欢迎来到易发表网,发表咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

土壤重金属污染的现状优选九篇

时间:2024-01-03 14:44:38

土壤重金属污染的现状

土壤重金属污染的现状第1篇

关键词:土壤污染 重金属 危害 修复方法

土壤是人类赖以生存的主要自然资源之一,也是人类生态环境的重要组成部分[1-2]。随着近年来经济发展,工农业生产不断扩大,所产生的废水和废渣也不断增多,不但破坏地表植被,而且其中有毒有害重金属还随废水的排放及废渣堆的风化和淋滤进入周边土壤环境[3-6]。目前我国受镉、砷、铬、铅等重金属污染耕地面积近2,000万公顷,约占总耕地面积的1/5,其中工业“三废”污染耕地1,000万公顷,污水灌溉的农田面积已达330多万公顷。

1. 土壤重金属污染的定义

在自然界,重金属以各种形态存在,常见的金属元素有铜、铅、锌、铁、钴、镍、锰、镉、汞、钼、金、银等;其中既有对生命活动所需要的微量元素,如锰、铜、锌等;但大多数重金属元素在环境中对环境都会有一定的污染作用,主要包括汞、镉、铅、铬以及类金属砷等对生物体具有显著毒害作用的元素[7]。重金属的密度一般在4.0以上,约60种元素。但是由于不同的重金属在土壤中的毒性差别很大,所以在环境科学中人们通常关注锌、铜、钴、镍、锡、钒、汞、镉、铅、铬、钴等。砷、硒是非金属,但是它的毒性及某些性质与重金属相似,所以将砷、硒列入重金属污染物范围内。由于土壤中铁和锰含量较高,因而一般不太注意它们的污染问题,但在强还原条件下,铁和锰所引起的毒害亦应引起足够的重视。

土壤重金属污染是指由于人类在生产活动中将重金属带入到土壤中,致使土壤中重金属累积到一定程度,含量明显高于背景,并可造成土壤质量的退化、生态与环境的恶化现象[8]。土壤本身含有一定量的重金属元素,如植物生长所必需的Mn、Cu、Zn等。因此,只有当叠加进入土壤的重金属元素累积的浓度超过了作物需要和忍受程度,作物才表现出受毒害症状,或作物生长并未受害但产品中某种金属的含量超过标准,造成对人畜的危害时,才能认为土壤已被重金属污染[9]。如土壤环境质量标准值(GB15618-1995)[10]。

2. 土壤中重金属的来源、种类

土壤重金属污染主要是由工业产生的“三废”以及污水灌溉、农药和化肥的不合理施用等农业措施引起的。随着工农业生产的发展,重金属对土壤和农作物的污染问题越来越突出,部分地区土壤重金属污染现象十分严重。总体来讲,土壤重金属污染源较广泛,即有自然来源,又有包括人类活动带入土壤的部分,目前主要来源为人为因素。主要包括大气尘降、污水灌溉、工业废弃物得不当堆放、采矿及冶炼活动、农药和化肥的过多施用等[11-12]。

2.1 污水灌溉

污水灌溉通常指的是使用经过一定处理的城市污水灌溉农田、森林和草地。中国水资源较为紧缺,部分灌区常把污水作为灌溉水源来利用。污水的种类按其来源可分为城市生活污水、石油化工污水、工业矿山污水和城市混合污水等。城市生活污水中重金属含量虽然不多,但由于我国工业发展迅速,许多工矿企业污水未经分流处理而排入下水道与生活污水混合排放,从而造成污灌区土壤Hg、As、Cr、Pb、Cd、Zn等重金属含量逐年累积[15-16]。在分布上,往往是靠近污染源头和城市工业区土壤污染严重,远离污染源头和城市工业区,土壤几乎不受污水中的重金属污染。

污灌在北方比较严重,因为我国北方比较干旱,水资源短缺严重,并且许多大城市都是重工业大城市,所以农业用水更加紧张,污水灌溉在这些地区较为普遍。据统计,我国北方旱作地区污灌面积约占全国90%以上。南方地区相对较小,仅占6%,其余则在西北地区。污灌不仅导致土壤中重金属元素含量的增加,而且还会在人体内富集。研究显示我国沈阳、温州和遂昌等地由于污水灌溉引发了人体镉中毒;鞍山宋三污灌区土壤中Hg、Cd的累积显著,污染严重;用处理过的污水灌溉是解决干旱地区作物需水问题的一条可行途径。但由此导致的土壤污染特别是重金属污染必须引起重视。

2.2 农药和化肥污染

农药和化肥是重要的农用物资,对农业生产发展起到重要的推动作用,但如果不合理施用,则可导致土壤中重金属污染。部分农药在其组成中含有Hg、As、Cu、Zn等重金属元素,过量或不合理使用将会造成土壤重金属污染。肥料中含有大量的重金属元素,其中氮、钾肥料含量相对较低,而磷肥中则含有较多的有害重金属,另外复合肥的重金属含量也相对较高。施用含有重金属元素的农药和化肥,都可能导致土壤中重金属的污染。

2.3 矿山开采和冶炼加工

我国重金属矿产相对丰富,在金属矿山的开采、冶炼过程中,会产生大量废渣及废水,而这些废渣和废水随着矿山排水和降雨进入土壤环境中,便可直接地造成土壤重金属污染,这在我国南方地区表现得尤为突出。

3. 重金属污染的特点及危害

3.1 重金属元素污染土壤的主要特点

在土壤环境中重金属污染特点可以分为两部分:一是土壤环境中重金属自身的特点,二是重金属元素在不同介质中所表现的特点。具体特点如下:(1)形态变换较为复杂,重金属多为过渡元素,有着较多的价态变化,且随环境Eh,pH配位体的不同呈现不同的价态、化合态和结合态。重金属形态不同则其毒性也不同;(2)有机态比无机态的毒性大;(3)毒性与价态和化合物的种类有关;(4)环境中的迁移转化形式多样化;(5)生物毒性效应的浓度较低;(6)在生物体内积累和富集;(7)在土壤环境中不易被察觉;(8)在环境中不会降解和消除;(9)在人体内呈慢性毒性过程。(10)土壤环境分布呈区域性;

过量的重金属会引起动植物生理功能紊乱、营养失调、发生病变,重金属不易被土壤微生物降解,可在土壤中累积,也可通过食物链在人体内积累,危害人体健康。土壤一旦遭受重金属污染,就很难彻底消除,污染物还会向地下水和地表水中迁移,从而扩大其污染。因此重金属对土壤的污染是一类后果非常严重的环境问题。

3.2人类因土壤重金属污染而遭受的危害[25]

(1)土壤污染使本来就紧张的耕地资源更加短缺;(2)土壤污染给农业发展带来很大的不利影响;(3)土壤污染中的污染物具有迁移性和滞留性,有可能继续造成新的土地污染;(4)土壤污染严重危及后代人的利益,不利于可持续发展;(5)土壤污染造成严重的经济损失;(6)土壤污染给人民的身体健康带来极大的威胁;(7)土壤污染也是造成其他污染的重要原因。

4. 对重金属污染的防治及修复

4.1 对土壤污染的预防

目前,仍未找到可广泛应用且行之有效的重金属污染治理方法,但控制污染源,是防止土壤污染的根本措施之一,同时利用土壤的自净作用对污染物净化具有一定的预防作用。控制土壤重金属污染源,即控制进入土壤中的重金属污染物的数量和速度,通过土体自身的净化作用,降低污染。

(1)控制和消除工业“三废”

尽量利用循环无毒工艺,减少和消除重金属污染物的排放,对工业“三废”进行回收改善,使其化害为利,并严格控制工业生产中污染物排放量和浓度,使之符合排放标准。

(2)土壤污灌区的监测和管理

在污灌区对灌溉污水的重金属元素进行控制,监测水中重金属污染物质的成分、含量及其变化,避免引起土壤污染。

(3)合理施用化肥和农药

对于农药和化肥的施用,应以环保无毒为准则,禁止或限制使用高残留农药,大力发展高效、低毒、低残留农药,发展生物防治措施。为保证农业的增产,合理施用化学肥料和农药是必需的,但需控制好施用量,否则会造成土壤或地下水的污染。

(4)土壤容量和土壤净化能力的提高

在农业生产过程中,施用有机肥,改良松散型沙土,改善土壤胶体的种类和数量,增加土壤对有害重金属的吸附能力和吸附量,从而减少重金属在土壤中的生物有效性。利用微生物品降解土壤中的重金属,提高土壤净化能力。

4.2 土壤中重金属污染的修复方法

(1)工程措施

工程治理措施是指在土壤环境中,用物理或物理化学的原理来减少重金属污染物的措施。主要包括客土,换土,翻土,淋洗液热处理以及电解等方法。以上方法措施的治理效果相对彻底,但实工过程复杂、所需治理费用较高且比较容易引起土壤肥力效果降低。

(2)生物措施

生物治理是指利用能够在土壤中生存的生物的某些习性来抑制和改良土壤重金属污染。Nanda Kumar P B A等发现某些特殊植物对土壤中的重金属元素具有富集作用。寇冬梅等研究认为食用菌对重金属具有吸附作用。所用方法有动物治理,微生物治理,植物治理等。生物措施的优点是实施较为简便易行、投资较少且对环境破坏小,而缺点是在短期内不易得到治理效果。

(3)化学措施

化学治理方法是利用化学物质和天然矿物对重金属污染进行的原位修复技术,目前,在许多区域得到应用。化学治理措施主要包括利用土壤改良剂、抑制剂,增加土壤有机质、阳离子代换量和粘粒的含量,改变pH、Eh和电导等理化性质,使土壤重金属发生氧化、还原、沉淀、吸附、抑制和拮抗等作用,以降低重金属的生物有效性。化学治理措施优点是治理效果相对较明显,而缺点是容易再度活化。

(4)农业措施

农业治理措施是通过改变耕作方式和管理制度来达到降低土壤重金属危害的方法。M.Puschenreiter等探讨了利用农业耕作措施治理土壤重金属的方法,得出在不同污染地区种植不同的农作物可有效降低重金属的污染。治理方法主要包括控制土壤水分,选择合适的农药、化肥,增施有机肥,选择农作物品种等。农业治理措施的优点在于操作简单、费用不高,而缺点是需要较长治理周期却治理效果不显著。

参考文献

[1] 崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,35(3):366-370.

[2] 方一丰,郑余阳,唐娜等.生物可降解络合剂聚天冬氨酸治理土壤重金属污染[J].生态环境,2008,17(1):237-240.

[3] Zhang L C,Zhao G J.The species and geochemical characteristics of heavy metals in the sediments of Kangjiaxi River in the Shuikoushan Mine Area,China[J].Appl Geochem,1996,11(1/2):217-222.

[4] 尚爱安,党志,漆亮等.两类典型重金属土壤污染研究[J].环境科学学报,2001,21(4):501-504.

[5] 王庆仁,刘秀梅,董艺婷等. 典型重工业区与污灌区植物的重金属污染状况及特征[J].农业环境保护,2002,21(2):115-118,149.

[6] Dang Z, Liu C Q, Martin J H. Mobility of heavy metals associated with the natural weathering of coalmine spoils[J]. Environ Pollut, 2002,118(3):4l9-426.

[7] 韩张雄,王龙山,郭巨权等.土壤修复过程中重金属形态的研究综述[J].岩石矿物学杂志,2012,31(2):271-278.

[8] 王红旗,刘新会,李国学等.土壤环境学[M].北京:高等教育出版社,2007.

[9] 张辉.土壤环境学[M].北京:化学工业出版社,2006.

[10] GB15618-1995.土壤环境质量标准值[S].国家环境保护局,1995.

[11] 李录久,许圣君,李光雄等.土壤重金属污染与修复技术研究进展[J].安徽农业科学,2004,32(1):156-158.

[12] 任旭喜.土壤重金属污染及防治对策研究[J].环境保护科学,1999,25(5):31-33.

[13] 郭彬,李许明,陈柳燕等.土壤重金属污染及植物修复金属研究[J].安徽农业科学,2007,35(33):10776-10778.

土壤重金属污染的现状第2篇

关键词:重金属土壤污染土壤修复

Abstract: this paper analyzes the heavy metal pollution of soil bioremediation technology research status, and the future prospect.

Keywords: heavy metal pollution of soil soil repair

中图分类号: Q938.1+3 文献标识码:A文章编号:

土壤中的重金属污染有长期性、不可逆性和隐蔽性的特点。当有害重金属累积到一定数量,不仅会使土壤发生退化,降低农作物的品质和产量,还会通过淋洗、径流作用污染到地表水甚至地下水,甚至可能因为人类吃到了直接受到毒害的植物而危害到身体。一直以来,国内外的技术人员都在积极研究对受重金属污染土壤的修复技术,并取得了不错的成绩。本文将具体介绍几种修复技术并展望其未来的发展。

一、重金属污染土壤修复技术的研究现状分析

(一)工程措施。主要分为深耕翻土、换土和客土。土壤仅受轻度污染时采用深耕翻土的方法, 而治理重污染区时则采用客土或者换土的方法。工程措施对于修复土壤的重金属污染有很好的效果, 它的优点在于稳定和彻底, 但也存在实施工程较大、投资费用较高, 且容易破坏土体结构使土壤肥力下降等问题。

(二)物理修复技术。主要分为电热修复、土壤淋洗、电动修复等。针对面积小且污染重的土壤进行修复, 适应性广,也是一种治本的措施, 但在操作中可能发生二次污染破坏土壤结构并导致肥力下降。

1、电热修复。电热修复是指通过高频电压产生热能和电磁波,加热土壤, 将土壤颗粒中的污染物解吸出来, 并从土壤内分离出易挥发的重金属,达到修复的效果。主要针对修复土壤被Se或Hg等重金属污染的情况。此外,也可以将土壤置于高温高压中,使之变成玻璃态物质, 最终从根本上修复了土壤中重金属的污染。

2、土壤淋洗。淋洗法是指用淋洗液冲洗受到污染的土壤,将吸附在土壤颗粒中的重金属变成金属试剂络合物或溶解性离子,再收集淋洗液并回收重金属。此法适用于轻质土壤,修复效果相对较好, 但其花费也相对较高。

3、电动修复。电动修复是指在电场的作用下, 用电迁移、电泳或电渗透的方式, 将污染物从土壤中带至电极的两端, 通过工程化的收集系统对其进行集中清理。目前该技术因其良好的修复效果已被发展进入商业化的阶段。

(三)化学修复。化学修复是指将天然矿物、有机质、固化剂以及化学试剂等物质加入土壤, 改变其Eh、PH值等理化性质, 并通过氧化还原、吸附、沉淀、抑制、络合螯合及拮抗等作用降低重金属本身的生物有效性。

(四)生物修复。生物修复是一种通过生物技术来修复土壤的新方法。主要利用生物去削减、净化重金属或降低其毒性。此法效果好又易于操作, 因而越来越受到人们的青睐, 成为几年来污染土壤修复研究中的热点。

1、植物修复技术。这是一种通过自然生长和遗传作用来培育植物对受重金属污染的土壤进行修复的技术。根据机理和作用过程的不同, 此修复技术又可分为植物提取、植物稳定和植物挥发三种类型。

⑴植物提取。用重金属超积累植物把从土壤中吸收到的重金属污染物转移到地上的部分, 再收割地上部分并对其进行集中处理,从而降低土壤中的重金属含量,并达到可以接受的水平。

⑵植物稳定。用超累积植物或耐重金属植物使重金属的活性降低, 减少了重金属通过空气扩散而污染环境或是被淋洗入地下水中的可能性。

2、微生物修复技术。通过土壤中存在的某些微生物能氧化、沉淀、吸收或还原金属物质, 从而降低了土壤中金属的毒性。此外, 存在于微生物细胞中的金属硫蛋白对Cu、Hg、Cd、Zn等重金属有强烈的亲和性,而且它对重金属也有富集作用最终能抑制毒性的扩散。但微生物只能对小范围污染的土壤进行修复,因此其能力有限。

二、对重金属污染土壤修复技术未来发展的展望

防止污染最根本的措施是控制并消除污染土壤的源头。所谓控制污染源,是指控制土壤中进入污染物的速度和数量,并通过自身的自然净化作用消化污染物,消除土壤污染。其具体措施包括:①推广闭路循环和无毒工艺,减少甚至消除排放污染物的行为,回收处理工业“三废”,变害为利;②加强对污灌区中用于灌溉的污水的水质监测,掌握水中污染物的含量、成分及动态,消除含有高残留污染物且不易降解的污染物随水流入土壤中的情况;③建立监测网络,对辖区内土壤环境的质量定期进行检测,并建立档案,按优先次序开展调查研究并制定实施相应对策。

在过去的20 年里,我国对重金属污染土壤修复技术的研究工程越来越重视,政府也一直致力于制定相应的策略来修复受到污染的土壤,但由于其高额的支出而难以被大规模应用在改良污染土壤的工作中。此外,实施中还常常因为措施不当而破坏了土壤结构,降低了生物活性,最终导致土壤肥力退化。鉴于我国国土宽广,土壤类型复杂多样,在对土壤污染现状进行调查时,要着重制定重金属在土壤中含量限额的环境质量标准,积极出台有关的土壤污染防止法,实施土壤污染的防治规划及具体措施,修订并贯彻开展污灌水质、粉煤灰及其余废弃物在农田中施用的标准等相关的基础研究。总之,当前我们迫切需要紧密结合土壤学、农业、遗传学、化学、微生物学、植物学、环境和生态学、微生物学等多种学科, 研究开发修复污染土壤的应用技术,加快对重金属污染土壤进行修复的步伐。

参考文献:

土壤重金属污染的现状第3篇

关键词:化工企业;土壤;重金属;污染;研究

中图分类号:X833

文献标识码:A文章编号:16749944(2017)12011802

1引言

工业企业的废水、废气排放对周边环境质量均有不同程度影响,但相较于人们感官比较强烈的空气和水体污染,土壤环境状况往往受关注程度不够。重金属由于在土壤中不能被微生物分解,因而会在土壤中不断积累,影响土壤性质,甚至可以转化为毒性更大的烷基化合物,被植物和其他生物吸收、富集,进而通过食物链在人、畜体内蓄积,直接影响植物、动物甚至人类健康[1]。同时,由于其污染状况不易察觉,其危害效果潜伏期较长,发现时往往已经造成较大程度的危害。

重金属物质作为人们日常生产生活中的重要物资原材料,其应用范围非常广泛,从被开采、加工到作为原辅材料用于各种工业生产活动中,涉及众多行业类别[2]。相应的,其以多种化合物形式伴随生产过程中产生的废水、废气排放到外环境中,并经由大气沉降和土壤吸附等过程进入到土壤环境中[3]。化工行业作为东北老工业基地的重要支柱产业之一,其周边土壤的重金属污染情况,一定程度上反应了该地区的总体污染水平。因此,以辽宁某地化工企业为具体研究对象,分析其周边土壤中重金属含量及其污染状况,有助于对化工企业的重金属排放及控制提供参考。

2研究方法

在辽宁某地选取两个具有代表性的化工企业A及B,在每个企业周边分别布设5~7个监测点位,采集0~20 cm表层土壤,进行样品制备后,分析其中Cd、Hg、As、Pb、Cr等5项主要重金属物质的含量。

2.1点位布设

在被选取企业周边800 m范围内,按照区域面积和周边耕地等农用地分布情况,布设5~7个监测点位。为了剔除本地区土壤中重金属本底值的影响,在企业主导上风向场界2000 m以外布设1个对照监测点位。

2.2采样方法及样品制备

点位布设完成后,在每个监测点位采集0~20 cm表层土壤,每份土壤样品采样量2 kg。样品采集后,经过风干、粗磨、分样、细磨等程序制备成干样,以备消解等进一步处理及上机分析。

2.3样品前处理及分析

土壤干样制备完成后,需要根据分析重金属成分不同,采用不同的前处理方法及分析方法。为了使获得的分析数据具有更好的可靠性,5种重金属物质的分析均采用现有国标方法。各项重金属物质的前处理及分析方法见表1。

2.4评价方法

分别采用土壤单项污染指数法和综合污染指数法对企业周边的土壤重金傥廴咀纯鼋行分析,并按照《土壤环境质量标准》(GB 15618-1995)二级标准对其污染状况进行评价。土壤综合污染指数因其具有形式简单、易懂、易学、易操作等特点,成为目前评价土壤重金属污染的优选方法。[4]各评价指标及标准见表2。相关计算公式如下:

土壤单项污染指数=土壤污染物实测值污染物质量标准,

土壤综合污染指数=(平均单项污染指数)2+(最大单项污染指数)22。

3分析及评价结果

分别对A企业及B企业周边土壤中的Cd、Hg、As、Pb、Cr等5项主要重金属含量状况进行采样分析,发现各项重金属在土壤中的含量有一定差异,含量均值范围为0.09~85.1 mg/kg,跨度较大(表3)。其中Cd、Hg两项重金属含量较低,Pb、Cr两项重金属含量较高。各项重金属含量均不同程度的高于对照点,表明上述化工企业的生产经营活动对周边土壤环境质量均造成了一定影响。

分别对比分析A、B两企业土壤中的重金属含量,A企业的Cd、Hg、As三项重金属含量要明显高于B企业;而B企业Pb、Cr两项重金属的含量均略高于A企业,但其对照点的土壤中的Pb、Cr含量要明显高于A企业。

查看A、B两企业的土地利用使用情况发现,B企业所在地原为污水灌溉区。马祥爱等的研究表明,长期的污水灌溉会导致土壤中的Pb、Cr的含量有所增加[5]。卢桂兰等的研究也表明,农业生产中的污水灌溉、化肥、农药等不合理使用,也可显著影响到土壤重金属的存在形式和含量。[6]因此综合B企业周边土壤尤其是对照点土壤中Pb、Cr两项重金属含量显著偏高的情况,以及原属污水灌溉区的土地使用类型,推测B企业周边土壤的重金属污染状况与其原土地利用类型有较大关系。

按照土壤综合污染指数对各企业的重金属污染情况进行计算,并参照《土壤环境质量标准》(GB 15618-1995)进行评价。结果表明,A企业周边土壤环境质量状况为轻度污染,其主要污染物为Cd;B企业周边土壤环境质量状况为清洁,虽然也有重金属累积,但其污染状况明显要好于A企业。可见企业的污染物排放状况对周边土壤的污染贡献,要高于其原始土地利用情形对其的影响,在对已受污染影响的土地进行修复再利用的同时,应该更加关注后续利用过程中污染物的产生及排放。

2017年6月绿色科技第12期

邢树威:辽宁某地化工企业土壤重金属污染状况研究

环境与安全

4结论

对辽宁中部某地A、B两个企业周边土壤中的重金属含量进行监测分析,结果表明:①化工类企业,其废水、废气排放以及固体废物等的堆积,经过长期积累,会对周边土壤质量造成一定影响;②重金属由于其难降解、转化的特性,其累积效应明显;②除企业本身的污染物质排放外,其所在地的原土地利用情况,对其土壤中重金属物质的含量也有一定影响。

建议各级环保部门应加强对化工企业等重点排污单位的监管,督促企业合理、守法经营,按照相关法律法规要求,保证其废水、废气稳定达标排放,固体废物得到有效处理处置,并进一步开展企业自行监测及信息公开,重点对周边环境的影响情况进行监测,接受公众和社会的监督。同时,由于污水灌溉对土壤的污染状况[7],政府管理部门应更多关注原有污水灌溉区土地利用类型的变更及后续修复、使用,进一步降低土壤污染风险。

⒖嘉南祝

[1]

周建军, 周桔, 冯仁国. 我国土壤重金属污染现状及治理战略[J]. 中国科学院院刊,2014(3):315~320+350+272.

[2]郑喜|,鲁安怀,高翔,等. 土壤中重金属污染现状与防治方法[J]. 土壤与环境,2002(11):79.

[3]宁西翠, 王艺桦. 重金属对土壤污染以及修复[J]. 中国化工贸易,2011(11):108.

[4]郭笑笑, 刘丛强, 朱兆洲,等. 土壤重金属污染评价方法[J]. 生态学杂志, 2011,30(5):889.

[5]马祥爱,秦俊梅,冯两蕊. 长期污水灌溉条件下土壤重金属形态及生物活性的研究[J]. 中国农学通报,2010(22):318~322.

[6]卢桂兰, 韩梅, 李发生. 北京市通州污灌区土壤环境质量监测和蔬菜重金属污染状况研究[J]. 中国环境监测,2005,21(5):54~62.

[7]杨小波, 吴庆书. 城市生态学[M]. 北京:科学出版社,2008:124~129.

Study on Heavy Metal Pollution of Chemical Enterprises Soil in Liaoning

Xing Shuwei

(Liaoning Province Environmental Monitoring &Experiment Center, Shenyang 110161, China)

土壤重金属污染的现状第4篇

摘要:通过对襄阳市16个点位农田土壤实地调查、采集及实验室分析测定其重金属含量,采用单项污染指数法和综合污染指数法,评

>> 农田土壤重金属污染及修复技术分析 杭州市土壤和蔬菜重金属污染现状及评价体系 武汉市新城区菜地土壤重金属含量状况及污染评价 湖南某尾矿库周边农田土壤及蔬菜重金属污染与健康风险评价 探析长期污灌农田土壤重金属污染与潜在环境风险评价 山东省典型农田土壤中重金属污染评价 农田土壤重金属污染与防治 农田土壤重金属污染的植物修复技术及工程示范 我国农田土壤重金属污染修复及安全利用综述 白银市东大沟污灌区表层土壤重金属污染及潜在生态风险评价 大理市不同生态区表层土壤重金属污染初步评价 兰州市蔬菜基地土壤重金属污染评价与分析 包头市绿地土壤重金属污染分析与评价 十堰市畜禽养殖场周边土壤重金属污染评价 常熟市土壤重金属污染研究 郫县土壤重金属污染状况调查 探析土壤重金属的污染及其评价方法 不同土壤重金属污染评价方法对比研究 关于土壤重金属污染评价方法研究 三峡库区土壤重金属元素含量分析及污染评价 常见问题解答 当前所在位置:

[7] 国家环保总局.GB15618-1995土壤环境质量标准[S].北京:中国标准出版社,1995.

[8] 国家环保总局.NY/T395-2000农田土壤环境质量监测技术规范[S].北京:中国标准出版社,2000.

[9] 黄顺生,廖启林,吴新民,等.扬中地区农田土壤重金属污染调查与评价[J].土壤,2006,38(4):483~488.

土壤重金属污染的现状第5篇

论文关键词:城市土壤,重金属污染,污染治理

 

引言

城市是人类社会经济发展的必然产物。从18世纪以来人口不断向城市集中。如今随着各国工业迅猛增长,社会经济飞速发展,城市的数目和规模均不断扩大[1]。而城市环境是一个以人为中心的城市经济、社会生态的复合生态系统。目前,城市人口剧增,人类活动频繁污染治理,使得组成这个环境的水、空气和土壤时刻处于被污染的状况之下,影响着城市的可持续性发展中国。所以,建设一个绿色健康的城市环境是城市可持续发展的必然方向。

城市土壤是指受多种人为活动的强烈影响,原有继承特性遭到强烈改变的厚度大于或等于50cm的城区或郊区土壤[2],是城市环境的重要组成部分,是城市生态系统地球化学循环的重要环节[3],也是城市赖以存在发展的物质基础。当大量的重金属随着各种各样的人类活动进入城市土壤中,便造成这些元素在土壤中的积累。一般认为,土壤中污染物累积总量达到土壤环境背景值的2或3倍标准差时,说明土壤中该污染元素或化合物含量异常,已属土壤轻度污染;当土壤污染物含量达到或超过土壤环境基准或环境标准时污染治理,说明该污染物的输入、富集的速度和强度已超过土壤环境的净化和缓冲能力,则属重度土壤污染。由于城市人口密集,人类活动频繁,与土壤接触的机率很高,所以城市土壤的重金属污染更容易通过大气、水体或食物链而直接或间接地进入人体,威胁着人类的健康甚至生命。因此,研究城市土壤重金属污染现状并提出相应的治理对策是可持续发展城市所必需进行的重要的基础工作。

1.城市土壤重金属污染的现状

2.1 空间分布特征

由于城市土壤受人类各种活动的强烈影响,因此其重金属污染分布也呈现出

显著的空间差异。一般地,人口聚集的城市中心区域土壤重金属含量明显高于郊区和农田。对纽约市“市区-郊区-农区”土壤研究发现,重金属离子总量、重金属离子多样性等随着距市中心距离的增加而降低,重要污染重金属Pb、Cu、Ni、Cr的含量下降非常明显[4]。

在城市不同的功能区污染治理,重金属分布呈现出一定的规律性。一般的规律表现为:Pb的浓度为老工业区>老居民区>商业区>开发区>其它;Zn的浓度为老居民区>商业区>老工业区>其它;Cu的浓度为老居民区>商业区>其它;Cd的浓度为老工业区>老居民区>其它[5 - 7]中国。

城市公园是人们与土壤直接接触较多的特殊区域。北京城区三十多个公园土壤Pb质量分数调查表明,尽管大多数公园土壤污染程度轻,但客流量大的故宫、颐和园等著名公园污染指数却远远高于其它公园[8]。

城市土壤重金属污染的另一特征是公路两侧一般为城市土壤重金属污染最严重的地带,且呈明显的带状分布[9]。在50 m~80 m内公路两侧土壤中铅污染相当严重,100 m外土壤中的铅含量没有明显增加[10]。

此外,建筑物的建设、垃圾的堆积填埋等严重破坏了自然土壤结构,土壤层次凌乱,重金属在其垂直剖面方向分布变异较大,不同功能区重金属元素在土壤中各层的聚集状况没有规律可循[11,12] 。

2.2城市土壤重金属污染的来源

矿产冶炼加工、电镀、塑料、电池、化工等行业是排放重金属的主要工业源,其排放的重金属可以气溶胶形式进入到大气,经过干湿沉降进入土壤;另一方面污染治理,含有重金属的工业废渣随意堆放或直接混入土壤,潜在地危害着土壤环境[13]。随着城市化发展,大量污染企业搬出城区,原有的企业污染用地成为城市土壤重金属污染的突出问题[14]。

燃煤释放也是土壤重金属重要来源之一, 195年中国燃煤排放汞302.9吨,其中向大气排放量为213.8吨,北京、上海等超大城市排汞强度较高[15]。虽然近些年燃料使用及供暖方式的改变已明显改善这些城市的空气污染状况,但过去燃煤释放并已沉降至城市土壤中的重金属对城市生态系统、环境及人体健康仍会产生长期效应。

随着城市化发展,交通工具的数量急剧增加,汽车轮胎及排放的废气中含有Pb、Zn、Cu等多种重金属元素[16,17],进入周围的土壤环境污染治理,成为土壤重金属污染的主要来源之一。此外,雨水淋洗也会使市区内堆放的垃圾中的重金属以有效态形式[18]渗漏释放到土壤中,使城市土壤局部重金属含量增加中国。而表生条件下以有效态形式存在的金属元素几乎不可能再结合为残渣态,重金属在土壤中迁移能力增加,进而污染地下水。

2.3城市土壤重金属污染影响人体健康的途径

城市郊区是市区蔬菜的主要供应基地。因此,土壤-蔬菜系统是城市人群暴露土壤重金属污染的主要途径之一。目前研究发现中国城郊菜地土壤已受到不同程度的重金属污染[19,20],其供应的许多蔬菜中重金属含量已超过相应的标准。而西班牙的Nadal等通过建立评价模型发现工业地区甜菜中Cr的积累与摄入有可能导致癌症发生率增加[21]。

城区内,土壤中主要种植的是观赏性或净化空气的植物,通过土壤-植物食物链对人体造成健康危害的可能性不大。但公园土壤与游人皮肤接触[22]、儿童摄取[22]、风起扬尘被人体直接吸入等成为城市土壤直接接触人体危害健康的又一个主要途径。研究发现[23,24]沙尘暴时,扬尘中来源于土壤的重金属元素Pb、Zn、Cd、Cu等的浓度比平常高出3~12倍,可吸入颗粒物的质量浓度极高污染治理,人体吸入重金属的量因此增加。

2.城市土壤重金属污染的治理对策

城市土壤是城市生态环境的重要组成部分,是地球环境中进行物质、能量、信息交换的重要环节。当其中的重金属含量超过其环境承载力后,将通过地表径流、淋溶、大风扬尘等途径对地表水、地下水和大气环境产生危害。为了保证人类和谐地生活在高速发展的城市中和人类社会的可持续发展,寻找控制治理城市土壤重金属污染的有效方法势在必行中国。

3.1减少或切断重金属污染源,提高城市环境质量

在可持续发展理论和生态优先的原则下,改进生产工艺,实现绿色生产和循环经济,充分回收转换工业生产过程中产生的重金属有害物质,减少三废排放,禁止任意堆放工业生产的废渣,防止其中的重金属物质下渗到土壤或挥发到大气中。

减少煤的使用污染治理,开发清洁能源新技术,调整能源结构及能源供给方式,也是有效降低城市土壤重金属污染的有效措施。

分类收集处理城市垃圾,回收其中有用的重金属元素,在垃圾重金属不超标的情况下才能进行填埋、堆肥和焚烧。

3.2修复污染土壤,降低对人体的危害

由于土壤扬尘已成为城市大气重金属污染的主要来源。因此,可采取化学方法去除土壤中重金属。实验研究发现采用EDTA溶液淋溶去除土壤重金属的同时还可以回收利用这些物质,因此其成为去除城市土壤重金属的一种极有应用前景的方法。

当然,生物修复污染土壤有着工程措施无法相比的优势。种植植物不仅可以覆盖城市土壤,减少土壤扬尘的机会,而且还美化城市景观污染治理,净化空气,同时根据污染城市土壤的重金属元素种类有目的地选择植物种类合理搭配,可切实有效地从根源上修复城市土壤中的重金属污染。

3.3 建立城市土壤重金属健康评价标准

我国尚未制定出城市土壤重金属健康评价标准,不易界定城市土壤重金属污染,这不利于城市土壤不同功能的开发,因此应结合人体健康评估、土地利用方式和土壤中重金属赋存状态加大对城市土壤重金属健康评价体系研究的力度,尽快建立相应完整的评价标准,实现对城市土壤正确的评价,以便帮助政府相关部门制定出合理的法规,有效地保护、管理城市土壤和正确指导城市土壤的合理开发。

参考文献

[1]马光,等.环境与可持续发展导论[M].科学出版社, 2000

[2]张甘霖,朱永官,傅伯杰.城市土壤质量演变及其生态环境效应[J ].生态学报, 2003, 23 (3) : 539 – 546.

[3]张甘霖.城市土壤的生态服务功能演变与城市生态环境保护[J].科技导报(北京) , 2005, 23(3): 16- 19.

[4]张金屯,POUYAT R. “城-郊-乡”生态样带森林土壤重金属变化格局[ J ]. 中国环境科学, 1997, 17 (5) : 410 - 413.

[5]马建华,张丽,李亚丽.开封市城区土壤性质与污染的初步研究[J]. 土壤通报, 1999, 30 (2) : 93 - 96.

[6]王美青,章明奎.杭州市城郊土壤重金属含量和形态的研究[J].环境科学学报, 2002, 22 (2) : 603 - 608.

[7]卢瑛,龚子同,张甘霖.南京城市土壤Pb的含量及其化学形态[J]. 环境科学学报, 2002, 22 (2) : 156 -160

[8]郑袁明,余轲,吴泓涛,等.北京市城市公园土壤铅含量及其污染评价[J]. 地理研究, 2002, 21(4): 418 - 424.

[9]管东生,陈玉娟,阮国标.广州市及近郊土壤重金属含量特征及人类活动的影响[J ]. 中山大学学报(自然科学版) ,2001, 40 (4) : 93 - 97.

[10]师利明,郭军庆,罗德春.对公路两侧土壤中铅积累模式的理论探讨[J ]. 西安公路交通大学学报, 1998, 18 ( 3 ) : 13-15.

[11]李敏,林玉锁.城市环境铅污染及其对人体健康的影响[J ].环境监测管理与技术, 2006, 18 (5) : 6 -10.

[12]卢瑛,龚子同,张甘霖.南京市城市土壤Pb 的含量及其化学形态[J]. 环境科学学报, 2002, 22(2): 156-160

[13]潘海峰.铬渣堆存区土壤重金属污染评价[J ]. 环境与开发,1994, 9 (2) : 268 - 270.

[14]孙俊,陈晓东,常文越,等.搬迁企业环境遗留问题分析及修复对策研究[J]. 环境保护科学, 2003, 29 (118) : 40 - 42.

[15]王起超,沈文国,麻壮伟.中国燃煤汞排放量估算[J]. 中国环境科学, 1999, 19(4): 318-321.

[16]FALAHI-ARDAKANI A. Contamination of environment with heavy metals emitted fromautomotives [J]. Ecotoxicology and Environmental Safety, 1984, 8: 152-161.

[17]刘廷良,高松武次郎,左濑裕之.日本城市土壤的重金属污染研究[J]. 环境科学研究, 1996, 9 (2) : 47 - 51.

[18]张辉,马东升.城市生活垃圾向土壤释放重金属研究[J]. 环境化学, 2001, 20(1): 43-47.

[19]李其林,黄昀.重庆市近郊蔬菜基地蔬菜中重金属含量变化及污染情况[J]. 农业环境与发展, 2000, 17(2): 42-44.

[20]张勇.沈阳郊区土壤及农产品重金属污染的现状评价[J]. 土壤通报, 2001, 32(4): 182-186.

[21]NadalM, SchuhmacherM, Domingo J L. Metal pollution of soils and vegetation inan area with petrochemical industry[ J ]. The Science of the Total Environment,2004, 321 (1 - 3) : 59 - 69

[22]ABRAHAMS P W. Soils: their imp lications to human health[ J ]. Sci TotalEnviron, 2002 , 291: 1 - 32.

[23]王玮,岳欣,刘红杰,等.北京市春季沙尘暴天气大气气溶胶污染特征研究[J]. 环境科学学报, 2002, 22(4): 494-498.

[24]庄国顺,郭敬华,袁蕙,等.2000年我国沙尘暴的组成、来源、粒径分布及其对全球环境的影响[J]. 科学通报, 2001, 46(3): 191-197.

土壤重金属污染的现状第6篇

[关键词] 土壤重金属污染现状 防治措施

[中图分类号] X53 [文献标识码] A [文章编号] 1003-1650(2017)05-0287-01

陆良县隶属于云南曲靖,陆良县位于云南省东部,素有“滇东明珠”之称。我县土地面积广阔,农业粮食的播种面积901050亩,轻重工作发展迅速,经济实力雄厚。但是由于工业的发展和其他因素的影响,导致了我县的环境遭到了严重污染,尤其是土壤的重金属含量过高,严重阻碍了我县农业经济发展。针对这样一个状况,我农业综合服务中心相关负责人组织工作小组,制定了工作重点,积极寻求土壤重金属的污染成因、污染特点、污染危害,然后探讨了土壤重金属污染的预防和治理方式,科学合理的保护土壤,缓解重金属污染,促进农业健康发展。

1 土壤重金属污染现状

1.1 金属汞污染

土壤中汞的来源包括土壤母质、大气中汞的干湿沉降、工业污染源、农业污染源、含汞废弃物。其中农业污染主要是含汞农药的使用、含汞废水、废气、废渣的排放而污染土壤所致。较低含量的金属汞一般不会造成土壤污染,但是在土壤微生物作用下, 汞金属转化为具有剧烈毒性的甲基汞, 也称汞的甲基化。金属汞污染对农作物的危害随着作物的种类不同而有不同。

1.2 重金属镉污染

在我国的重金属土壤污染中,镉污染是危害性最大的,镉污染土壤特点有色金属矿产开发、冶炼及其他工业生产排出的废气、废水和废渣都会造成镉污染。而耕地大量使用的磷肥中也有相当高的镉含量,因此当这些磷肥进入土壤,也加重了土壤中的镉浓度。此外,城市污泥和垃圾的焚烧也可导致土壤中镉含量增高,由于土壤对镉有很强的吸着力, 因而镉易在土壤中造成蓄积。

1.3 重金属铅污染

铅是土壤污染较普遍的元素。污染源主要来自铅化工业的发展产生的废气、废水、废渣, 汽油燃烧后的尾气中含大量铅, 矿山开采、 金属冶炼、 煤的燃烧、大量含铅化肥使用、蓄电池的丢弃等也是重要的污染源。

1.4 重金属砷污染

土壤砷污染主要来自大气降尘、 尾矿与含砷农药, 燃煤是大气中砷的主要来源。砷中毒可影响作物生长发育, 砷对植物危害的最初症状是叶片卷曲枯萎, 进一步是根系发育受阻, 最后是植物根、 茎、 叶全部枯死。

总的来说,土壤重金属污染对植物的影响主要是对其生理生态过程、植物的产量和质置方面,如果污染过于严重的话,就会直接导致植物根系坏死,植物得不到应有的土壤营养,生长寿命大大缩减,甚至于直接死掉。

2 土壤重金属污染的预防措施

2.1 加大环境监管和治理力度

土壤重金属污染的情况越来越严重,造成了严重的危害,因此,政府必须引起高度重视,加大对土壤重金属含量的监测。首先政府部门应该组织一批专业的技术人才,采用先进的监测技术和设备,对我县的土壤进行动态监测,全面掌握重金属污染的类型、污染的程度,充分了解土壤中金属成分、含量的变化,统计监测信息,将土地进行重金属筛选,根据土壤污染的具体情况,恰当的选择土壤修复技术,为治理更大范围的重金属污染区积累经验;其次要坚强环保部门对环境的监管力度,杜绝重金属污染的来源,督促相关工业园区引进净化设备,含重金属元素的废弃物进行净化处理,减少排出量,同时严格控制城市生产生活废水直接进入农田,从根本上防止重金属对土壤的污染。

2.2 扩大土壤重金属污染宣传

重金属污染已经成为我县首要的土壤污染类型,必须提高人们的防范意思。我们可以利用先进的技术,通过互联网平台、以手机为载体,传统的书籍报刊等多种形式和途径,深入开展农产品产地土壤重金属污染防治的宣传工作,广泛动员和组织社会各界力量积极参与农产品产地土壤重金属污染防治工作,在全社会形成一种良好的社会风气,提高人们对土壤重金属污染的关注,让人们了解土壤重金属污染的严重危害性,自觉进行 土壤保护。

2.3 加强技术培育

将土壤重金属污染的专业技术人员组织起来,成立土壤重金属防治小组,深入我县各地区,对土壤重金属污染进行调查研究,为了更好的开展工作,一要积极开展技术培训,不断提高其整体业务素质,特别是基层机构人员的知识结构、技能和业务素质,提高他们的专业水平,同时我们还要根据污染情况,有针对性的开设培训内容,更好的服务于我县的土壤治理工作中。

2.4 客土深翻,缓解污染

重金属的土壤污染,阻碍作物的生长发育,必须在短时间内根除,才能进行的正常的农运活动。因此我们可以在污染地区彻底挖去污染土层,换上新土,以根除污染物,也可以进行土壤的耕翻土层,采用深耕,将上下土层翻动混合,使表层土壤污染物含量减低。

2.5 施用化学改良剂,

根据土壤重金属污染的类型,向土壤中施用石灰、碱性磷酸盐、氧化铁、碳酸盐和硫化物等化学改良剂,加速有机物的分解,使重金属固定在土壤中,降低重金属在土壤及土壤植物体的迁移能力,使其转化成为难溶的化合物,减少农作物的吸收,以减轻土壤中重金属的毒害。

土壤重金属污染的防治是环境监测的重要任务,是保障我县广大人民群众身体健康的根本,是促进经济快速发展的主要推力。采取科学有效的土壤污染防治措施,能够有效改善土壤结构,提高土壤肥力,降低土壤环境的污染。在未来的环境监测和农业生产中,政府和人民更应该携起手,爱护我们共有的生存土地,让重金属污染事件不再发生,远离人民群众,实现环境友好型的生存环境。

参考文献

[1]高锦卿,土壤重金属污染及防治措施[J].现代农业科技,2013年04期

土壤重金属污染的现状第7篇

关键词土壤污染;现状;危害;治理措施

1土壤污染概念

土壤是指陆地表面具有肥力、能够生长植物的疏松表层,其厚度一般在2 m左右。土壤不但为植物生长提供机械支撑能力,并能为植物生长发育提供所需要的水、肥、气、热等肥力要素。近年来,由于人口急剧增长,工业迅猛发展,固体废物不断向土壤表面堆放和倾倒,有害废水不断向土壤中渗透,汽车排放的废气,大气中的有害气体及飘尘不断随雨水降落在土壤中。农业化学水平的提高,使大量化学肥料及农药散落到环境中,导致土壤遭受非点源污染的机会越来越多,其程度也越来越严重,在水土流失和风蚀作用等的影响下,污染面积不断扩大。因此,凡是妨碍土壤正常功能,降低农作物产量和质量,通过粮食、蔬菜、水果等间接影响人体健康的物质都叫做土壤污染物[1-2]。

当土壤中有害物质过多,超过土壤的自净能力,引起土壤的组成、结构和功能发生变化,微生物活动受到抑制,有害物质或其分解产物在土壤中逐渐积累,通过“土壤植物人体”,或通过“土壤水人体”间接被人体吸收,达到危害人体健康的程度,就是土壤污染。

2我国土壤污染现状与危害

2.1土壤污染的现状

目前,我国土壤污染的总体形势严峻,部分地区土壤污染严重,在重污染企业或工业密集区、工矿开采区及周边地区、城市和城郊地区出现了土壤重污染区和高风险区。土壤污染类型多样,呈现出新老污染物并存、无机有机复合污染的局面。土壤污染途径多,原因复杂,控制难度大。土壤环境监督管理体系不健全,土壤污染防治投入不足,全社会防治意识不强。由土壤污染引发的农产品质量安全问题和群体性事件逐年增多,成为影响群众身体健康和社会稳定的重要因素[3]。

2.2土壤污染的危害

2.2.1土壤污染导致严重的直接经济损失。初步统计,全国受污染的耕地约有1 000万hm2,有机污染物污染农田达3 600万hm2,主要农产品的农药残留超标率高达16%~20%;污水灌溉污染耕地216.7万hm2,固体废弃物堆存占地和毁田13.3万hm2。每年因土壤污染减产粮食超过1 000万t,造成各种经济损失约200亿元。

2.2.2土壤污染导致生物产品品质不断下降。因农田施用化肥,大多数城市近郊土壤都受到不同程度的污染,许多地方粮食、蔬菜、水果等食物中镉、砷、铬、铅等重金属含量超标或接近临界值。每年转化成为污染物而进入环境的氮素达1 000万t,农产品中的硝酸盐和亚硝酸盐污染严重。农膜污染土壤面积超过780万hm2,残存的农膜对土壤毛细管水起阻流作用,恶化土壤物理性状,影响土壤通气透水,影响农作物产量和农产品品质。

2.2.3土壤污染危害人体健康。土壤污染会使污染物在植物体内积累,并通过食物链富集到人体和动物体中,危害人体健康,引发癌症和其他疾病。

2.2.4土壤污染导致其他环境问题。土壤受到污染后,含重金属浓度较高的污染土容易在风力和水力作用下分别进入到大气和水体中,导致大气污染、地表水污染、地下水污染和生态系统退化等其他次生生态环境问题。

3造成土壤污染的原因

3.1过量施用化肥

我国每年化肥施用量超过4100万t。虽然施用化肥是农业增产的重要措施,但长期大量使用氮、磷等化学肥料,会破坏土壤结构,造成土壤板结、耕地土壤退化、耕层变浅、耕性变差、保水肥能力下降、生物学性质恶化,增加了农业生产成本,影响了农作物的产量和质量;未被植物吸收利用和根层土壤吸附固定的养分,都在根层以下积累或转入地下。残留在土壤中的氮、磷化合物,在发生地面径流或土壤风蚀时,会向其他地方转移,扩大了土壤污染范围。过量使用化肥还使饲料作物含有过多的硝酸盐,妨碍牲畜体内氧气的输送,使其患病,严重导致死亡[4]。

3.2农药是土壤的主要有机污染物

全国每年使用的农药量达50万~60万t,使用农药的土地面积在2.8亿hm2以上,农田平均施用农药13.9 kg/hm2。直接进入土壤的农药,大部分可被土壤吸附,残留于土壤中的农药,由于生物和非生物的作用,形成具有不同稳定性的中间产物或最终产物无机物。喷施于作物体上的农药,除部分被植物吸收或逸入大气外,约有1/2左右散落于农田,又与直接施用于田间的农药构成农田土壤中农药的基本来源。农作物从土壤中吸收农药,在植物根、茎、叶、果实和种子中积累,通过食物、饲料危害人体和牲畜的健康。

3.3重金属元素引起的土壤污染

全国320个严重污染区约有548万hm2土壤,大田类农产品污染超标面积占污染区农田面积的20%,其中重金属污染占80%,粮食中重金属镉、砷、铬、铅、汞等的超标率占10%。被公认为城市环境质量优良的公园存在着严重的土壤重金属污染。汽油中添加的防爆剂四乙基铅随废气排出污染土壤,使行车频率高的公路两侧常形成明显的铅污染带。砷被大量用作杀虫剂、杀菌剂、杀鼠剂和除草剂,硫化矿产的开采、选矿、冶炼也会引起砷对土壤的污染。汞主要来自厂矿排放的含汞废水。土壤组成与汞化合物之间有很强的相互作用,积累在土壤中的汞有金属汞、无机汞盐、有机络合态或离子吸附态汞,所以,汞能在土壤中长期存在。镉、铅污染主要来自冶炼排放和汽车尾气沉降,磷肥中有时也含有镉[5]。

3.4污水灌溉对土壤的污染

我国污水灌溉农田面积超过330万hm2。生活污水和工业废水中,含有氮、磷、钾等许多植物所需要的养分,所以合理地使用污水灌溉农田,有增产效果。未经处理或未达到排放标准的工业污水中含有重金属、酚、氰化物等许多有毒有害的物质,会将污水中有毒有害的物质带至农田,在灌溉渠系两侧形成污染带。

3.5大气污染对土壤的污染

大气中的二氧化硫、氮氧化物和颗粒物等有害物质,在大气中发生反应形成酸雨,通过沉降和降水而降落到地面,引起土壤酸化。冶金工业排放的金属氧化物粉尘,则在重力作用下以降尘形式进入土壤,形成以排污工厂为中心、半径为2~3 km范围的点状污染。

3.6固体废物对土壤的污染

污泥作为肥料施用,常使土壤受到重金属、无机盐、有机物和病原体的污染。工业固体废物和城市垃圾向土壤直接倾倒,由于日晒、雨淋、水洗,使重金属极易移动,以辐射状、漏斗状向周围土壤扩散。

3.7牲畜排泄物和生物残体对土壤的污染

禽畜饲养场的厩肥和屠宰场的废物,其性质近似人粪尿。利用这些废物作肥料,如果不进行物理和生化处理,则其中的寄生虫、病原菌和病毒等可引起土壤和水域污染,并通过水和农作物危害人群健康。

3.8放射性物质对土壤的污染

土壤辐射污染的来源有铀矿和钍矿开采、铀矿浓缩、核废料处理、核武器爆炸、核实验、燃煤发电厂、磷酸盐矿开采加工等。大气层核试验的散落物可造成土壤的放射性污染,放射性散落物中,90sr、137cs的半衰期较长,易被土壤吸附,滞留时间也较长。

4我国土壤污染的治理措施

4.1施用化学改良剂,采取生物改良措施,增加土壤环境容量,增强土壤净化能力

向土壤中施用石灰、碱性磷酸盐、氧化铁、碳酸盐和硫化物等化学改良剂,加速有机物的分解,使重金属固定在土壤中,降低重金属在土壤及土壤植物体的迁移能力,使其转化成为难溶的化合物,减少农作物的吸收,以减轻土壤中重金属的毒害。针对有机物污染,用植物、细菌、真菌联合加速有机物降解。针对无机物污染,利用植物修复可以把一部分重金属从土壤中带走。

增加土壤有机质含量、砂掺粘改良性土壤,增加和改善土壤胶体的种类和数量,增加土壤对有害物质的吸附能力和吸附量,从而减少污染物在土壤中的活性。发现、分离和培养新的微生物品种,以增强生物降解作用。

4.2强化污染土壤环境管理与综合防治,大力发展清洁生产

控制和消除土壤污染源,组织有关部门和科研单位,筛选污染土壤修复实用技术,加强污染土壤修复技术集成,选择有代表性的污灌区农田和污染场地,开展污染土壤治理与修复。重点支持一批部级重点治理与修复示范工程,为在更大范围内修复土壤污染提供示范、积累经验。合理利用污染土地,严重污染的土壤可改种非食用经济作物或经济林木以减少食品污染。科学地进行污水灌溉,加强土壤污灌区的监测和管理,了解水中污染物的成分、含量及其动态,避免带有不易降解的高残留污染物随机进入土壤。

增施有机肥,提高土壤有机质含量,增强土壤胶体对重金属和农药的吸附能力。强化对农药、化肥、除草剂等农用化学品管理。增施有机肥同时采取防治措施,不仅可以减少对土壤的污染,还能经济有效地消灭病、虫、草害,发挥农药的积极效能。在生产中合理施用农药、化肥,控制化学农药的用量、使用范围、喷施次数和喷施时间,提高喷洒技术,改进农药剂型,严格限制剧毒、高残留农药的使用,大力发展高效、低毒、低残留农药。大力发展生物防治措施。

大力推广闭路循环、无毒工艺,以减少或消除污染物的排放。对工业“三废”进行回收净化处理,化害为利,严格控制污染物的排放量和浓度。大力推广和发展清洁生产。

针对土壤污染物的种类,种植有较强吸收能力的植物,降低有毒物质的含量,或通过生物降解净化土壤,通过改变耕作制度、换土、深翻等手段,施加抑制剂改变污染物质在土壤中的迁移转化方向,减少农作物的吸收,提高土壤ph值,促使镉、汞、铜、锌等形成氢氧化物沉淀。

根据土壤的特性、气候状况和农作物生长发育特点,既要防治病虫害对农作物的威胁,又要把化肥、农药对环境和人体健康的危害限制在最低程度。利用物理、物理化学原理治理污染土壤。大力开展植树造林,提高森林覆盖率,维护森林生态系统平衡。

4.3调控土壤氧化还原条件

调节土壤氧化还原电位,使某些重金属污染物转化为难溶态沉淀物,控制其迁移和转化,降低污染物的危害程度。调节土壤氧化还原电位主要是通过调节土壤水分管理和耕作措施实现。

4.4改变耕作制度,实行翻土和换土

改变耕作制度会引起土壤环境条件的变化,消除某些污染物的危害。对于污染严重的土壤,采取铲除表土和换客土的方法;对于轻度污染的土壤,采取深翻土或换无污染客土的方法。

4.5采用农业生态工程措施

在污染土壤上繁殖非食用的种子、种经济作物,从而减少污染物进入食物链的途径;或利用某些特定的动植物和微生物较快地吸走或降解土壤中的污染物质,从而达到净化土壤的目的。

4.6工程治理

利用物理(机械)、物理化学原理治理污染土壤,是一种最为彻底、稳定、治本的措施,但投资大,适于小面积的重度污染区,主要有隔离法、清洗法、热处理、电化法等。近年来,把其他工业领域,特别是污水、大气污染治理技术引入土壤治理,为土壤污染治理研究开辟了新途径。

5参考文献

[1] 徐月珍.防止土壤污染和地下水污染的措施[j].环境与可持续发展,1989(1):29-31.

[2] 任旭喜.土壤重金属污染及防治对策研究[j].环境保护科学,1999,25(5):31-33.

[3] 陈晶中,陈杰,谢学俭,等.土壤污染及其环境效应[j].土壤,2003,35(4):298-303.

土壤重金属污染的现状第8篇

关键词:蔬菜基地;土壤;重金属污染;湖北省

中图分类号:X53 文献标识码:A 文章编号:0439-8114(2016)24-6563-05

DOI:10.14088/ki.issn0439-8114.2016.24.060

土壤是人类生产食物最基本的生产资料和人类活动的基本场所。随着现代工业和农业的迅速发展、城市化进程不断加快和人类活动的影响,重金属通过各种途径进入土壤并累积吸附在土壤中。由于重金属迁移程度小,在土壤中很难去除,通过蔬菜根部到植株中,严重影响品质,同时对人体健康带来较大隐患。因此,深入了解重金属污染对蔬菜的影响,提高农产品质量安全,减少重金属对人类的危害十分必要[1]。

2000年初,对蔬菜产地重金属污染状况开始了研究。自2004年实行食品质量安全市场准入制度以来,人们对食品安全更加重视。农业部门积极大力推进“三品一标”工作,将“三品一标”认证工作作为确保农产品质量安全的重要抓手,开展产地环境评价和产品认证检验工作。对“三品一标”产地环境的评价工作,可以更进一步掌控蔬菜基地的重金属污染状况。如吉林省采用单因子污染指数法和综合污染指数法,对龙井市近郊农田土壤重金属Cu、Zn、Pb、Cd含量进行调查,重金属污染程度为轻度污染,主要污染元素为Cd[2]。重庆市曾对永川区近郊蔬菜地土壤重金属污染进行调查,其主要污染元素为Pb;从综合污染指数方面来看,土壤污染处于警戒级和轻污染级[3]。

近几年来,湖北省城镇化的进度加快,多地遭受重金属污染比较严重,曾有黄石市和大冶市关于重金属污染整治方面的报道[4,5]。但关于湖北省蔬菜基地重金属污染的系统研究报道却不多。2012年张媛媛等[6]对武汉市蔬菜基地重金属污染现状进行了调查,选取武汉市江夏区、洪山区等地的24个蔬菜基地,分别对土壤的pH、EC、有机质含量以及Cu、Zn、Cd和Pb 4种重金属含量进行调查和分析。结果显示,24个采样点的土壤重金属含量均在《GB 15618-1995土壤环境质量标准》[7]限量标准以内,为蔬菜安全生产基地,但同时也提出采取多种措施控制重金属污染源,高度重视土壤酸化比较严重的部分蔬菜基地。

湖北省是蔬菜种植大省,为保障蔬菜质量安全,各级政府大力推进“三品一标”产品认证。本研究以湖北省武汉、宜昌、荆门、荆州、恩施州、十堰、咸宁和黄冈8个地区的45个主要绿色食品蔬菜基地为调查样点,通过实地采集土壤样品,测定土壤pH和重金属元素(Cd、Hg、As、Pb、Cr、Cu)含量,分析并评价了8个地区蔬菜基地土壤重金属的污染现状,旨在为保障湖北省蔬菜基地的土壤安全和防治等提供一定参考依据。由于《GB 15618-1995土壤环境质量标准》的污染限量要求比较宽泛,可能会放松对土壤重金属的污染预警。为了与目前高品质的食品安全要求相适应,同时采用《NY/T 391-2013绿色食品产地环境质量》[8]标准对6种重金属含量进行评价。

1 材料与方法

1.1 样品采集与处理

根据《HJ/T 166-2004土壤环境监测技术规范》[9]标准布设监测点并采集0~20 cm耕层土壤,每个蔬菜生产基地采集3个不同位置、不同点数的土样,即每个基地抽取3份土样,共采集土壤样品135份。采集的土壤样品经自然风干后,研磨过100目尼龙筛后混匀,保存于采样袋中,待测。

1.2 样品分析方法

土壤浸提后采用电位法测定土壤pH(PHS-3C型酸度计);土壤镉、铅的测定方法采取石墨炉原子吸收分光光度法(GB/T 17141-1997)[10];汞的测定方法采用原子荧光法(GB/T 22105.1-2008)[11];砷的测定方法采用原子荧光法(GB/T 22105.2-2008)[12];铬的测定方法采用火焰原子吸收分光光度法(HJ 491-2009)[13];铜的测定方法采用火焰原子吸收分光光度法(GB/T 17138-1997)[14]。

1.3 土壤重金属含量评价

以《NY/T 391-2013绿色食品产地环境质量》标准中的旱田土壤环境质量要求标准值作为评价标准(表1),采用单因子污染指数法和内罗梅(Nemerow)综合污染指数法[15]对土壤污染现状进行评价。

单因子污染指数的计算公式为:Pi=Ci/Si

式中,Pi为土壤中第i种污染物的环境质量指数;Ci为第i种污染物的实际浓度;Si为第i种污染物的评价标准值。

式中,P综为土壤重金属的综合污染指数;Pimax为测定点的单项污染指数中的最大值;Pave为测定点的所有污染物单项污染指数的平均值。

单因子污染指数法常用于评价土壤被某一重金属的污染程度。而综合污染指数法是一种兼极值的综合评价方法,既考虑了单项元素的作用,又突出污染最严重元素的重要性,可以评定每一个测试点的土壤综合污染水平。根据内梅罗污染综合指数法,将土壤的污染情况划分为 5个等级,污染等级划分标准如表2所示。

2 结果与分析

2.1 不同地区蔬菜基地土壤pH和重金属含量比较

湖北省武汉、宜昌、荆门、荆州、恩施州、十堰、咸宁和黄冈8个地区的45个主要蔬菜基地土壤的pH分布情况如图1所示。由图1可以看出,pH分布范围为4.59~8.42。在45个蔬菜基地中,19个基地pH

如表3所示,湖北省8个地区的蔬菜基地土壤重金属含量均没有超出绿色食品产地环境质量标准(NY/T 391-2013)对旱田土壤环境质量的要求。参照湖北省土壤背景值[16](未受人类污染影响的自然环境中化学元素和化合物的含量),45个基地中有6个基地的Hg、As和Pb含量超出湖北省土壤背景值,其中Hg的累积最明显,宜昌市有3个基地、黄冈市有1个基地Hg含量超出背景值;另外荆州市有1个基地的Pb含量超出了背景值,恩施州有1个基地的As含量超出背景值;但总体来说,超标率都不超过20%。被调查的所有基地重金属Cd、Cr和Cu含量均低于土壤背景值,无明显累积;武汉、荆门、十堰和咸宁被调查的蔬菜基地6种重金属含量均低于土壤背景值。

2.2 不同地区蔬菜基地重金属的含量差异

如表4所示,宜昌和十堰市蔬菜基地的Cd含量平均值最高,荆州市的最低;黄冈市蔬菜基地的Hg平均含量最高,是荆门市的3.8倍;恩施州土壤As含量高,是十堰市的2.6倍;黄冈市的Pb平均含量最高,咸宁市的最低;黄冈市的Cr平均含量最高,比恩施州的高出28.84 mg/kg;黄冈市蔬菜基地的Cu平均含量最高,咸宁市的最低。但相同市区不同取样地点的重金属含量差异比较大,如黄冈市编号为J44基地的Cd含量是J45的3.6倍,而J45基地的As含量是J44的3.2倍。

2.3 土壤重金属污染评价结果

2.3.1 单因子污染指数评价 湖北省各地区蔬菜基地土壤中Cd、Hg、As、Pb、Cr和Cu 6种重金属元素的单因子污染指数和评价结果见表5。由表5可以看出,湖北省8个地区45个被调查的基地上述6种重金属单项污染指数均小于1,说明8个地区蔬菜基地的Cd、Hg、As、Pb、Cr、Cu含量均未超恕5荆州地区的Cr和黄冈地区的Cr、Cu的单项污染指数均超过0.7,表明这两个地区的Cr、Cu污染处于警戒线级别,需要及时预防。

2.3.2 综合污染指数评价 仅使用单因子污染指数法进行评价不能反映土壤的整体污染情况。而综合污染指数法是一种兼极值的综合评价方法,可以评定土壤综合污染水平。从表5还可以看出,湖北省8个地区的综合污染指数均小于1,根据土壤环境质量分级标准可以判断这些地区的蔬菜基地污染水平处于尚清洁状态。但是黄冈市的土壤综合污染指数大于0.7,表明该地区的蔬菜基地污染水平虽然处于尚清洁状态,但重金属污染达到了警戒线。

3 结论与讨论

3.1 结论

通过对湖北省武汉、宜昌、荆门、荆州、恩施州、十堰、咸宁和黄冈8个地区的45个主要绿色食品蔬菜生产基地进行田间采样和室内分析,试验结论如下:

1)所调查的45个基地pH

2)武汉、荆门、十堰和咸宁地区被调查的蔬菜基地6种重金属含量均低于土壤背景值。另外4个地区有6个基地的Hg、As和Pb含量超出湖北省土壤背景值,其中Hg的累积最明显,表现为宜昌市的3个基地、黄冈市的1个基地Hg含量超出背景值。但总体来说,超标率都低于20%。

3)不同地区蔬菜基地重金属的含量差异比较大。黄冈市蔬菜基地的Hg平均含量是荆门市的3.8倍,Cr平均含量比恩施州的高出28.84 mg/kg;相同市区不同取样地点的重金属含量差异也比较大,如黄冈市2个蔬菜基地的Cd和As含量差异达到了3倍以上。

4)单因子污染指数评价结果表明,湖北省8个地区的Cd、Hg、As、Pb、Cr和Cu 6种重金属单项污染指数虽然均小于1,含量未超标,但黄冈Cr、Cu和荆州Cr的单项污染指数均超过0.7,表明这两个地区的Cr、Cu污染临近警戒线。

5)综合污染指数评价结果表明,黄冈市的重金属综合污染指数大于0.7,土壤等级为2级,临近警戒线。其他地区的土壤重金属综合污染指数均小于0.7,土壤等级为1级,均处于安全状态。

3.2 讨论

所调查的湖北省45个蔬菜基地中有19个基地土壤pH小于6.5,占比42.2%,接近50%,一般造成土壤酸化的原因有3个方面:①降水量大而且集中,淋溶作用强烈,钙、镁、钾等碱性盐基大量流失;②施石灰、烧火粪、施有机肥等传统农业措施的缺失,使耕地土壤养分失衡;③长期大量施用化肥是造成土壤酸化的重要原因。Singh等[17]认为土壤重金属含量与土壤pH大小有关,pH越小,重金属被解吸的越多,活性越强,越容易被植物吸收,因此土壤酸化会导致重金属向植物体内迁移和累积。应结合不同蔬菜对土壤pH不同要求采取合适措施改良土壤的酸碱性,例如对于酸性土壤,可增施熟石灰、草木灰等[18]来中和土壤的酸性;对于碱性土壤,可施用沸石[19]和燃煤烟气脱硫副产物[20]等减少土壤的碱性,并且每年应对土壤pH进行跟踪调查。

8个地区蔬菜基地重金属Cd、Hg、As、Pb、Cr和Cu含量均没有超出绿色食品环评标准的限量值,适合发展绿色食品。但是根据湖北省土壤背景值的要求,有个别蔬菜基地的重金属超标,特别是宜昌市有3个基地的Hg超标。由于土壤中重金属的来源是多途径的,根据该地区所处的环境推测原因主要有:①基地多处于山区地带,地矿中含有一定量的重金属元素,地质背景的原因可能导致土壤重金属含量超标;②该地区的蔬菜种植基地多属于传统蔬菜种植基地,常年施肥(肥料中含有一定量重金属元素)使得土壤中重金属含量增加。虽然Hg含量超标率不到20%,但是还是要引起重视。

被调查的8个地区只有黄冈市的综合污染指数达到2级,处于警戒线,其他地区均处于安全状态。可能原因有:①该地区被调查的蔬菜基地太少,数据离散程度过大;②蔬菜基地位于山区地带,地质背景的原因可能导致土壤重金属含量较高。由于综合污染指数计算时只是依据pH分级,没有科学地细分,当综合污染指数大于0.7时,酸性和碱性土壤对重金属吸附水平差别较大,特别是土壤pH0.7时,重金属活性将会大大增加,很容易吸附在土壤中最后被植物吸收;而另一方面不同植物可能对重金属吸附水平也不同,故P综>0.7时,蔬菜中重金属含量也不一定超标。因此如何更加科学评价基地污染还需要做进一步研究。

参考文献:

[1] 赵军兰,张浩波,赵国虎,等.兰州市安宁区蔬菜地土壤酸度及重金属的测定和评价[J].甘肃农业大学学报,2012,47(2):115-119.

[2] 金成俊,金明姬,元灿熙,等.龙井市近郊农田土壤重金属污染评价[J].安徽农业科学,2011,39(33):20433-20434.

[3] 郑耀星,阮永明,张黎蕾.永川区近郊蔬菜地土壤重金属污染调查与评价[J].广东农业科学,2013,40(19):167-170.

[4] 湖北S石整治重金属污染[J].黄金科学技术,2011(4):58.

[5] 李 丽.关于重金属污染防治法律对策的探析―以大冶市为例[J].湖北师范学院学报(哲学社会科学版),2012,32(6):97-99.

[6] 张媛媛,朱林耀,王孝琴,等.武汉市蔬菜基地重金属污染现状调查[J].长江蔬菜,2012(24):83-86.

[7] GB 15618-1995,土壤环境质量标准[S].

[8] NY/T 391-2013,绿色食品产地环境质量[S].

[9] HJ/T 166-2004,土壤环境监测技术规范[S].

[10] GB/T 17141-1997,土壤质量铅、镉的测定石墨炉原子吸收分光光度法[S].

[11] GB/T 22105.1-2008,土壤质量总汞、总砷、总铅的测定原子荧光法第1部分:土壤中总汞的测定[S].

[12] GB/T 22105.2-2008,土壤质量总汞、总砷、总铅的测定原子荧光法第2部分:土壤中总砷的测定[S].

[13] HJ 491-2009,土壤总铬的测定火焰原子吸收分光光度法[S].

[14] GB/T 17138-1997,土壤质量铜、锌的测定火焰原子吸收分光光度法[S].

[15] 向仲香.成都市近郊蔬菜基地土壤重金属污染现状评价――以2个蔬菜基地为例[J].现代农业科技,2013(16):212-214.

[16] 黄 敏,杨海舟,余 萃,等.武汉市土壤重金属积累特征及其污染评价[J].水土保持学报,2010,24(4):135-139.

[17] SINGH B R,KRISTEN M. Cadmium uptake by barley as affected by Cd sources and pH levels[J].Geoderma,1998,84:185-194.

[18] 王 宁,李久玉,徐仁扣.土壤酸化及酸性土壤的改良和管理[J].安徽农学通报,2007,13(23):48-51.

土壤重金属污染的现状第9篇

关键词:土壤;重金属;污染;现状;修复

中图分类号:TE991.3 文献标识码:A

比重大于4或5的金属为重金属,如铁、锰、铜、锌、钴、镍、钛、钼、汞、铅、镉、砷等。铁、锰、铜、锌等重金属是生命活动所需要的微量元素,汞、铅、镉、砷等并非生命活动所必需,而且所有重金属含量超过一定浓度时对人体有毒有害。

重金属污染,指由重金属或其化合物造成的环境污染。土壤重金属来源广泛,包括采矿、冶金、化工、金属加工、废电池处理、电子制革和塑料等工业排放的三废及汽车尾气排放,农药和化肥的施用等。如,镉大米,重金属镉毒性很大,可在人体内积蓄,主要积蓄在肾脏,引起泌尿系统的功能变化。农灌水中含镉0.007mg/L时,即可造成污染。

1 土壤污染现状

土壤是农业最基本的生产资料,是农业发展的基础,是不可再生的自然资源。而污染企业的快速发展,农业中肥料的大量投入,经济效益提高的同时,环境的污染也日趋严重,使得重金属在大气、水体、土壤、生物体中广泛分布,而土壤往往是重金属的储存库和最后的归宿。当环境变化时,底泥中的重金属形态将发生转化并释放造成污染。重金属不能被生物降解,但具有生物累积性,重金属可以通过食物链不断富集,残留在一些初级农产品中,传递进入人体内,对人类健康产生严重危害。

中国目前有耕地1.35亿多hm2,但优质耕地数量不断减少,近期的第二次全国土地调查结果显示,中重度污染耕地超过300万hm2,而每年因土壤污染致粮食减产100亿kg。中国中央农村工作领导小组副组长陈锡文介绍说,今后受重金属污染的耕地将退出食用农产品生产,启动重金属污染耕地修复试点。

2 控制与消除土壤污染源

在“十二五”规划中,把重金属污染的防治列为重要工作,要求到2015年,重点区域铅、汞、铬、镉和类金属砷等重金属污染物的排放,比2007年削减15%,非重点区域的重点重金属污染排放量不超过2007年的水平。

控制土壤污染源,即控制进入土壤中的污染物的数量与速度,通过其自然净化作用而不致引起土壤污染,加强土壤污灌区的监测与管理,合理施用化肥与农药,增加土壤容量与提高土壤净化能力,建立监测系统网络,定期对辖区土壤环境质量进行检查。

3 注重农业资源永续利用

我国土壤重金属污染已经达到相当严重的程度,要充分认识重金属污染的长期性、隐匿性、不可逆性以及不能完全被分解和消逝的特点,从思想上重视了解重金属对人类及环境造成的危害,提高环境保护意识,建立农业可持续发展长效机制,逐步让过度开发的农业资源休养生息,促进生态友好型农业发展,加大生态保护建设力度,是为子孙后代留下生存发展空间的重大战略决策。

4 修复措施

土壤修复即通过科技创新来恢复土壤的农业生产能力和生态环境缓冲调控能力。重金属对土壤的污染具有不可逆转性,土壤一旦发生污染,短时间内很难修复,相比水、大气、固体废弃物等环境污染治理,土壤污染是最难解决的,土壤重金属污染问题日益受到人们的关注。有关专家认为,已受污染土壤没有治理价值,对那些污染严重、生态脆弱、资源环境压力大的耕地,该改种的就改种,该治理的就治理,该退耕的就退耕。目前,土壤修复技术归纳起来有热力学修复技术、热解吸修复技术、焚烧法、土地填埋法、化学淋洗、堆肥法、生物修复等多种,目前研究较多的生物修复法,包括植物修复法和动物修复法。

4.1 植物修复法

植物修复法是利用重金属积累将土壤中的重金属富集于植物体内,然后通过收割植物从土壤清除出去,植物修复法应用比较普遍和简便,成本较低,不改变土壤性质,种植的植物不仅美化环境还可以起到防风固坡,防止土壤流失。但是,其治理效率较低,耗时长、污染程度不能超过修复植物的正常生长范围,只适合中低浓度的污染耕地,而对于高浓度的污染耕地,植物修复法则需要漫长的时间并且效果难料,而且随着植物离开土壤,还会产生二次污染危害。因此,植物修复技术只能作为一种污染治理辅助技术。

4.2 动物修复法

动物修复是通过土壤动物或者投放动物对土壤重金属吸收、降解、转移以去除重金属或抑制其毒性,被认为是一种有效的生态恢复措施。动物修复的机理:生物体内的金属硫蛋白与重金属结合形成低毒或无害的络合物;生物的代谢物富含SH的多肽,能与重金属螯合,从而改变其存在状态;生物体内存在的多种编码金属转运蛋白能提高生物对金属的抗性。

虽然土壤的修复技术很多,但没有一种修复技术可以针对所有污染土壤。相似的污染状况,不同的土壤性质、不同的修复需求,也制约一些修复技术的使用。大多数修复技术对土壤或多或少带来一些副作用。

5 小结

综上所述,由于土壤重金属来源广泛、复杂,增加了对土壤重金属治理和修复难度,严重制约了我国农业生产,要更好地防治土壤重金属污染,还需要广大科研工作者不懈的努力,研发出更好的效率更高的修复技术,要大力宣传加强全民环保意识,把环境污染程度降到最低,形成全社会都来重视土壤污染的良好环保氛围,逐步改善土壤生态环境。目前,研发适用性广、成本低、见效快、环保的土壤重金属污染修复技术是各国土壤重金属生态修复的前沿问题,也是迫切需要解决的问题。

参考文献

[1] 陈海仟,吴光红,张美琴,潘道东.我国水产品重金属污染现状及其生物修复技术分析.农产品质量安全论丛--2008年农产品质量安全国际研讨会论文集.

[2] 农产品中重金属风险评估.农产品质量安全风险评估--原理、方法和应用.

[3] 沈振国,刘有良.超积累重金属植物研究进展[J].植物生理学通报,

1998,34(2).