐蚀,降低钢筋混凝土材料的承载能力、耐久性等,严重的将威胁到人民的生命、财产。出现混凝土裂缝的原因从微观上看,混凝土是由水泥、砂、石、空气、水组成的多相结合体,由于混凝土的组成材料、微观构造以及所收外界影响的不同,混凝土裂缝产生的原因也有很多种。
1混凝土结构的裂缝依其形成可分为以下三类
1.1静止裂缝系指形态、尺寸和数量均已稳定不再发展的裂缝。修补时,仅需依裂缝粗细选择修补材料和方法,而与其它因素无关。
1.2活动裂缝系指其宽度不能保持稳定,易随着结构构件的受力、变形或环境温、湿度的变化而时张、时闭的裂缝。修补时,应先消除其成因,并观察一段时间,确认已稳定后,再依静止裂缝的处理方法修补;若无法完全消除其成因,则应使用具有足够柔韧性的材料进行修补。
1.3尚在发展的裂缝系指长度、宽度或数量尚在发展,但经历一段时间后将会终止的裂缝。对此类裂缝应待其停止发展后,方可进行修复或加固。
混凝土裂缝修补前,应对其成因进行研究,若是由于承载能力不足引起的裂缝,除应选择相应的方法进行修补外,尚应选用适当的加固方法进行加固。
2修补设计
修补设计原则上应根据第四章是否需要修补及补强加固的判定结果,进行恢复己开裂结构件的机能及耐久性的设计,更重要的是要选择适当的修补材料、修补工法以及在选择修补时间的基础上进行修补设计。进行修补设计时,应考虑如下事项:①根据是否需要修补的判断结果,设定修补范围及规模,还应按需要再度调查现场。②掌握开裂原因、开裂状况(裂缝宽度、深度及型式等),建筑物的重要性及环境条件(一般环境、工厂地区、盐类环境、温泉地带、寒冷地带及特殊用途)。③为了明确规定修补目的及恢复目标,考虑环境条件,选定最适于修补的修补材料、修补工法及修补时间。选择修补工法,可按开裂现场及开裂原因决定。另外,当构筑物处于盐类等苛刻环境时,应选择比普通环境条件高一个等级的材料及工法。如有可能,裂缝最好在稳定后再作修补;对随环境条件变化的温度裂缝,则宜在裂缝最宽时处理。
混凝土建筑物及构件的修补恢复目标将视竣工时的初期性能、建筑物的耐用年限、开裂原因、劣化程度及劣化范围等而异,另外,保修年限也不尽相同。通常,可将修补恢复目标分成如下三个阶段:①恢复到与健全构件同等性能。②恢复到不妨碍使用的程度。③恢复到能够确保人身安全的程度。一般针对以确保人身安全而进行的应急修补工程。④必须充分研究修补作业所必要的机械材料、脚手架及工程现场对周围人群的安全保障。
3修补方法
3.1表面修补法①利用混凝土表层微细独立裂缝(裂缝宽度ω≤0.2mm)或网状裂纹的毛细作用吸收修补胶液,封闭裂缝通道。对楼板和其它需要防渗的部位,尚应在混凝土表面粘贴纤维复合材料以增强封护作用。常用的方法为涂覆法,增加整体面层,压抹环氧胶泥,环氧浆液粘玻璃丝布,表面缝合等。②涂覆法:混凝土表面出现数量较多的表面裂缝时,采用手工或机械喷涂方法,将修补材料涂覆于混凝土表面,起到表面封闭作用。涂膜厚度在0.3~2.5mm之间,厚度大者适应裂缝变化能力强。选用修补材料时应考虑使用条件(室内、室外、环境温湿度变化,介质腐蚀情况)以及裂缝活动情况等,例如,要求耐磨的地坪可选用环氧沥青涂料,聚氨酷涂料,聚氨酷沥青涂料等刚性涂料,不稳定的裂缝修补可选用聚氨酷弹性体,橡胶型丙烯酸酷涂料等弹性涂料。③增加整体面层:混凝土表面裂缝数量较多,分布面较广时,常采用增加一层水泥砂浆或细石混凝土整体面层的方法处理。多数情况下,整体面层内应配置双向钢丝网。有条件时,宜采用喷射法施工水泥砂浆或混凝土整体面层。3.2局部修复法①充填法用钢钎、风镐或高速转动的切割圆盘将裂缝扩大,最终凿成V形或梯形槽,分层压抹环氧砂浆、或水泥砂浆、或聚氯乙烯胶泥、或沥青油膏等材料封闭裂缝。其中V形槽适用于一般裂缝修补;梯形槽用于渗水裂缝修补;环氧砂浆适用于有结构强度要求的修补;聚氯乙烯胶泥和沥青油膏仅适用于防渗漏的修补。②预应力法用钻机在构件上钻孔,注意避开钢筋,然后穿入螺栓(预应力钢筋),施加预应力拧紧螺帽,使裂缝减小或闭合。如条件许可时,成孔的方向应与裂缝方向垂直,钻孔方向不与裂缝垂直时,宜采用双向施加预应力。③部分凿除重新浇筑混凝土对于钢筋混凝土预制梁等构件,由于运输、堆放、吊装不当而造成裂缝的事故时有发生。这类裂缝有时可采用凿除裂缝附近的混凝土,清洗、充分湿润后,浇筑强度高一等级的混凝土,养护到规定强度的修补方法。修补后的构件仍可使用在工程上。用这种方法修补己断裂的构件应特别慎重。此外,修补前应检查钢筋的实际应力和变形状况。修补混凝土宜用微膨胀型。修复工作必须十分仔细认真,否则新老混凝土结合不良将导致失败。
3.3灌浆法将水泥或化学浆液灌入混凝土缝内,使其扩散,固化。固化后的浆液具有较高的粘结强度,与混凝土能较好地粘结,从而增强了构件的整体性,使构件恢复使用功能,提高耐久性,达到堵漏防锈补强的目的。用于结构修补的化学浆液主要有两类:一类是环氧树脂浆;另一类是甲基丙烯酸甲酷液(简称甲凝液)。用于防渗堵漏的化学浆液主要有:水玻璃、丙烯酞胺、聚氨酷、丙烯酸盐等。这些不溶物可充填缝隙,使之不透水并增加强度。
3.4低压慢注修补法(注射法)以一定的压力将修补胶液注入裂缝腔内;此法适用于处理0.2<ω<1.5mm静止的独立裂缝、贯穿性裂缝以及蜂窝状局部缺陷。可使用JN-L低粘度灌缝胶及JN-F封口胶。
3.5压力注浆法在一定时间内,以较高压力(按注浆料产品说明书确定)将灌注材料压入裂缝腔内;此法适用于处理大型结构贯穿性裂缝、大体积混凝土的蜂窝状严重缺陷以及深而蜿蜒的裂缝。可使用JN-J或HPG两种水泥基改性材料,也可使用JN-M结构灌注胶。
3.6填充密封法在构件表面沿裂缝走向骑缝凿出U形或V形沟槽,然后用改性环氧树脂或弹性填缝材料填充,必要时以纤维复合材料封闭其表面;此法适用于处理ω>0.5mm的活动裂缝和静止裂缝。可使用JN-XF裂缝封闭胶或JN-LE弹性灌缝胶。
民用建筑混凝土结构裂缝修补工法多种多样,但我们不能只知其一、只用其一,而应牢牢掌握每一种方法,以一变应万变,做到根据不同情况采取不同方法,切实从每一个环节入手,做好过程控制,完善施工手段,确保施工质量,尽量实现修补最优。
参考文献:
关键词:事故处理结构防火
1火灾现场的资料收集
火灾事故一经发现,应尽可能早地进入现场或其周围了解情况。在火灾扑灭之后,更应在现场未经破坏时收集原始资料。
(1)起火时间、原因与灭火方式。建筑物的起火时间与火灾延续时间应予详细记录。火灾发生之后,有一个火势从小到大的发展阶段,再经过灭火或空气、燃料耗尽而火势减弱直至熄灭。要尽可能地找出火源所在位置,查明失火的原因,这对以后避免火灾发生很有意义。不同的受灾对象有不同的灭火方式,要说明灭火使用的手段。
(2)火势蔓延的过程与过火范围。从火源处开始,通过可燃物的燃烧,过火范围逐步扩大。火势常通过门窗、楼梯间、过道、天井等蔓延至其他位置与楼层。火势能否蔓延与通风条件有很大关系。由于建筑物各部分火烧时间不同,受损的程度也还大有差异。
(3)可燃物品统计。特别对工矿企业,可燃物的品种、数量与存放方式各有不同,应分别查明,记录在案。还需说明可燃物在火灾后的燃烧状况,如烧毁多少、残存多少等。
(4)结构损毁程度。钢筋混凝士结构受不同温度不同时间的作用,有多种损坏情况。在各个过火区域要分别调查结构损毁程度,例如结构本体是否完好,外观破坏程度,包括保护层剥落、钢筋外露、裂缝开展以及构件变形等等。
(5)现场材料取证。火灾现场一般都有各种金属与非金属材料,如铜、铁、铝、玻璃等、它们在经受温度作用时会发生不同的物理化学变化,铝与铝合金在600~700℃、黄铜在900~1000℃、铸铁在1100~1200℃会有金属滴产生;玻璃在700℃时软化,而在850℃时熔化,在不同过火区域取证这些典型样品,对火灾的鉴定有很大作用。
(6)混凝土取样。混凝土是组成结构的主要材料,其损毁程度与建筑物修复的关系最大。混凝土在高温作用下会发生物理变化与化学反应,当温度在300℃以下时,混凝土无变化,随着温度的升高,水泥水化物(主要是硅酸钙与氢氧化钙晶体)将会有显著的变化。可通过扫瞄电子显微镜,拍摄到清晰的照片,再结合X射线衍射分析,能有效地鉴定混凝土受火的损伤状态。
2火灾的技术分析资料
根据现场勘测收集的资料,进行综合分析,在技术上作出判断与评估,这些技术分析资料主要有:
(1)结构受火温度。可根据以下情况综合分析:
混凝土表面颜色的变化与温度有关:300℃以下颜色不变,300~600℃转为粉红至红色,600~950℃转为灰白至淡黄,大于950℃则为灰黄色;现场材料取证(见前述);构件外观状况:300℃以下无显著变化,300~600℃表面开裂,石英质骨料发生爆裂,600~900℃混凝土剥落起壳,轻击后脱离,部分钢筋外露,表面疏松,900℃以上表面呈粉末状,至1200℃熔融;扫瞄电子显微镜与X射线衍射分析;碳化深度检测:混凝士正常碳化通常发生在表面,火灾引起的碳化可出现在内部。用碳化深度可检测受火表面温度。
(2)混凝土高温后力学性能。混凝土的抗压强度、抗拉强度、粘结强度、应力-应变关系等均与温度有关,当温度确定后,均可予以推断。混凝士强度还可用钻芯取样、回弹仪检测、超声检测等方法直接测得,并进行综合评价。
(3)钢筋高温后力学性能。包括屈服强度、极限强度、弹性模量等也与温度有关,可通过由实验得出的经验公式计算获得。
(4)结构残余承载力。从混凝土与钢筋高温后的强度可计算火灾后钢筋混凝土结构的残余承载力(结构承载力因受高温作用而下降)。必要时可在火灾现场不同区域选取典型构件进行加载试验。
(5)结构损伤度。结构灾后损伤程度分为4级:1级为轻度损伤,只是表面装饰部分遭受损坏,或表面损伤轻微,结构本体完好。2级为中度损伤,损伤深度达到混凝土保护层,使保护部分剥落,但受拉主筋未受损伤,构件整体性好,变形不超过规范规定值。3级为严重损伤,混凝士保护层大片剥落、主筋外露,粘结力破坏,构件明显变形。4级为严重破坏,混凝士构件表面大面积损伤剥落、严重开裂,结构变形很大,构件遭到严重破坏,已成为危险结构。
(6)修复措施。对于损伤度为1~3级的结构,可分别采取相应的技术措施予以修复,由有关部门应提出结构修复的技术文本。
3资料的系统归档
火灾发生以后直至处理结束,应将所有资料系统归档,这些将由不同单位和不同方式提供的火灾现场资料与技术分析资料有:
(1)火灾现场资料。根据资料不同的性质,将分别由消防部门、业主、有关技术人员等提供。资料包括书面文件、材料样品、照片、录像等。除书面文件外,其他资料还应有详细说明。
(2)专家技术人员的技术鉴定书。火灾对结构破坏的技术分析,只能由专门技术人员作出,并提供技术鉴定书与评估意见。
(3)图纸。由业主提供受灾建筑物的设计图纸。专家技术人员在检测过程中,应对图纸上每个构件编号,说明受损情况,以便采取相应的修复措施。由于建筑物受灾程度不等,故进行全面检测后,要对图纸中标明的过火区域按不同损伤情况分区,划为严重受灾区、中等受灾区、轻微受灾区、未受灾区等。
(4)结构修复设计方案和结构物修复的施工技术文件。
(一)学生角色转变引发的挑战
在FCM中,学生由“被动接受者”变为“主动研究者”,学生通过自定步调,制定学习时间和进度,碰到难以理解的知识时可以反复观看教学视频。在课堂上,学生要独立完成作业,并参与到教师设计的课堂活动中,在与教师、同伴交互协作完成任务的过程中深入掌握知识,因此翻转课堂的教学设计是以学生为中心的。首先,FCM要求学习者具备一定的自主学习能力、自主学习意识。普通教学班和拔尖人才实验班的FCM教学实践对比表明[5],高水平的学习者具有较强的自主学习能力,更适合FCM教学模式,而普通教学班学生反映FCM对他们系统地掌握知识方面存在不足。笔者认为,自主学习能力当然是必要的,但对于绝大多数经历严酷高考迈入同一所重点大学的学生而言,自主学习能力只存在相对高低问题,不存在有无问题。相比而言,自主学习的意识更为重要,这就存在课程差别和人的差别因素。对某些非主干专业课程,部分学生不渴望拔高学习,只以学分为目标。自主学习意识不强,就不可能按照FCM开展课程自主学习,因为基于FCM的教学,需要学习者付出较多的能力,更深入地思考,这部分学生认为课业负担较重。如何结合学科和课程特点,激发自主学习意识,避免盲目推进FCM本土化,是实施FCM的挑战性课题。其次,网络诱惑因素多,对学习干扰大,在网络自由、宽松、无拘束环境中,学生容易迷失方向。加强学生时间管理意识,培养抗干扰的自我有效能力,养成自学习惯是FCM的首要任务[6]。抗干扰能力培养是长期工作,如何在有限的课程教学周期内,解决这一问题,也是实现FCM的挑战性课题。
(二)教师角色改变引发的挑战
教师将从知识讲授者变成学习的促进者和指导者。教师要构建完整的学习支持体系,不论在知识点导入、前测,还是影视资料的录制,教师认真研究组织学习资源,为学习者构造一个适合自主学习、能便捷获取学习资源的虚拟学习环境。在此基础上,教师还要通过精心的课堂教学设计,激发学生参与交互协作的各个环节,在互动中深入掌握知识。特别是在课程开设的前几轮,面临影视资料制作的较重负担和课堂设计的精心筹划,可见做好FCM的实施,其成败关键在于教师是否愿意改变,是否愿意放弃传统的教学思维与习惯[6]。学校要加强对教师的FCM宣传灌输,并对教师开展信息素质能力的培训。2013年11月20日,哈尔滨工业大学召开了MOOC对教学方法与改革促进作用研讨会,其中对翻转教学模式进行了交流探讨,中国工程院院士、哈尔滨工业大学副校长周玉教授讲话中①指出,“对于教师而言,FCM等创新教学模式是教学方法改革的必然发展趋势,我们要做教学方法改革的革命者,而不是被革命者”。首先,对教师而言,教学资源建设是首要的问题。从前述可见教师是否意愿接受FCM并不是主要问题,FCM教学资源建设才是首要问题,因为这不是教师一个人短时间内能高质量完成的工作,应该从学校、省级教育部门甚至国家层面,积极筹划实施相关课程的FCM建设,推进FCM教学资源团队建设。目前推进的各个层次的精品视频课程可作为这项工作的基础。其次,专业技能的不断学习及教学艺术的提升是对教师提出的另一主要问题。FCM之所以成功,是因为课堂讨论所带来的学生“吸收内化”效益提高。传统课堂有教科书、课件、讲解、练习等填充,教师以完成教学任务为主要目的。而FCM需要更活泼、有趣、实用的课堂教学方式,如何计划使用课堂时间,设计课堂活动,与学生互动交流,促进知识吸收内化,借此改革提升自己的教学艺术是教师要面临的另一挑战。第三,实施FCM,学校需对教师提供相应的信息技术教育培训,或建设FCM公共模块软件,使教师掌握教学信息搜索、加工的基本技能,能录制教学视频,提高教师的信息素养及教育技术能力。此外,大班教学现状也是制约FCM推广的现实问题。班级授课制有三种形式,即常规班级、小班教学、超大容量的大班教学[7]。由于我国人口众多,教育资源匮乏,目前我国大部分班级处于常规班级和大班教学,短时间内无法实现小班教学。班级规模过大,人数过多,教师难以关注到每一个学生,课题讨论和答疑过程中,学生个性差异和独特性被忽视。而FCM所提倡学生课堂中完成练习,教师针对性地解答每个学生的疑惑,实施差异教学,促进学生的个性发展,这种方式受大班教学的限制,有待解决。
二、高校实施FCM中挑战性问题的解决途径
(一)实施分流、两类FCM教学设计,是提高教学质量的有效途径
学生自主学习意识和自我约束能力决定了FCM成功与否,即使课件资源再完备、各种学习记录要求模块的设置再细化,对没有主动学习意识和自我约束能力差的学生,学习效果都将是危险的,因为FCM对这部分学生来说可能成为了“放羊”。即使自主学习意识强烈,但是今天的学生很繁忙,他们的时间安排紧凑,参加的活动多,能否静下心来全面、详尽地学习教学资源中的每个知识点,是值得进一步探讨的问题。笔者认为有必要结合学生对某门课程的学习自主意识来实施分流,注意不是根据学生的自主学习能力。以土木工程专业的混凝土结构设计课程为例,在一条起跑线的学生,自主学习能力存在一定差别,但是并不会太大,而且在具有自主学习意识的前提下,自主学习能力还可以得到培养和锻炼。因此,将课程开设具有不同翻转度的FCM课堂,让学生自愿选择参加,根据学生自愿原则实施分流分度FCM,是提高教学质量的有效途径。下面提出完全翻转和部分翻转的两类FCM教学设计概念供探讨。首先,自愿参加FCM的学生,基本是主动学习意识较强的学生,有了这个前提条件,为开展FCM课堂奠定了基础性条件。对这部分学生实施完全翻转的FCM精英式教学设计(PerfectFCM:PFFCM)。其次,对没有选择参加FCM课堂的学生,实施部分翻转的FCM教学设计(PartialFCM:PTFCM)。所谓PTFCM,是指在坚持传统课堂教学的前提下,课前公开教学资源,供学生预习,课堂教师通过重点讲解、知识点梳理完成课题教学,答疑环节坚持现有的固定答疑时间方案或集中组织答疑的方案。第三,部分学生选择PTFCM,也解决了PFFCM大班互动的瓶颈问题。由于部分学生选择PTFCM,学生数量进行了分流,班级规模缩减,在有限的教学资源情况下,PFFCM和PTFCM均能得到有效实施。
(二)建立自主学习实验室,对FCM学生开放,解决网络学习干扰
网络诱惑因素多,对学习干扰大,是否有必要建立自主学习实验室,对FCM学生预约开放,观看授课录像,开展自主学习,以此解决网络干扰因素,是值得进一步探讨的问题。虽然这种方式没有从根本上实现随时随地学习的FCM便利性,但是能有效约束学生的网络使用,提高课程学习效率。
(三)教师角色分流
FCM教学环节主要包括课前的教学资源制作、课堂的互动环节。教学资源的录制应该在课程建设团队中协作完成,在课题负责人带领下完成。各个班级的FCM教学电子资源应该一致,并由经验丰富的名师担任主讲教师。这样,传统的教师角色发生了分流,由课堂教授转变为课堂设计者、互动组织者、问题答疑者,因为教学资源的建设是由团队集体完成的,之后每年再经修订和完善,每个个体教师不再涉及教学资源录制编制的工作。这种分流方案,对学生也较公平,因为不同班级的学生,能获得同等的课堂教学资源。对于学生而言,等同于参与MOOC教学模式。
三、土木工程专业混凝土结构课程的混合FCM教学设计分析
混凝土结构作为土木工程专业的一门理论性、实践性都很强的重要专业基础课,是专业培养目标的载体和培养模式关键的一环,目的是使学生掌握混凝土结构的基本理论和基本知识,培养学生的工程意识、解决实际工程问题的能力。该门课程的特点是内容多、涉及面广,经验性强、综合性强,规范条文多。根据前面关于FCM主要特征及其挑战性问题的分析,下面对土木工程专业混凝土结构设计课程实施FCM进行分析和探讨,提出相应的解决方案。“一刀切”式推进FCM对有些课程未必奏效,以土木工程专业混凝土结构课程为例,该门课程教学内容多,有材料性能、结构设计方法、受弯构件、受压构件、受扭构件、受拉构件的设计计算、裂缝和变形理论以及预应力混凝土等,各部分存在理论性、实验性、经验性等较复杂的知识特征,因此各部分知识点的学习特点不尽相同,在教学实践中有必要坚持多种教学方法相结合的混合FCM教学设计。关于极限状态设计法介绍、公式推导、解题思路等有必要坚持传统的课堂授课方法[8],而材料试验、结构构造、钢筋配置、构件的破坏过程、设计图纸、结构裂缝和变形工序以及工程实例展示等可以通过丰富多彩的多媒体学习资源实现FCM教学。笔者将这种传统课堂教学与FCM相结合的教学方法称之为混合FCM教学方法。
四、结语
关键词:混凝土,耐久性.影响因素,措施
1前言
混凝土结构以其整体性好、耐久性好、可塑性强、维修费用少等优点广泛使用于整个20世纪,发现混凝土的耐久性问题则是在60至70年代。一些发达国家的混凝土桥使用了三四十年后,纷纷进入老化期。人们始料不及的是混凝土材料在不利的环境、运用条件下,出现了一系列影响结构耐久性的物理、化学现象,如结构混凝土的碳化、保护层剥落、裂缝的发展、钢筋锈蚀、渗透冻融破坏、混凝土集料的化学腐蚀等等。我国七十年代后期建造的混凝土桥梁亦发现有严重的开裂现象。因而混凝土结构的耐久性问题已成为结构工程师们不容忽视的一个问题。
混凝土结构的耐久性概括起来是指混凝土抵抗周围不利因素长期作用的性能。结构耐久性问题主要表现为:混凝土损伤;钢筋的锈蚀、脆化、疲劳、应力腐蚀;以及钢筋与混凝土之间粘结锚固作用的消弱等三个方面。从短期效果而言,这些问题影响结构的外观和使用功能;从长远看,则为降低结构安全度,成为发生事故的隐患,影响结构的使用寿命。下面从影响混凝土结构耐久性的主要因素和提高耐久性的技术措施两个方面来探讨混凝土的耐久性问题。
2影响混凝土结构耐久性的主要因素
(1)混凝土的材质。
混凝土是碎石、砂、水泥和水拌合后凝硬而成。这些材料的优劣直接影响到硬化后混凝土的质量(包括密实度和强度等),好质量的材料将为工程使用期混凝土的耐久性打下良好的基础。近年来由于基本建设的迅猛发展,施工中往往忽略对材质的要求,工地上只检查混凝土试件的强度作为材质的唯一标准。岂知不合规格的材料,将导致混凝土收缩徐变量大大增加,初始裂缝大量产生,这对混凝土结构安全将是一严重隐患。
(2)混凝土的密实性。
混凝土的内部缺陷(不密实),使混凝土在使用过程中易受各种不利因素的侵袭,主要有如下几种形式:
①渗透:当混凝土不密实,空气和水容易渗入,水中有害物质就易对混凝土产生化学侵蚀,影响混凝土的耐久性。
②碳化:混凝土中因水泥石含有氢氧化钙而呈碱性,在钢筋表面形成碱性薄膜而保护钢筋免遭酸性介质的侵蚀,起到了“钝化”保护作用。但当混凝土密实度低,空气中水和C02渗入,形成碳酸,尽管其酸性很弱,也能中和氢氧化钙使钢筋锈蚀,这一过程成称混凝土的“碳化”。
③冻融破坏:混凝土不密实,体内渗入的水量大,低温时水结冰体积膨胀产生压力,从内部破坏混凝土的微观结构,经多次冻融循环后,损伤积累将使混凝土剥落酥裂,强度降低。
(3)混凝土结构所处的环境条件。
工程结构使用时所处的环境条件是影响混凝土结构耐久性的外部因素,如海水侵蚀、大气腐蚀、极高温度、冰冻、水、风、地震灾害的袭击等。根据环境条件对混凝土耐久性的影响,《桥规》(JTGD62)根据公路桥梁的使用情况,将桥梁结构使用环境条件划分为下列4类:
Ⅰ类环境——系指温暖或寒冷地区的大气环境;与无侵蚀性的水或土接触的环境。
Ⅱ类环境——系指严寒地区的大气环境;使用除冰盐环境;滨海环境。
Ⅲ类环境——系指海水环境。
Ⅳ类环境——系指受侵蚀性物质影响的环境。
在上述环境分类中,严寒地区是指累年最冷月平均温度低于-10℃地区;寒冷地区是指累年最冷月平均温度高于-10℃,低于或等于0℃的地区。除冰盐环境是指北方城市依靠喷洒盐水除冰化雪的且其主梁受到侵蚀的环境;滨海环境是指海水浪溅区以外且其前无建筑物遮挡的环境;海水环境是指潮汐区、浪溅区及海水中的环境;受侵蚀性物质影响的环境是指某些化学工业和石油化工厂的气态、液态和固态侵蚀性物质影响的环境。
如上所述,混凝土结构的耐久性取决于混凝土材料的自身特性和结构的使用环境,同时与结构设计、施工及养护密切相关。3提高混凝土结构耐久性的主要技术措施
(1)合理选择混凝土结构的组成材料。
混凝土各组成材料及钢筋的选用应满足材料的耐久性质量要求,应按规范规定对进场原材料进行严格的质量检验。同时合理改善颗粒级配,提高混凝土的密实性。从而提高耐久性。
(2)提高混凝土的密实性。
控制混凝土的最大水灰比和最小水泥用量,改善混凝土的施工工艺,搅拌均匀、充分振捣,加强养护,严格控制施工质量。除了选择及配良好的集料和精心施工保证混凝土充分捣实和水泥充分水化外,水灰比是影响混凝土密实性的最重要的条件,故《桥规》(JTGD62)中规定了各类环境条件下满足混凝土耐久性要求的最大水灰比和最小水泥用量值。同时适当掺用外加剂,如掺用减水剂或引气剂,可改善混凝土的孔隙结构,提高混凝土的密实性。
(3)改进结构设计。
结构的选型、布置和构造应有利于减轻环境因素对结构的作用。采用具有防腐保护的钢筋(例如,体外预应力筋,无粘结预应力筋,环氧涂层钢筋等);加强构造配筋,控制裂缝发展;加大混凝土保护层厚度等。《桥规》(JTGD62-2004)与旧《桥规》相比,构造钢筋用量增多,混凝土保护层加大,构造不合理的地方进行了调整。
(4)采用高强混凝土以提高结构物的耐久性。
高强度混凝土(50MPa以上)的配制特点就是低水灰比,加外加剂,掺用超细活性掺合料,它的研制和应用解决的核心问题之一就是保证耐久性。由于高强混凝土的密实性能好,抗渗、抗冻性能均优于普通混凝土,因此不但适用于高层和大跨度结构物,对于海洋和港口工程,其抗渗和耐腐蚀性能均大大优于普通混凝土。
(5)加强桥面排水和防水层设计,改善桥梁的环境作用条件。
(6)加强结构使用阶段的维护与检测,提高混凝土的耐久性。
4结语
混凝土破坏绝非是某一孤立原因造成的,多是与其他综合不利因素有关。本文通过对影响混凝土结构耐久性主要因素的分析,提出综合提高混凝土结构的各种性能是改善和提高混凝土耐久性的主要措施。从混凝土技术的发展来看,采用高强度混凝土是解决结构耐久性要求的发展趋向。
参考文献
[1]戴文跃,安美华.高性能混凝土发展前景浅析[J].中国建设信息,2006,(11)
[2]王建花.浅谈钢筋砼结构的耐久性[J].淮阴工学院学报,2004,(05)
关键词:超长混凝土结构温度收缩裂缝后浇带设计措施
1前言
建筑工程中,混凝土结构的裂缝较为普遍,裂缝的类型也很多,但按成因基本可归结为由外荷和变形引起的两大类裂缝。其中由混凝土收缩和温度变形引起的收缩裂缝和温度裂缝以及由这两种变形共同引起的温度收缩裂缝则是兰州地区实际工程中最常见的裂缝。随着建筑向大型化和多功能发展,超长(即超过温度伸缩缝间距)高层或大柱网建筑不断出现,混凝土强度等级的提高,施工中泵送混凝土工艺的应用,使超长混凝土结构易出现的温度收缩裂缝有逐渐增多的趋势。虽然这类裂缝属非结构性裂缝,一般不致影响构件承载力和结构安全,但却会影响结构的耐久性和整体性。同时也会给使用者感官和心理上造成不良影响。另外由于我国幅员辽阔,不同地区气候环境、温湿度差异很大,现行规范对防止和减轻温度收缩裂缝的设计措施制定的较为原则和局限。因此不少设计人员较重视强度设计,而不太认真考虑抗裂的构造措施。这样一旦出现裂缝不仅影响工程质量,同时在进入住房商品化,质量纠纷日趋增多的今天也不利于保护自己。
基于以上原因,笔者感到有必要结合兰州地区温差大,气候干燥这一地区特点,根据多年的工程设计实践和体会,对防止和减轻超长混凝土结构温度收缩裂缝的设计措施提出一些建议,供设计人员参考并能有所启发。
2温度收缩裂缝的基本特点
混凝土在结硬的过程中发生收缩,温度变化时会热胀冷缩,当这两种变形受到约束后,在结构内部就会产生收缩应力和温度应力,这两种应力分别超过混凝土抗拉强度时就会导致混凝土开裂而形成收缩裂缝或温度裂缝。超长混凝土结构中较多见的是在收缩应力和温度应力共同作用下所产生的温度收缩裂缝。要分析温度收缩裂缝的基本特点,首先应掌握收缩和温度变形的一些基本概念。
2.1收缩变形的特性及影响因素:
一般混凝土最终收缩应变约3~5×10-4,其特点是早期收缩快,半年可完成第一年收缩量的80~90%,一年后仍发展但已不明显。其影响因素主要有混凝土强度等级,水泥品种,水灰比,坍落度,养护(保温,保湿)和体表比。
2.2温度变形的特性及影响因素:
混凝土温度线胀系数一般为1.0×10-5/C°,其变形随温差而变化,一般发生在混凝土结硬一直到房屋使用期间。其影响因素有季节温差,内外温差和日照温差。
2.3温度收缩裂缝的基本特点:
⑴该裂缝由收缩和温度变形共同产生,其分布一般为收缩和温度两种裂缝的组合,随环境湿度和温度而变化,随时间而发展,裂缝的开裂和危害程度往往较单一的收缩或温度裂缝严重。
⑵根据具体工程裂缝出现的时间、发展与变化、以及分布、形状、尺寸等特征。一般可分为以收缩变形为主或以温度变形为主,实际工程中较常见的是以收缩变形为主的温度收缩裂缝,一般发生在混凝土浇筑后一年内,但多见半月至数月之内。
⑶主要影响的部位及构件是底层和顶部数层梁板构件以及基础梁、挑檐、栏板等外露构件。
⑷梁板裂缝呈现不同分布和特征,梁缝一般垂直于纵向,分布在两侧面,两头细、中间宽、枣核形。裂缝为表面,深进或贯通。单向板缝等间距平行于短边。双向板缝较重于单向板缝,两个方向板缝纵横交错,不规则,缝多为贯通,板面缝一般宽于板底缝。
3防止和减轻超长混凝土结构温度收缩裂缝的设计建议
3.1设置后浇带以及控制和抵抗温度收缩应力的措施
3.1.1有效设置后浇带
后浇带是列入高规中的一种目前设计人员常采用的方法,它利用了混凝土早期收缩量大的特性,其设计思路是“以放为主”。主要作用是释放早期混凝土收缩应力,减小以收缩为主的变形。高规虽然对后浇带的间距、宽度、钢筋处理、浇筑时间有较明确要求,不少资料对此也有所介绍。但是结合多年来对兰州地区几个较大型超长工程的设计实践,深感对后浇带的做法必须予以重视。如设计施工处理不好,不仅起不到予期的效果,还会留下结构隐患。因此就后浇带的具体做法提出以下建议和看法:
⑴间距:高规规定为30m~40m。建议具体工程应结合建筑物长度、气候环境特点综合考虑,一般应控制在30m左右。
⑵位置:
①小跨梁开间或受力较小的部位,一般可在梁跨三分之一处。
②平面布置时要注意梁的布置宜平行于后浇带以免梁截断太多。
③视具体情况可沿平面曲折通过。
⑶宽度:高规规定800~1000mm。建议预留的宽度要考虑满足钢筋错开搭接要求。可允许大于1000mm。
⑷钢筋:目前对后浇带内梁纵向钢筋处理有两种做法。
第一种:梁板钢筋均断开后搭接(高规要求),但由于梁钢筋搭、焊接处理困难,质量不易保证,易给结构造成隐患。
第二种:板钢筋断开,梁钢筋直通不断。目前工程采用较多,但由于截断梁较多时,钢筋全部不断会约束混凝土收缩,达不到予期效果。
建议:梁上部钢筋,腰筋及板墙钢筋断后错开搭接或必要时先搭后补焊。梁下部钢筋不断,可适当加大配筋。这样即可大大减小梁钢筋全部不断对混凝土收缩形成的约束,又可避免梁钢筋全部断后造成的钢筋搭、焊接困难,这种处理方法笔者自93年以来已在一些工程中较好的进行了使用。
⑸浇筑时间:高规要求,宜在两个月后且浇筑时的温度宜低于主体混凝土浇筑时的温度。由于混凝土早期收缩量大,相对一年的收缩量,半月约占30~40%;1个月约占45~55%;2个月约占65~75%;半年约占80~90%,故应按规范执行,一般应保证两个月后浇筑。
⑹后浇混凝土:采用无收缩或微膨胀混凝土,强度较主体混凝土提高C5级。
⑺设计时要特别交待以下请施工单位注意的问题:
①后浇带两侧宜设钢筋网片,防止主体混凝土流入后浇带。
②后浇带混凝土浇筑前应清理凿毛,浇筑时振捣密实,精心养护。
③后浇带两侧支撑保证稳定可靠,后浇带混凝土达设计强度时方可拆除。
3.1.2、针对性地采取控制和抵抗温度收缩应力的措施
⑴加强屋面保温隔热措施,采用高效保温材料,严格满足建筑节能设计标准。
⑵屋面板、外廊板,阳台板等外露室外现浇板(含施工期间主体暴露时间较长的室内现浇板)以及板跨大于4m且采用泵送混凝土的双向连续板等温度收缩应力较大的板,均应在板面(即板的受压区)配置不小于φ6@200双向钢筋网片,或支座钢筋隔一全跨贯通,但间距不宜大于200mm,每一方向配筋率不宜小于0.1%。以上板在有受力钢筋处,实配钢筋尚应考虑温度收缩应力影响予以适当增大。
⑶框架梁及所有现浇梁凡高度≥600者(外露梁高度≥500)均设置不小于2φ12腰筋。腰筋宜细而密,间距不应大于200mm,每侧腰筋配筋率不宜小于0.1%。
⑷檐口板,外露栏板应双面双向配筋,上下端头各配≥2φ10温度抵抗筋,并每隔15~20m设置一道20mm温度伸缩缝。
⑸控制现浇板混凝土强度等级不宜大于C35。
后浇带列入高层规程后已在大量工程中广泛使用。前已述及,其主要作用是减小混凝土早期以收缩为主的变形。因此,超长混凝土结构温度收缩裂缝的预防不能仅靠设置后浇带来解决,必须采取上述“放”“防”“抗”相结合的综合措施。笔者已在兰州和西非热带地区一些较大型的超长建筑中,根据具体工程各自的特点多次采用了上述综合措施。实践证明比较有效。故认为,防止和减轻兰州地区超长混凝土结构温度收缩裂缝目前仍然应首先或主要采用设置后浇带以及控制和抵抗温度收缩应力的综合措施。考虑目前混凝土温度收缩裂缝的趋于增多以及超长混凝土结构的抗震性能。建议采用上述综合措施,房屋总长宜控制在120m内。
3.2采用UEA补偿收缩混凝土
3.2.1方法提出:
由于后浇带延长工期,钢筋断后的搭、焊接和清理凿毛均给填缝施工带来一定麻烦,处理不好将留下隐患,因此中国建筑材料科学研究院游宝坤等人提出了采用UEA加强带取代后浇带连续浇筑超长建筑的无缝设计施工方法。
3.2.2设计思路:
“以抗为主”的设计原则,利用UEA补偿收缩混凝土在硬化过程产生的膨胀作用,在结构中产生少量预压应力用来补偿混凝土在硬化过程中产生的温度和收缩拉应力,从而防止收缩裂缝或把裂缝控制在无害裂缝范围内。
3.2.3具体做法
所有楼板均掺10~12%UEA(膨胀率2~3×10-4)。但每间隔50m设置一条2m宽膨胀加强带,带内混凝土掺加14~15%UEA(膨胀率4~6×10-4),两侧设密孔钢丝网,防止混凝土流入加强带,可连续浇筑100~200m的超长建筑,具文献[4]介绍,该技术已在全国50多个重大工程中应用。
由于这种方法,规范未列入,施工要求严,气候环境影响大,潮湿地区膨胀可保持,干躁地区会存在问题。结合对福州机场航站楼采用UEA混凝土后实际效果的调研。建议兰州地区应慎重采用,若采用可做必要计算和实验,测得一些技术数据,最好在有条件保湿养护的地下结构中采用。也可考虑在建筑长度70m以下,设置后浇带后影响工期的工程上试用,但对梁板构件仍应针对性地采取3.1.2中介绍的一些必要的控制和抵抗温度收缩应力的设计措施。另外特别提请施工时要严格保湿养护。
3.3采用予应力混凝土结构
予应力混凝土可增强梁板刚度,梁板中所产生的预压应力可抵消由于混凝土温度变化和收缩产生的轴向拉应力,从而达到扩大温度伸缩缝间距不设后浇带的目的。经对珠海机场调研了解到:梁板在采用无粘结予应力混凝土后,平面尺寸84×48m,未设后浇带,使用良好。笔者认为,当为满足建筑层高要求而采用该技术时,可考虑在采用必要的控制和抵抗温度应力的具体措施后增大温度伸缩缝的间距,但应结合工程收集资料具体分析。
4结语
⑴温度收缩裂缝是兰州地区超长混凝土结构中较常见且日趋增多的裂缝,由于该裂缝的危害性及规范的局限性,设计人员应予以足够重视。
⑵本文从设计角度上简析了混凝土收缩和温度变形的特性,影响因素以及温度收缩裂缝的成因和基本特点,以使设计人员建立最基本的概念来针对性地结合具体工程特点考虑防止和减轻温度收缩裂缝的具体措施。
1.收缩裂缝的原因分析。
混凝土凝固时一些水与水泥颗粒结合,体积减少称为凝缩,另一些水分蒸发,体积减小称为干缩。凝缩与干缩总称为收缩。由收缩引起的混凝土变形受到约束作用的限制产生的裂缝为收缩裂缝。施工中收缩裂缝产生的原因:(1)混凝土未完全硬化前产生的收缩裂缝。一般发生在初、终凝结前后。主要是初期养护不好,表面游离水分蒸发过快,混凝土体积收缩,此时混凝土强度很低,混凝土的抗拉强度不能抵抗这种应力变形而产生裂缝。(2)由养护不当产生的收缩裂缝。产生的原因是经风吹日晒,表面干燥过快,干缩较大,并存在差异收缩受内部混凝土约束,其表面产生拉应力而开裂。(3)混凝土收缩引起不均匀下沉形成的裂缝。因快速浇灌混凝土,混凝土沉降不均匀而产生裂缝。收缩下沉裂缝产生的原因主要是混凝土级配不好或水灰比过大,捣实不够等施工方法不当造成的。(4)施工方法不当引起混凝土收缩裂缝。拌合料搅拌不匀产生,混凝土内砂、石、水泥分布不均。
2.温度裂缝产生的原因分析。
混凝土凝固过程中,内外温差形成过大时,构件或结构产生膨胀或收缩,由于该变形受到内外约束的限制而形成的裂缝,称为温度裂缝。温度裂缝产生的原因:(1)大体积混凝土由于水泥水化热产生的温度裂缝。(2)预制构件采用蒸汽养护或冬季施工措施不当产生的裂缝。(3)因焊接措施不当,引起的温度裂缝。(4)屋顶保温不够或施工中长期屋面不作保温层。(5)梁柱现浇结构,因急骤升温或干燥产生大量的网状细微裂缝,与此同时梁柱上几乎出现等间距的粗裂缝,有时局部脱落。(6)使用环境温度不当。(7)伸缩缝间距超过规范要求。
3.减少或防止温度裂缝及收缩裂缝的措施。
温度裂缝及收缩裂缝往往在同一混凝土中是伴生的、共同作用的结果。防止这两种裂缝要从改善造成裂缝的外部条件和提高混凝土本身强度入手。(1)控制温度。混凝土的温度应力是由水泥水化热,浇灌温度和外界温度等各种温差引起的,且往往是各种温度的叠加,使混凝土内部和外部温差过大造成的。因此根据工程的特点和需要,采取不同的控制温度方法。(2)加强混凝土的早期养护。主要措施有要保持一定湿度,注意早期保持混凝土的水分,减少干缩变形,施工时的防风、防晒及保湿等。(3)合理配筋。钢筋直径细且间距密时,对提高混凝土抗裂缝的效果较好,在断面突变和调口四周应力集中的薄弱部位加筋效果最好。(4)采用补偿裂混凝土,掺入微膨胀材料和抗裂材料,以减少混凝土收缩应力及温度应力的影响。(5)提高混凝土的施工质量,改善混凝土的均质性,提高混凝土的抗裂性能。
二、施工中由于荷载变化引起的裂缝原因分析及防治措施。
1.支模板不妥引起的混凝土裂缝及防治措施。
(1)模板及支模架下沉引起混凝土裂缝。由于构件混凝土未达到一定的强度,过早地承担了自重等附加荷载,引起开裂。(2)如果是木模板,含水率不合适,潮胀干缩对混凝土质量产生很大的影响,应选用含水率18—23%的木材做模板,在第一次使用前要充分浇水,防止胀缩。(3)混凝土未达到一定强度前,过早受荷受振动而开裂,如在混凝土未达到一定强度时就在其上面走动等。(4)支模时未经计算或计算不正确引起的模板变形。(5)施工超载,即施工荷重大于竣工后使用的荷重。防止支模不妥引起混凝土裂缝的措施:采用相应的措施和计算,防止立柱、模板下沉和变形;选择合适的模板,避免模板变形;混凝土必须达到1.2Mpa强度以后,才可在上面行走,施工操作;进行必要的施工验算,不得超载。
2.施工中钢筋设置不当引起的混凝土裂缝。
(1)受力钢筋位置不正确引起的混凝土开裂。由于钢筋位置的不准,改变了受力状况,必能引起混凝土的裂缝,甚至折断。(2)受力筋的搭接不当,净间距不足引起的混凝土裂缝。(3)受力钢筋如梁筋伸入支座的根数和锚固长度不够,节点受力时,钢筋不起作用,引起混凝土开裂。防止由于钢筋设置不当引起混凝土开裂的措施:熟悉图纸和设计要求,严格按设计要求布置钢筋并进行复检,采取固定措施,防止钢筋位置不准;保证受力钢筋的净间距,排列要有利于混凝土的振捣密实;钢筋的搭接长度必须符合规范规定;受力筋的保护层厚度必须保证;采取措施防止人踩,混凝土砸造成的钢筋位移,安排专人看管。
3.混凝土强度等级不足使构件或结构产生裂缝。
混凝土强度等级不足使构件或结构的抗拉、抗剪、抗弯强度大大下降,在原设计荷载作用下,必能出现裂缝。原因有配合比问题;操作上计量不准;养护问题等。防止施工中混凝土强度等级不足,应在混凝土施工中从配合比实验、搅拌、运输、浇灌、振捣以及养护一系列的过程中严格把关,按国家有关规范和操作规程办事。
4.施工超载引起的裂缝。
主要原因有:(1)施工中楼板、梁上堆积的施工机具,材料重量太大,超过其承载能力。(2)吊装施工时,屋面上的机械重量布置不合理。(3)运输车载的过大的集中荷载。预防由于超载引起裂缝的措施:建筑物上堆放机具和材料,应严格按有关规范执行,必要时要经过验算;建筑物上需要布置机械及上运输车辆时,要有施工方案,要经过详尽的结构承载力验算,并经过批准后才能施工。
综上所述,裂缝的控制应防患于未然,针对裂缝的成因,采取相应的措施预防有害裂缝的产生。实践证明,只要各施工人员紧密配合,采取科学的控制措施就可以取得良好的抗裂效果。
1.1混凝土内外温差过大
浇注混凝土直至浇注完毕,因为大量的水化热会在水化时产生,刚开始时会因为混凝土聚集大量水化热,因而内部热量不易挥发,进而造成混凝土中内外温差过大,同时在混凝土的内部产生强烈的拉应力,导致拉应力比此龄期的混凝土容许拉应力大很多时,会形成温度裂缝。另外,再加上通常大体积的混凝土配置钢筋没有深入到内部,因而由混凝土承担因过大的内外温差产生的拉应力,导致更容易产生温度裂缝。
1.2混凝土收缩
然而伴随着初期大量水热化混凝土的渐渐消失,混凝土在后期会逐渐蒸发内部自由水,在外力不影响的条件下,混凝土会伴随着硬结而自发的形成收缩和变形,但是,当这种收缩变形产生时会因为内部钢筋的影响而受限,进而大量的拉应力会产生在混凝土当中,如果混凝土承担不了该拉应力时,就会产生温度裂缝。
1.3温度突变
在土木工程中,待浇注完毕主梁,因为太阳会暴晒主梁的侧面,所以这部分的混凝土的温度显然比其他地方的要高,进而造成内部温度上升呈现非线性,使得主梁因为自己的限制产生过大的局部拉应力,进而因此产生温度裂缝;除此之外,因为暴雨、阵雨以及冷空气等气候变化原因,浇注完毕的混凝土表面温度会骤降,进而导致内外温度形成梯形,如果温度应力达到一定的高温,就会产生温度裂缝。
2土木工程大体积混凝土结构施工技术分析
2.1设计优化
在设计土木工程的时候,必须结合工程当地的气候情况正确选择混凝土配合比,而且还要布置适量的温度钢筋在易产生温度裂缝的地方,以此和拉应力抗衡,与此同时,选择在规定范围内厚度最小的钢筋保护层,防止由于过大厚度保护层而产生的温度裂缝;除此之外,在划分大体积混凝土的过程中,必须利用后浇带和伸缩缝的正确设置来进行规则的分隔,同时还要根据科学设计的混凝土结构形状,扩大混凝土水化热的散热范围,进而防止加快增加其内部温度,进而分散应力,减小产生温度裂缝的可能性;而且,还要最大限度使用二次浇注的方法设计和施工混凝土,而且,在进行二次浇注的过程中为了增加混凝土抗拉能力,必须在其中添加聚丙烯纤维网或者钢筋网。
2.2材料控制
大体积的混凝土之会有温度裂缝产生,原因在于混凝土释放大量的水化热,因此,尽可能使用水热化程度较低的水泥在大体积的混凝土当中,为了最大限度使用较少用量的水泥,还可以利用掺合料的方式,比如可以添加一些粉煤灰等。就混凝土的粗骨料的选择而言,尽可能使用级配良好、强度高和粒径大的粗骨料,可以有效防止混凝土产生收缩变形的现象,与此同时,也不会忽视含泥量和其他有害物质的含量的控制。而在混凝土的细骨料的选择上,就必须符合泵送的要求,尽可能使用细砂或者中砂,这样可以保证以最小的表面积和空隙率充分减少使用水泥的用量。除此之外,为了更好地增加同龄期混凝土的抗拉能力,还可以采用掺加外加剂的方式进行,有效提高了混凝土的和易性,减少水灰配比。
2.3施工控制
在实际施工混凝土浇注时,试验人员的职责是根据现场的情况,及时跟踪坍落度和和易性变化现象并随时测量,根据结果上报搅拌站并及时进行处理。对于混凝土捣固人员来说,要经过严格的培训,考核通过之后才能够上岗,并且要权责明晰,分工明确,特别是要由专职人员捣鼓和处理钢筋集中的地方、端模、拐(死)角等,技术人员和施工员要跟班指挥现场。通过插入式的为主要方式进行混凝土振捣,插入振捣最佳厚度为30cm,以垂直等距离插入到下层间距在60cm以内,高度大约为5~10cm。施工人员必须边振捣边观察,尽可能避免漏振或过振等现象。
2.4冷却管降温
利用提前铺冷却管路在混凝土结构内部中,以此降低在硬化时混凝土内部的温度,保证脚注混凝土完毕后通水循环冷却的正常实施,冷却管路中的水量的范围不能超过1.5m3/h,如果管内为过高水温,那么也会加快水流的速度和流量。施工的部位不能因为冷却管的出水而受到影响,如果混凝土总体初步凝固,那么可以酌情通过该出水进行保温养护。待混凝土养护的步骤结束,为保证混凝土的强度以及其他不受中空的冷却管的影响,所以下一步一般利用真空压浆的方式完成注浆和压浆的工作。
3结语
关键词:水下混凝土结构耐久性钢筋的锈蚀监测
随着时间的不断推延,许多水下混凝土构件中的钢筋逐渐被渗水而发生锈蚀,从而导致其构件的耐久性降低,结构安全性也降低[1].因此,引起的工程损坏事例不断发生,由此带来的工程损失及处理费用也迅速增加,这也引起了建筑工程界和路桥部门的高度重视。其中,水下混凝土结构中钢筋的锈蚀较为普遍,特别是沿海地区的闸、涵、桥、防护堤及盐湖地区的水下混凝土较为严重,据资料显示,施工质量较差的混凝土构件,因为钢筋的锈蚀,正常使用几年后,就会产生顺筋胀裂,从而导致结构破坏,以致钢筋混凝土的失效。
一、水下混凝土结构中钢筋锈蚀的原因
混凝土在水化作用时,水泥中氯化钙生成氢氧化钙,使混凝土中含有大量的氢氧根离子,使PH值一般可达到12.5-13.5,钢筋在这样的高碱环境中,表面容易生成一层钝化膜[2],研究结果表明,这种钝化膜能阻止钢筋的锈蚀,只有这层钝化膜遭到破坏,钢筋开始锈蚀。
1.1、混凝土碳化引起钢筋锈蚀
因为混凝土硬化后,表面混凝土遇到空气中二氧化碳的作用,使氢氯化钙慢慢经过化学反应变成碳酸钙,使之碱性降低,碳化到钢筋表面时,使钝化膜遭到破坏,钢筋就开始腐蚀,众所周知,大气是二氧化碳的主要来源,大气中通常含0.2%-0.3%的二氧化碳,而且只要有大气存在的地方,就必然存在二氧化碳,而水下混凝土结构也有不少部分存在于二氧化碳环境中,对于普通的硅酸盐而言,水化产生的氢氧化钙可达到整个水化产物的10%-15%,它作为水泥水化产物之一,一方面,它是混凝土高碱度的提供源和保证者,对保护钢筋起着十分重要的作用;另一方面,它又是混凝土中最不稳定的成分之一,很容易与环境中的酸性介质发生中和反应,使混凝土碳化,并逐步延伸钢筋,使钢筋开始锈蚀[3]。
1.2、氯离子引起的钢筋锈蚀
水下混凝土中,氯离子进行混凝土通常有两种途径:其一是“掺入如含有氯盐的外加剂,使用海砂,施工用水含氯盐,在含盐环境中搅拌,浇筑混凝土时,其二是”渗入“环境中的氯盐通常通过混凝土的宏观、微观缺陷,渗入到混凝土中并达到钢筋表面,直接或间接破坏混凝土的包裹作用及钢筋钝化的高碱度两种屏障,使之发生锈蚀继而锈蚀产物体积膨胀,使混凝土保护层开裂与脱落[4];在海洋环境中的水下混凝土结构大都是这种情况。氯离子引起钢筋锈蚀可以从以下几个方面分析:
1.2.1破坏钝化膜
混凝土属于碱性材料,其孔隙溶液的PH值为12-14[2],因而对钢筋具有较好的保护作用,有利于钢筋表面形成保护钢筋的钝化膜,但这种钝化膜只有在高碱环境中才是稳定的。如果周围环境PH值降到11.8时,钝化膜就开始变得不稳定,当PH值继续降到9.88时,钝化膜就开始变得难以生存或逐渐破坏,使得进入混凝土中的氯离子吸附于钝化膜处,并使钝化膜的PH值迅速降低,逐步酸化,从而使得钝化膜被破坏。
1.2.2形成腐蚀电流
无论混凝土碳化还是氯离子侵蚀,都可以引起钢筋部分锈蚀,在钝化膜破坏处有腐蚀电流产生,在钝化膜破坏还与未破坏区这间存在电位差,有宏电流产生,但微电流要比宏电流大得多。又因为氯离子的存在大大降低了混凝土的电阻率,并且氯离子和铁离子的结合可以形成易容于水的氯化铁,从而加速了腐蚀产物向外的扩散过程,并由于宏观腐蚀电流在钝化膜破坏区边边缘最大,使得靠近钝化区的边缘的局部钝化膜破坏较快,这种现象称为局部锈蚀钢筋的“边缘效应”。
1.2.3氯离子导电作用
正是由于混凝土结构中氯离子的存在,大大降低了阴、阳极之间的欧姆电阻,强化了离子通路,提高了腐蚀电流的效率,从而加速了钢筋的电化学腐蚀过程,氯离子对混凝土中钢筋锈蚀更严重更快速[5].而氯化物是钢筋的一种活化剂,它能置换钝化膜的氧而使钢筋发生溃烂性腐蚀,而氯盐是高吸湿性的盐,它能吸收空气中的水分变成液体,从而使氯离子从扩散作用变成渗透作用,达到氯离子,透过保护区去腐蚀钢筋的目的。
1.2.4氯离子的阳极去极比作用
氯离子不仅促成了钢筋表面的腐蚀电流,而且加速了电流的作用过程,阳极反应过程Fe2eFe2+,如果生成的Fe2+不能及时搬运而积累于阴极表面,则阴极反应就会因此而受阻,相反,如果生成的Fe2+能及时被搬走,那么。阳极反应过程就会顺利乃至加还进行,Cl与Fe相遇就会生成FeCl2,Cl能使Fe消失而加速阳极过程,通常把阳极过程受阻称做阳极极化作用,而加速阳极过程者,称作阳极去极化作用,氯离子正是发挥了阳极去极化作用的功能。
应该说明的是,在氯离子存在的混凝土中,钢筋通常的锈蚀产物很很难找到FeCl2的存在,这是由于FeCl2是可溶的,在向混凝土内扩散遇到氢氧根离子,立即生成Fe(OH)2的一种沉淀物质又进一步氧化成铁的氧化物,即通常说的“铁锈”,由此可见,氯离子只起到了“搬运”的作用,而不被消失,也就是说进入混凝土的氯离子,会周而复始地起破坏作用,这也是氯盐危害特点之一。
1.2.5氯离子与水泥的作用及对钢筋锈蚀的影响
水泥中的铝酸三钙,在一定条件下,可与氯盐作用生成不溶性“复盐”,从而降低了混凝土中游离氯离子的存在,从这个角度讲,含铝酸三钙高的水泥品种有利于氯离子的侵害,海洋环境中优先选用铝酸三钙含量高的普通硅酸盐水泥,然而,复盐只有在碱性环境下才能生成和保持稳定,当混凝土的碱度降低时,复盐会发生分解,重新释放出氯离子来。在做钢筋锈蚀实验不难发现,如果大面积的钢筋表面上具有高浓度的氯化物,则氯化物所引起的锈蚀是均匀的,但是在不均质的混凝土中,常见的局部锈蚀,导致点蚀[6].首先则是在很小的钢筋表面上,混凝土孔隙液具有较高的氯化物浓度,形成破坏钝化膜的具备条件,形成小阳极,此时,钢筋表面的大部分仍具钝化膜,成为大阳极,这种特点的由大阳极、小阴极组成的锈蚀电偶,由于大阴供养充电,使小阳极上的铁迅速溶解而产生沉淀,小阴极区局部酸化,同时,由于大阴极区的阴极反应,生成氢氧化根离子,PH值增高,氯离子提高了混凝土的吸湿性,使得阴极与阳极之间的混凝土孔隙的欧姆电阴降低,这几方面的自发变化,将使上述局部锈蚀电偶得以自发的一局部深入形式继续进行。
二、评定与检测水下混凝土构件中钢筋的锈蚀状态
为了减少钢筋锈蚀对结构造成危害,需要即时了解现有的结构中的钢筋锈蚀状态,以便对钢筋采取必要的措施进行预防,我们对钢筋锈蚀的测试,可采用如下几种方法:
2.1视觉法和声音法
在常规的混凝土结构中,钢筋锈蚀的第一视觉特征是钢筋表面出现大量的锈斑,显然,只要检查钢筋表面就可以看到;有时,混凝土的表面下的裂缝发展到表面,混凝土最终开裂时可直接检查钢筋在早期可以用“发声”方法估计下部裂缝引起的破坏。使用小锤敲击表面,用声波方面检测顺筋方向的裂缝的出现。
2.2氯离子的监测
它需要对钢筋以上或周围的混凝土进行采样,一般通过钻芯方法,然后用电测法或化学方法确定氯含量,最近,以有中和反应法仪器用于结构中氯离子含量的检测。
2.3极化电阻法
极化电阻法(线形极化法)[7]作为一个锈蚀监测方法,已经成功的应用于生产工业和许多环境,该方法的原理是将锈蚀率与极化曲线在自由锈蚀电位处的斜率联系在一起,可以用双电极或三电极系统监测材料与环境偶合的锈蚀率。极化电阻法同样检验混凝土中的定位的问题;一个小操作可对放在砼中任何需要的位置,但回填土料同样是影响测量结果的一个非常关键性的因素。
2.4自然电位法
混凝土中的钢筋与周围介质在交界面上相互作用形成双电层[8],并与介质两侧产生电位差,电位差大小能反应钢筋所处的状态,既活化或钝化状态,自然电位通过测定钢筋电极对照比电极的极对电位差来定性判定钢筋锈蚀状况,自然电位法设备简单,价格便宜,操作方便,对混凝土的钢筋锈蚀体系无干扰,自然电位法的判定标准如下:E>-200ml,钝化状态有5%锈蚀可能性;-200ml>E>-350ml。有50%可能锈蚀;E<-350ml,95%的锈蚀的可能性。
论文摘要:使结构安全适用、经济合理、是结构工程师的任务和责任。根据长期工作体会从概念设计的观点出发,介绍抗震设计中遵循的原则,提高房屋抗震性能的措施。结合工程实际介绍了环境类别和保护层厚度的确定、按简支梁计算构造钢筋的设置等问题。
一、概念设计和结构构造
抗震设计中,影响整个结构抗震能力的因素很多,如:结构构件的承载力和变形能力;非结构构件的材料性能及提供的强度储备;结构的连接构造;结构的稳定性;结构的整体性能在经受第一次地震后多次余震反复作用下的抗破坏能力。目前只对第一种因素作了计算,其它因素尚无法进行计算,靠概念设计和结构构造做到结构体系具备必要的承载力、刚度、稳定性、能力吸收及耗能能力,也就是具有足后的延性。对复杂结构,七分计算三分构造,更重要的是概念设计。
(一)概念设计
材料性能、构件性能、连接构造、结构体系通过实验、实践检验,但还不能计算,称为概念设计,抗震设计中应遵循以下原则:(1)结构的承载力、刚度、质量在平面内和沿高度应均匀、对称和连续分布,避免应力集中:(2)应尽可能设置多道抗震防线,布置超静定结构及延性较高的耗能构件,注意适当加强静定结构部位、关键部位和薄弱环节;(3)注意结构的连接整体性,结果单元应采用牢固连接,不同结构单元应遵守彻底分开的要求;(4)估计和控制塑形铰区出现的范围和部位,有针对性的进行构造布置,掌握结构的屈服过程以及最后形成的屈服机制;(5)做到强柱弱梁、强剪弱弯;(6)采取有效措施防止过早的混凝土剪切破坏,钢筋锚固滑移和混凝土压碎等脆性破坏;(7)构件和节点连接的承载力和刚度要与结构的承载力和刚度相适应,节点连接的承载力不低于构件的承载力;(8)应该避免盲目增加钢筋,某一部分结构设计承载力超强或不足,都可能造成结构的相对薄弱,梁端、柱端及抗震墙的加强部位受弯配筋在满足承载力和抗震构造要求的条件下,应减少钢筋超配;(9)考虑非结构性部件对主体结构抗震产生有利和不利的影响。
(二)结构构造
结构体系靠力学计算保证构件的承载力及变形,又靠构造措施将构件连接在一起,形成结构体系,合理的构造保证构件传力明确;保证在力的多次作用下能力的吸收及耗散;避免因部分构件破坏而使结构体系丧失承载能力及抗震能力;保证在设计使用年限内的耐久性。可以说结构构造是概念设计的具体化。我国通过几十年的实践,特别是唐山地震所总计的经验教训,后来试验研究都有完整的结构构造措施。但是认识在不断提高,概念设计在不断发展,结构设计除正确运用目前的构造措施,同时还需要不断总结、充实、提高。
二、结构计算
(一)荷载要准确
荷载包括结构自重,建筑材料做法,设备荷载(设备自重、管道重),建筑功能需要的活荷载,风、雪荷载、地震力、温度变化产生应力以及其它偶然作用等。有的荷载规范有所规定,可作依据,有的需要各专业提高。建筑专业提高的不仅仅是荷重,而应该是具体的材料做法,设备专业则应提供所选用的样本。由于建筑做法和设备一般要到订货时才能落实,在这以前变换的可能性很大,结构设计人员应该意识到这一点,并要求有相关的知识,准确计算所采用的荷载。
隔墙荷载占总荷载的比例较大,隔墙材料品种繁多,但尚无十分理想的隔墙材料,不是荷重偏大就是隔音差、抗撞击差或板块之间易出现裂缝。当隔墙位置固定且隔墙材料确定时,预留荷载是必要的,但考虑过重的隔墙会使结构用钢量过大。一般可与建筑专业配合,易采用轻质材料并在施工图中说明隔墙材料,允许荷载值及位置。
结构计算最忌讳漏掉荷载,他将使计算白费或使结构存在隐患,应引以为戒。
(二)应分析计算结果
对复杂或重大工程一般需要用两种不同单元模型的程序进行分析和比较,对特殊工程应选择适当的计算程序。建立的模型,边界、支撑条件应尽量符合实际。程序中的输入数据应弄明其缘由,弄清其概念,对提高设计质量是不可缺少的。
(三)环境类别与保护层的确定问题
混凝土设计规范第3.4.1条规定了耐久性设计的原则及构件环境类别的分类标准。规范第9.2.1条给出了各类环境条件下的构件纵向受力筋保护层最小厚度。这是新规范重视耐久性问题的具体体现。由于规范是依据构件所处的环境类别来确定纵向受力筋保护层最小厚度的,对于处在两种环境交界部位的构件,如地下室墙,迎水面侧一般为二类环境,而其室内一侧一般为一类环境,两侧面的受力筋保护层最小厚度也应有所区别。因此笔者认为,对于处在两种环境交界部位的构件,在选用最低混凝土级别、确定混凝土配合比等耐久性基本要求(规范第3.4.2~3.4.8条)时应接交界面上两种环境类别中的最不利环境类别确定,在确定受力筋保护层最小厚度时,则应按构件表面所处的环境类别分别考虑。否则,对于基础地板、地下室外墙,随着保护层厚度的增大,采用商品混凝土时,构件表面出现早期收缩缝的机率也随之增大,而构件表面开裂后,反而影响构件的耐久性。所以保护层厚度不是越大越好,而应构件表面所处的环境类别有针对性地选用。
(四)安简支计算的梁端部上部构造钢筋设置问题
混凝土结构设计规范第10.2.6条对实际受约束的简支梁端上部构造筋作了规定。此时梁端实际受到部分约束,如按梁端的实际约束条件采用弹性理论进行整体内分析,计算所得的实际弯矩除与梁上承受的荷载大小有关外,更与梁端的约束构件即边梁或构件柱的相对刚度有关。将梁端构造钢筋的截面面积与梁跨中下部纵向受力钢筋计算所需截面面积相关联,只体现了梁上承受荷载的大小,而没有考虑梁端实际约束程度,如果梁端实际约束程度很弱,非常接近于简支,即使梁上承受的荷载很大,梁端实际弯矩仍很小,因而没必要配置太多钢筋,这是其一。其二,条文所指部分约束梁端的构件通常是指砖混结构的构造柱、框架和主次梁体系中的边梁,如果梁端实际配筋较大,梁承受的负弯矩也较大,与之平衡的构造柱弯矩或边梁的扭矩也较大,当约束构件是构造柱时,由于构造柱配筋较小,一般为4φ12,很可能造成构造柱的配筋不足;当约束构件是框架或主次梁体系中的边梁时,虽然按弹性理论计算边梁有较大的扭矩,但国外的试验资料表明5,边梁开裂后,其抗扭刚度约相当于弹性抗扭刚度的1/10。塑性内力重分的结果使得边梁扭矩和梁端实际弯矩值都很小,没比要配置太多的钢筋。新的混凝土结构设计规范实施前,我院设计的大部分工程终于边梁相交的梁端实际配筋统一为2φ12(四肢箍为4φ12),20世纪六七十年代设计的部分工程甚至为2φ10或2φ8这些工程已正常使用了30年综上所述,规范所给的这种配筋策略是否合适值得商榷。
参考文献
[1]混凝土结构设计规范(GB50010-2002).2002
[2]中国建筑科学研究院.混凝土结构设计.中国建筑工业出版社.2003
[3]吕西林。高层建筑设计(第二版).武汉理工大学出版社.2003。