欢迎来到易发表网,发表咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

城市轨道通信技术优选九篇

时间:2023-06-19 16:29:06

城市轨道通信技术

城市轨道通信技术第1篇

关键词:城市轨道交通;信息通信系统;信息传输系统

城市轨道交通信息通信系统主要是为轨道交通运营而服务,是保障列车运行过程中一个关键的因素。目前,我国城市轨道交通信息通信系统的发展方向主要是两个方面,分别是城市轨道交通信息通信系统的宽带化和城市轨道交通信息通信系统中新系统的开发应用。

1我国城市轨道交通信息通信系统现状

为了有效保障我国城市轨道交通信息通信系统安全、可靠以及快速地运行,就必须将城市交通系统与通讯系统之间进行有效配合,从而发挥城市轨道交通信息通信系统的服务功能。我国城市轨道交通专用通讯系统主要包括了十二个子系统,分别是公用电话系统、专用电话系统、广播系统、闭路电视系统以及传输系统等。

随着科技地不断发展,我国城市轨道交通信息通信系统正逐步向多样化方向发展。目前,我国城市在发展过程中,建立了大量城际轨道交通线,从而使城市轨道交通信息通信系统逐渐向大运量、中运量以及市郊线并存的方向共同发展。

2城市轨道交通信息通信系统中的核心系统

传输系统是城市轨道交通信息通信系统的核心,主要为各种应用业务提供必要的通道。通常来说,城市轨道交通信息通信系统的业务主要包括三种,分别是语言、数据以及图像。

对城市轨道交通信息通信系统而言,主要包括了控制中心、车场与各个车站需要通信业务。其业务流程如附图所示。

在实际运行过程中,为了保障传输系统的可靠性,就需要采用环形组网,也就是说控制中心与车站、车场形成了一个自愈性环形组织,当某一个部分出现问题时,整个系统能够自行保障业务正常运行。

通常来说,城市轨道交通信息通信系统有两个部分组成:其一,传输部分。该部分主要是为各种业务提供相应通道,并有效保障各种业务可以安全地从一个节点中进入到另一个节点中;其二,接入部分。该部分主要是对需要完成的业务进行接入与汇聚工作,同时将汇聚后的业务传输到传输节点中,并由传输节点完成最后的传输工作。

目前,主要应用的传输方式有三种形式:其一,开放式传输网络技术。其优点是,该技术主要为城市轨道交通而开发的技术,接口类型比较多,同时接口数据也比较多,此外,在运用过程中性能比较稳定。其缺点是,标准还未得到统一,如果业务量比较大的时候,将无法胜任宽带的要求;其二,同步数字传输技术。其优点是发展比较成熟,并拥有统一的标准以及强大的自愈功能。其缺点是主要是为语音而设置的,因此对业务中数据与图像部分不能进行有效支持;其三,异步转移模式技术。

3城市轨道交通信息通信系统中的其他系统

(一)公务电话系统与专用电话系统

城市轨道交通信息通信系统中的公务电话系统主要是为城市轨道交通提供有效的通讯工具。目前,在交换机技术不断发展的基础上,该系统在应用上有了更加多样的选择,其中,可靠性比较强而扩容比较方便的交换机在公务电话系统中的使用,促使了城市轨道交通的迅速增长。

专用电话系统主要是为列车指挥人员进行列车运行的指挥以及设备的操作提供相应通讯工具。通常来说,行车调度的可靠性越高,那么行车过程中的安全性也就越高,而行车调度的安全进行需要相应的设备支持。

(二)电视监控系统

城市轨道交通信息通信系统中的电视监控系统能够对列车的运行情况、车站客流情况进行实时、动态以及直观的图像跟踪与记录。由于闭路电视监控系统具有良好的指挥与管理功能,因此可以为城市轨道交通的调度与管理提供相应的依据。

城市轨道通信技术第2篇

关键词 城市轨道交通,信息通信系统,信息传输系统

      城市轨道交通信息通信系统是直接为轨道交通运营和管理服务的,是指挥列车运行、进行运营管理、公务联络和传递各种信息的重要手段,是保证列车安全、快速、高效运行的不可缺少的综合系统。它主要由以下分系统组成:传输系统、公务电话系统、专用电话系统、广播系统、电视监控系统、电源系统、时钟系统和无线通信系统。这是一个复杂的大系统,各个部分互相结合、协调,以完成具体的功能。现代城市轨道交通之所以具有快捷、高效、可靠、安全等众多的优点,是与完善而先进的通信系统分不开的。城市轨道交通信息通信系统将向两个方向发展:一是宽带化趋势。为了提高各种业务的质量,势必要增加带宽。二是各种新系统的开发应用。为了不断完善城市轨道交通的服务,相应功能的分系统将不断融合入现有城市轨道交通信息通信系统中。本文将依次对城市轨道交通信息通信系统的各个分系统进行阐述,并分析其技术构成和发展趋势。

1  传输系统

      传输系统是城市轨道交通信息通信系统的核心,它负责为各种应用业务提供通道。轨道交通系统的主要业务包括:语言、数据和图像。不同业务对系统的带宽、时延、可靠性等各不相同,这就要求传输系统有足够的灵活性和可靠性以保证各种业务的顺利完成。业务按不同的类型可分为:车站-中心业务和邻站业务两种。

      在轨道交通系统中,需要通信业务的一般是控制中心、车场和各个车站。由于车场和车站业务比较相似,可将其归为同一类业务。具体业务流程如图1 。

 

图1  通信系统业务流程示意图

图1 是逻辑上的业务流程示意图。在物理上为了保证传输系统的安全可靠,须采取环形组网的方案,以利于自动保护的需要。这样,控制中心连同所有的车站和车场组成一个自愈环,即使某段光纤坏掉,也可保证业务在备用通道上正常进行。其实现机制如图2 。图中,传输环一般有两个光纤环组成,当一个环中断时,系统自动跳到另一个环上, 即图a 情形;而当两个环在同一个地方断开时,则两侧的节点自动打环,形成如图b 的通路。

      城市轨道交通信息通信系统可分为两部分:传输部分和接入部分。其模型如图3 。其中,传输层只负责提供各种通道,保证各种业务能安全可靠的从一个节点传到另一个节点;接入层需完成业务的接入和业务的汇聚两个基本功能;然后把汇聚好的业务交由传输节点完成传输。 技术将会在未来的城市轨道交通信息通信系统中被采用。

(1) 千兆以太网技术( ge) 。ge 与以太网、快速以太网兼容。ge 的实施具有直接、快速和千兆位的特点,设备便宜,传输距离长,可以满足城市轨道交通通信系统组网的要求[2 ] 。同时,原来以太网的不足,如多媒体应用无qos 、多链路负载分享、

图2  通信系统环形组网方案虚拟网等,随着新技术、新标准的出现已经和正在得到解决。10 gbit 以太网的出现和成熟也为ge 的升级扩容提供了强有力的支持。

 (2) cwdm (粗波分复用) 技术。dwdm 技术已经成为大容量电信骨干网的首选,其优点是技术简单、大容量、易扩容等。而且随着dwdm 技术

图3  城市轨道交通信息通信系统模型图的成熟和广泛使用,它的价格也将逐步降低,其性

      传输系统作为整个通信系统的核心部分,它的价比将更具优势。所以,当未来城市轨道交通通信技术选择十分重要。随着通信技术的不断发展,用带宽需求进一步提高的时候,dwdm 技术将是很于城市轨道交通的传输技术也不断的更新换代,尤好的方案。同时,由于考虑到城市轨道交通通信的其近几年通信技术的迅猛发展,为传输技术的选择实际需要, 可以选择成本更低, 使用更可靠的了提供了更广阔的范围。我国现在使用的各种传cwdm 技术。cwdm 的特点是波长数量较少(一输技术及其优缺点如表1 。般在4~12 波),波长间隔较大,价格便宜[3 ] 。最但是,随着通信新技术的涌现和成熟,随着轨后,随着各种新兴的电信技术的涌现和采用,城市道交通新业务的出现和带宽需求的上升,以下几种轨道交通信息通信也完全可以借鉴和运用。

表1  各种传输方式的比较

2  公务电话系统

      城市轨道交通信息通信系统公务电话子系统, 是轨道交通运营控制的重要通信工具。一般公务电话系统根据轨道交通的规模具有不同的容量。通常情况而言,一个车站基本上为一个2mbit 通路(30 个电话) 。公务电话系统可设1~2 个交换局, 通常交换机置于控制中心,各个车站通过远端模块实现电话的接入。此时,需应用传输系统提供的2mbit 通道。

      公务电话系统通过2mbit 中继线接入市局,并从中获取时钟。呼出可采用全自动dod1 方式,呼入采用部分全自动直拨did 、部分采用半自动接续bid(人工/ 自动话务员) 的混合进网中继方式或其它方式。考虑到与其它城市轨道交通系统的互连, 可采取2mbit 中继线连接的方式,为解决信令不一致可增加网关设备。近几年,交换机已趋于成熟, 公务电话系统的选择余地十分宽广,但要注意选择稳定可靠、扩容方便的交换机,以适应轨道交通的高速增长和话务量及其它业务上升需求。同时,也可考虑选择合适的电信运营商,由公共通信网以虚拟网方式解决,以节省建设投资与运营成本。

      公务电话子系统还兼有其自身的特点  区间电话设置。区间电话用于列车司机或维修人员与有关单位进行联系及一般通话用。每隔300 m 左右设置一台户外电话机,1~3 台话机使用一个用户号码。轨道两边各敷设一条电缆,每3 个电话使用同一对线,同一个号,电话采用热线方式。

3  专用电话系统

      专用电话子系统是调度员和车站(车场) 值班员指挥列车运行和指导设备操作的重要通信工具。行车调度直接关系到行车安全,需要设备高度安全可靠,操作方便快捷。专用电话系统由调度电话系统、站间电话系统、站内集中电话系统、紧急电话系统、市内直线电话等组成。调度电话系统中又分为:列车调度电话系统,用于控制中心列车调度员与各车站、车场值班员及行车业务直接有关的工作人员进行业务联络,并可兼管防灾调度系统;电力调度电话系统,用于控制中心电力调度员与各主变电站、牵引变电所、降压变电所等处工作人员进行业务联络;公安调度电话系统,构成公安指挥中心值班员与各车站(场) 警务值班室警官之间的直接通信联络,调度台一般设在控制中心内。站间电话是直接为行车服务的,要求能及时、迅速沟通相邻两车站的通话。相邻两车站值班员之间通话利用交换系统的热线功能提供,用户摘机即能及时、迅速沟通两车站值班室,站间电话由车站电话总机完成。站内集中电话类似调度电话系统,总机设在车站控制室,采用多功能数字电话机,分机设置在车站值班员所控制的部门,采用模拟电话机,系统功能由调度交换机及站内集中机功能来完成。紧急电话是在紧急状态下供乘客或车站工作人员使用, 每台电话都设置成热线电话,用户摘机即连接至车控室值班员数字话机上。在主变电所、控制中心至供电局调度之间可设置专线直通录音电话。在每个车站站长室和警务室各设置市内直线电话,控制中心和派出所设置市内直线电话。

      专用电话系统由枢纽主系统和车站分系统两级结构组成。枢纽主系统和车站分系统通过数字传输设备提供2mbit 数字通道,将调度电话、站间电话、站内集中电话和紧急电话等业务综合起来, 便于安装、调试、使用、维护和管理。2mbit 数字通道同样由传输系统提供,考虑到专用系统的小容量特点,为了节约带宽,可采用多个车站组成一个2mbit 环合用一个2mbit 通道的方案。

4  广播系统

      广播系统采用二级广播控制方式,由控制中心一级和车站一级组成。一般分为三个部分:控制中心广播系统,车站广播系统(可根据实际需要连接多个车站子系统),停车场广播系统。控制中心通过综合接入系统提供的rs 422 或rs 485 通道与车站广播系统互连。一般情况下,广播业务为中心到车站的点到多点业务,而中心对车站系统的监控维护通道则为点对点业务。

      控制中心行车调度员和环控调度员可对全线各站进行监听及选站和选区广播。当轨道交通发生故障或灾害时,广播系统自动转为抢险通信设备。停车场广播系统由值班员、运转值班员和检修库值班员向工作人员播放车辆调度、列车编组等有关作业音讯。

      车站广播系统由控制中心的总调、列调、防灾调(列调兼) 和各车站的正副值班员使用,为旅客播放列车到发信息、导向信息及紧急状态信息等服务音讯,为工作人员播放作业命令及管理音讯。车站广播区分为上行站台、下行站台、售票区、站厅、出入口和办公区等。车站行车值班员和环控值班员可通过广播控制台对本站区进行选区广播或全站广播。

5  电视监控系统

      闭路电视监控系统作为一种图像通信,具有直观、实时的动态图像监视、记录和跟踪控制等独特功能,是通信指挥系统的重要组成部分,具有其独特的指挥和管理效能,已成为城市轨道交通实现自动化调度和管理的必备设施[ 5 ] 。

      轨道交通电视监控系统为二级结构,分为车站一级监视和中心一级监视。车站摄像机输出的图象信号分成两路,一路送车站控制器,车站值班员可选择本站不同位置摄像机的图像。另一路送车站前端处理机进行图像编码、压缩,然后经传输系统送至控制中心,在控制中心解码后送至图像监视器。控制中心行车调度员可选择任一车站的任何一个摄像机的图像信号,也可将车站几路图像信号送至控制中心。彩色图像信号的传送一般采用mpeg-2 图像编码技术。

      电视监控系统的传输为不对称传输,车站到中心传输图像信息,需要大带宽(2~6mbit) ;而中心到车站,只发送控制命令(图像选取和摄像机控制命令),为低速数据业务,只需采用rs 422/ rs 485 通道即可。充分考虑到图像业务的实时宽带性质, a tm 技术是目前最佳的传输机制,采用a tm 作为传输媒介传输数字视频,可以利用a tm 按需分配带宽、按需连接的特点,在保证图象质量(qos) 的情况下,大大节省所占带宽[ 1 ] 。

6  电源系统

      电源系统是保证通信系统正常工作的必要条件,因此通信电源必须安全可靠。电源系统由配电设备、整流设备和蓄电池组成。系统配置不间断电源(u ps) 交流供电设备,为各自动控制系统的计算机提供不间断220 v 交流电压。u ps 的工作原理为:同时有两路市电输入,取其一路,当该路出现故障时,自动切换至另一路;当两路都出现故障时,启动蓄电池继续供电。

     整个电源系统设有电源集中监控。在控制中心,所有u ps 将通过传输系统的低速数据通道进行信号传输,监控中心的计算机也将通过传输系统的低速数据通道进行信号采集,在监控中心计算机上装有软件,可实时监控到当前各个站点u ps 的状态及使用情况。各站点使用现场的u ps 和开关电源一旦发生故障,警铃将提醒现场有关人员进行及时的处理,同时在监控中心的计算机上同样可看到输出故障的警告显示。

7  时钟系统

      为了统一整条城市轨道交通系统的时间,通信系统设有专门的时钟系统。时钟系统由gps 全球卫星标准时间接收单元、主控母钟、各站辅助母钟、子钟及传输设备组成。主、备gps 信号接收机向中心母钟提供同步时钟源。当gps 系统出现故障,还可以使用高精度的晶振供时钟源。主控母钟输出的标准时间信号通过接入网提供的低速数据信道(rs 422/ rs 485) 传给各站辅助母钟,以供车站各系统和子钟的使用。中心母钟产生精确的标准同步时间码,通过传输网提供给通信传输系统、无线系统、调度电话系统、公务电话系统、有线广播系统、电视监视系统、信号系统、售检票系统、防灾报警系统、设备监控系统、电力监控系统等。

8  无线通信系统

      无线通信系统为行车调度员与司机、车站值班员与司机、司机与司机以及公安、环控、维修等用户提供移动通信手段。无线通信将主要采用数字集群式调度系统,信道集中控制方式。集群式调度系统由移动交换控制器、基站、中继器、漏泄同轴电缆、车载台、便携台和有线传输通道组成,可采用单基站大区制或多基站小区制。无线调度系统分为行车调度、环控调度、公安调度和维修调度等通话组。组间不能交叉呼叫,各组享有不同的优先权, 不同的无线用户也拥有不同的优先权。

 

参 考 文 献

1  timothy kwok. a tm the paradigm for internet , intranet , and residential broadband services and application. prentice hall ptr , 1998

2  david g. gunningham. 千兆位以太网组网技术. 北京:电子工业出版社,2001

3  (美) 卡塔洛颇罗斯基. 密集波分复用技术导论. 北京:人民邮电出版社,2001

城市轨道通信技术第3篇

关键词 城市轨道交通,信息通信系统,信息传输系统

城市轨道交通信息通信系统是直接为轨道交通运营和管理服务的,是指挥列车运行、进行运营管理、公务联络和传递各种信息的重要手段,是保证列车安全、快速、高效运行的不可缺少的综合系统。它主要由以下分系统组成:传输系统、公务电话系统、专用电话系统、广播系统、电视监控系统、电源系统、时钟系统和无线通信系统。这是一个复杂的大系统,各个部分互相结合、协调,以完成具体的功能。现代城市轨道交通之所以具有快捷、高效、可靠、安全等众多的优点,是与完善而先进的通信系统分不开的。城市轨道交通信息通信系统将向两个方向发展:一是宽带化趋势。为了提高各种业务的质量,势必要增加带宽。二是各种新系统的开发应用。为了不断完善城市轨道交通的服务,相应功能的分系统将不断融合入现有城市轨道交通信息通信系统中。本文将依次对城市轨道交通信息通信系统的各个分系统进行阐述,并分析其技术构成和发展趋势。

1  传输系统

传输系统是城市轨道交通信息通信系统的核心,它负责为各种应用业务提供通道。轨道交通系统的主要业务包括:语言、数据和图像。不同业务对系统的带宽、时延、可靠性等各不相同,这就要求传输系统有足够的灵活性和可靠性以保证各种业务的顺利完成。wWw.lw881.com业务按不同的类型可分为:车站-中心业务和邻站业务两种。

在轨道交通系统中,需要通信业务的一般是控制中心、车场和各个车站。由于车场和车站业务比较相似,可将其归为同一类业务。具体业务流程如图1 。

图1  通信系统业务流程示意图

图1 是逻辑上的业务流程示意图。在物理上为了保证传输系统的安全可靠,须采取环形组网的方案,以利于自动保护的需要。这样,控制中心连同所有的车站和车场组成一个自愈环,即使某段光纤坏掉,也可保证业务在备用通道上正常进行。其实现机制如图2 。图中,传输环一般有两个光纤环组成,当一个环中断时,系统自动跳到另一个环上, 即图a 情形;而当两个环在同一个地方断开时,则两侧的节点自动打环,形成如图b 的通路。

城市轨道交通信息通信系统可分为两部分:传输部分和接入部分。其模型如图3 。其中,传输层只负责提供各种通道,保证各种业务能安全可靠的从一个节点传到另一个节点;接入层需完成业务的接入和业务的汇聚两个基本功能;然后把汇聚好的业务交由传输节点完成传输。 技术将会在未来的城市轨道交通信息通信系统中被采用。

(1) 千兆以太网技术( ge) 。ge 与以太网、快速以太网兼容。ge 的实施具有直接、快速和千兆位的特点,设备便宜,传输距离长,可以满足城市轨道交通通信系统组网的要求[2 ] 。同时,原来以太网的不足,如多媒体应用无qos 、多链路负载分享、

图2  通信系统环形组网方案虚拟网等,随着新技术、新标准的出现已经和正在得到解决。10 gbit 以太网的出现和成熟也为ge 的升级扩容提供了强有力的支持。

(2) cwdm (粗波分复用) 技术。dwdm 技术已经成为大容量电信骨干网的首选,其优点是技术简单、大容量、易扩容等。而且随着dwdm 技术

图3  城市轨道交通信息通信系统模型图的成熟和广泛使用,它的价格也将逐步降低,其性

传输系统作为整个通信系统的核心部分,它的价比将更具优势。所以,当未来城市轨道交通通信技术选择十分重要。随着通信技术的不断发展,用带宽需求进一步提高的时候,dwdm 技术将是很于城市轨道交通的传输技术也不断的更新换代,尤好的方案。同时,由于考虑到城市轨道交通通信的其近几年通信技术的迅猛发展,为传输技术的选择实际需要, 可以选择成本更低, 使用更可靠的了提供了更广阔的范围。我国现在使用的各种传cwdm 技术。cwdm 的特点是波长数量较少(一输技术及其优缺点如表1 。般在4~12 波),波长间隔较大,价格便宜[3 ] 。最但是,随着通信新技术的涌现和成熟,随着轨后,随着各种新兴的电信技术的涌现和采用,城市道交通新业务的出现和带宽需求的上升,以下几种轨道交通信息通信也完全可以借鉴和运用。

表1  各种传输方式的比较

2  公务电话系统

城市轨道交通信息通信系统公务电话子系统, 是轨道交通运营控制的重要通信工具。一般公务电话系统根据轨道交通的规模具有不同的容量。通常情况而言,一个车站基本上为一个2mbit 通路(30 个电话) 。公务电话系统可设1~2 个交换局, 通常交换机置于控制中心,各个车站通过远端模块实现电话的接入。此时,需应用传输系统提供的2mbit 通道。

公务电话系统通过2mbit 中继线接入市局,并从中获取时钟。呼出可采用全自动dod1 方式,呼入采用部分全自动直拨did 、部分采用半自动接续bid(人工/ 自动话务员) 的混合进网中继方式或其它方式。考虑到与其它城市轨道交通系统的互连, 可采取2mbit 中继线连接的方式,为解决信令不一致可增加网关设备。近几年,交换机已趋于成熟, 公务电话系统的选择余地十分宽广,但要注意选择稳定可靠、扩容方便的交换机,以适应轨道交通的高速增长和话务量及其它业务上升需求。同时,也可考虑选择合适的电信运营商,由公共通信网以虚拟网方式解决,以节省建设投资与运营成本。

公务电话子系统还兼有其自身的特点 区间电话设置。区间电话用于列车司机或维修人员与有关单位进行联系及一般通话用。每隔300 m 左右设置一台户外电话机,1~3 台话机使用一个用户号码。轨道两边各敷设一条电缆,每3 个电话使用同一对线,同一个号,电话采用热线方式。

3  专用电话系统

专用电话子系统是调度员和车站(车场) 值班员指挥列车运行和指导设备操作的重要通信工具。行车调度直接关系到行车安全,需要设备高度安全可靠,操作方便快捷。专用电话系统由调度电话系统、站间电话系统、站内集中电话系统、紧急电话系统、市内直线电话等组成。调度电话系统中又分为:列车调度电话系统,用于控制中心列车调度员与各车站、车场值班员及行车业务直接有关的工作人员进行业务联络,并可兼管防灾调度系统;电力调度电话系统,用于控制中心电力调度员与各主变电站、牵引变电所、降压变电所等处工作人员进行业务联络;公安调度电话系统,构成公安指挥中心值班员与各车站(场) 警务值班室警官之间的直接通信联络,调度台一般设在控制中心内。站间电话是直接为行车服务的,要求能及时、迅速沟通相邻两车站的通话。相邻两车站值班员之间通话利用交换系统的热线功能提供,用户摘机即能及时、迅速沟通两车站值班室,站间电话由车站电话总机完成。站内集中电话类似调度电话系统,总机设在车站控制室,采用多功能数字电话机,分机设置在车站值班员所控制的部门,采用模拟电话机,系统功能由调度交换机及站内集中机功能来完成。紧急电话是在紧急状态下供乘客或车站工作人员使用, 每台电话都设置成热线电话,用户摘机即连接至车控室值班员数字话机上。在主变电所、控制中心至供电局调度之间可设置专线直通录音电话。在每个车站站长室和警务室各设置市内直线电话,控制中心和派出所设置市内直线电话。

专用电话系统由枢纽主系统和车站分系统两级结构组成。枢纽主系统和车站分系统通过数字传输设备提供2mbit 数字通道,将调度电话、站间电话、站内集中电话和紧急电话等业务综合起来, 便于安装、调试、使用、维护和管理。2mbit 数字通道同样由传输系统提供,考虑到专用系统的小容量特点,为了节约带宽,可采用多个车站组成一个2mbit 环合用一个2mbit 通道的方案。

4  广播系统

广播系统采用二级广播控制方式,由控制中心一级和车站一级组成。一般分为三个部分:控制中心广播系统,车站广播系统(可根据实际需要连接多个车站子系统),停车场广播系统。控制中心通过综合接入系统提供的rs 422 或rs 485 通道与车站广播系统互连。一般情况下,广播业务为中心到车站的点到多点业务,而中心对车站系统的监控维护通道则为点对点业务。

控制中心行车调度员和环控调度员可对全线各站进行监听及选站和选区广播。当轨道交通发生故障或灾害时,广播系统自动转为抢险通信设备。停车场广播系统由值班员、运转值班员和检修库值班员向工作人员播放车辆调度、列车编组等有关作业音讯。

车站广播系统由控制中心的总调、列调、防灾调(列调兼) 和各车站的正副值班员使用,为旅客播放列车到发信息、导向信息及紧急状态信息等服务音讯,为工作人员播放作业命令及管理音讯。车站广播区分为上行站台、下行站台、售票区、站厅、出入口和办公区等。车站行车值班员和环控值班员可通过广播控制台对本站区进行选区广播或全站广播。

5  电视监控系统

闭路电视监控系统作为一种图像通信,具有直观、实时的动态图像监视、记录和跟踪控制等独特功能,是通信指挥系统的重要组成部分,具有其独特的指挥和管理效能,已成为城市轨道交通实现自动化调度和管理的必备设施[ 5 ] 。

轨道交通电视监控系统为二级结构,分为车站一级监视和中心一级监视。车站摄像机输出的图象信号分成两路,一路送车站控制器,车站值班员可选择本站不同位置摄像机的图像。另一路送车站前端处理机进行图像编码、压缩,然后经传输系统送至控制中心,在控制中心解码后送至图像监视器。控制中心行车调度员可选择任一车站的任何一个摄像机的图像信号,也可将车站几路图像信号送至控制中心。彩色图像信号的传送一般采用mpeg-2 图像编码技术。

电视监控系统的传输为不对称传输,车站到中心传输图像信息,需要大带宽(2~6mbit) ;而中心到车站,只发送控制命令(图像选取和摄像机控制命令),为低速数据业务,只需采用rs 422/ rs 485 通道即可。充分考虑到图像业务的实时宽带性质, a tm 技术是目前最佳的传输机制,采用a tm 作为传输媒介传输数字视频,可以利用a tm 按需分配带宽、按需连接的特点,在保证图象质量(qos) 的情况下,大大节省所占带宽[ 1 ] 。

6  电源系统

电源系统是保证通信系统正常工作的必要条件,因此通信电源必须安全可靠。电源系统由配电设备、整流设备和蓄电池组成。系统配置不间断电源(u ps) 交流供电设备,为各自动控制系统的计算机提供不间断220 v 交流电压。u ps 的工作原理为:同时有两路市电输入,取其一路,当该路出现故障时,自动切换至另一路;当两路都出现故障时,启动蓄电池继续供电。

整个电源系统设有电源集中监控。在控制中心,所有u ps 将通过传输系统的低速数据通道进行信号传输,监控中心的计算机也将通过传输系统的低速数据通道进行信号采集,在监控中心计算机上装有软件,可实时监控到当前各个站点u ps 的状态及使用情况。各站点使用现场的u ps 和开关电源一旦发生故障,警铃将提醒现场有关人员进行及时的处理,同时在监控中心的计算机上同样可看到输出故障的警告显示。

7  时钟系统

为了统一整条城市轨道交通系统的时间,通信系统设有专门的时钟系统。时钟系统由gps 全球卫星标准时间接收单元、主控母钟、各站辅助母钟、子钟及传输设备组成。主、备gps 信号接收机向中心母钟提供同步时钟源。当gps 系统出现故障,还可以使用高精度的晶振供时钟源。主控母钟输出的标准时间信号通过接入网提供的低速数据信道(rs 422/ rs 485) 传给各站辅助母钟,以供车站各系统和子钟的使用。中心母钟产生精确的标准同步时间码,通过传输网提供给通信传输系统、无线系统、调度电话系统、公务电话系统、有线广播系统、电视监视系统、信号系统、售检票系统、防灾报警系统、设备监控系统、电力监控系统等。

8  无线通信系统

无线通信系统为行车调度员与司机、车站值班员与司机、司机与司机以及公安、环控、维修等用户提供移动通信手段。无线通信将主要采用数字集群式调度系统,信道集中控制方式。集群式调度系统由移动交换控制器、基站、中继器、漏泄同轴电缆、车载台、便携台和有线传输通道组成,可采用单基站大区制或多基站小区制。无线调度系统分为行车调度、环控调度、公安调度和维修调度等通话组。组间不能交叉呼叫,各组享有不同的优先权, 不同的无线用户也拥有不同的优先权。

参 考 文 献

1  timothy kwok. a tm the paradigm for internet , intranet , and residential broadband services and application. prentice hall ptr , 1998

2  david g. gunningham. 千兆位以太网组网技术. 北京:电子工业出版社,2001

3  (美) 卡塔洛颇罗斯基. 密集波分复用技术导论. 北京:人民邮电出版社,2001

城市轨道通信技术第4篇

【关键词】城市轨道交通 通信系统 通信技术 应用

为了缓解城市交通压力,我国大多数城市将交通建设的重点由传统的路面交通转向了地下或者路上的轨道交通,也就是我们常见的城市地铁、轻轨,这种轨道交通能够有效改善城市用地紧缺、交通压力大的问题,近年以来受到城市建设的青睐。除此之外,轨道交通作为城市交通的新型交通方式,随着科学技术的进步,其速度得到了极大的提升,更加方便了城镇居民的生产生活。地铁、轻轨还能够促进城市发展建设,极大地带动轨道交通周边地区的建设发展,更加充分了利用城市资源。

1 通信技术在城市轨道交通中应用的关键技术

1.1 通信技术的系统传输框架

通信技术应用于城市轨道交通中,首先需要建立一个通信传输系统,利用通信技术建立起点多点或者点对面的传输通道,综合数个传输通道建立起轨道间的通信连接,然后才能发挥出通信技术在轨道交通中的作用。轨道交通中的通讯系统是利用远程客户端与中央控制中心的信息交换机相互连接,对公务电话中各个车站或者站点进行数字模拟技术的处理,完成通话功能,然后在实现公务电话的外线联通业务。公务电话系统能够实现控制中心中不同调度台对各个站点发出调度指令,从而使得控制中心与车站、站点之间的语音通信得以完成。另外视频监控工作系统则是能够实现控制中心中的二级控制网络系统对某一车站中的某一个监控图像进行调用时,利用控制中心或者车站的操纵装置就能够有效控制显示屏幕,简便操作。广播系统可以实现控制中心和车站之间的二级控制,通过广播控制台直接发送紧急广播或其他广播信息,除此之外,根据控制中心收到的ATS指令分析各列车的运行情况,对各车次列车的运行情况、到站、离站信息予以自动播放,如此可以更加充分的掌握好列车的运行信息。

1.2 设计通信接口

通信传输系统作为轨道交通中必不可少的组成部分,信息传输系统需要满足能够充分掌握通信发展方向和为轨道交通安全性能保驾护航的两大要求。基于轨道交通中的通信业务极为复杂多样,通信接口作为通信传输系统中连接工具就显得尤为重要。如何设计通信接口,将直接影响到通信传输系统的运行、轨道交通的安全等等方面。因此,为保证城市轨道交通良好运行的要求,要求随时对通信技术进行更新处理。通讯传输系统最好的选择是目前较为成熟的IPoverSDH,SDH传输系统具备诸多优点,比如稳定可靠、通讯灵活、适用性强,不过SDH对多点与单点之间传送信息效果方面还是差强人意。为了弥补传送效果差的问题,技术人员可以采用PI技术,利用PI技术的优点对此缺陷进行有效的弥补,综合两种技术实现技术互补,因为可以利用其它技术进行缺陷弥补,且技术本身又有着诸多优点,IPoverSDH技术已经逐渐成为城市轨道交通中通讯系统的首选技术方案。具体来说,SDH传输技术中的SDH传输网的基础构成单位是一个一个的网络单元,通过光纤、卫星信号或者微波进行信息的同步接受和传输,网络单元的基础功能就是能够接受、传输、交换信息,通过各网络单元形成传输网,达到传送信息的目的,是一种可以进行网络统一管理的信息传输网。SDH通讯技术以很好的完成科学管理城市轨道交通网络的要求,除此之外还能够完成动态网络的维护工作、业务工作的实时监控等功能,有效提高网络资源的有效利用率,最大化地满足城市轨道交通中队通讯传输的要求。由此可见,只有真正提供城市轨道交通中的通讯水平,利用先进性的通讯技术、通讯网络,才能够加倍做好通讯网络传输系统,更好的服务于城市轨道交通运行,更好的服务城市市民的生产生活。在SDH技术的实践应用过程中,利用此种技术可以满足多种业务信息同时传输的要求,利用传输网、传输通道将各个车站、停车场的信息向其他站点或者控制中心传输,或者将控制中心的信息传输至各个车站、停车场,实现信息的及时传送和转接。

2 通信技术在城市轨道交通中的具体应用

城市轨道交通作为新型的交通方式,不同于在路面上行驶的自由车辆,因为轨道交通需要在特定的轨道上才能运行,并且由于轨道交通是为了缓解城市交通压力而应运出现的交通工具,主要就是指的城市地铁与轻轨,轨道所在的位置都是地面下部开通的地下通道或者地面上部架起的各种轨道大桥等等。基于轨道交通的特殊性,城市轨道交通均是采用定点停车、定时停车的方式,因此在轨道交通车辆运行过程中,保持良好的通信,进行信息的沟通交通显得十分重要。需要保证城市轨道列车运行的安全,就必须要依赖于良好的通信系统,通过通信技术进行信息交换、指令、运行调度等等工作,满足城市居民的交通出行需求。正是基于轨道交通对通信技术的高度依赖,使得最好最先进的通信技术均在轨道交通中得到大量的广泛性应用。大量的通信网络系统的建立,使得信息得以有效、大量的传输,也就形成了一个巨大的交通信息网络,对信息网络进行科学有效的区分整理,使其更好的服务于轨道列车的运用。除此之外,通信技术需要和计算机网络进行紧密结合,两者共同作用才能完成城市轨道交通中的管理通信系统,为轨道交通提供各类信息、图像、文字、信号等的传输功能。

3 结语

综上所述,城市轨道交通的快速崛起,不仅是因为轨道交通适用于交通压力巨大的城市交通,还依赖于先进的通信技术。没有高科技的通信技术为城市的轨道交通保驾护航,就不能真正的保证城市轨道交通的安全运行。尽管如今的通信技术随着科学技术的发展已经达到了现代化轨道交通所要求的水准,但是我们还是应该更加努力研究轨道交通通信技术,使得更好的通信技术为城市轨道交通服务,为广大城市居民的生产生活服务,为城市的发展服务,更好的用轨道交通促进城市的快速进步和发展。

参考文献

[1]钟治国.通信技术在城市轨道交通中的应用[D].上海海运学院,2003.

[2]张振兴.城市轨道交通中的列车定位方法研究[D].北京交通大学,2008.

[3]邢桂芳.通信技术在城市轨道交通中的应用[J].科技风,2011(11):38.

城市轨道通信技术第5篇

【关键词】城市轨道交通;移动通信技术;车地无线通信;交通控制

1城轨交通车地无线通信现状

城市轨道交通控制是基于CBTC实现的列车自动化控制系统,通过实时监控列车运行状态,控制列车安全行驶。因此,车地无线通信就决定了CBTC运行的稳定性与可靠性。当前地铁车地无线通信网络的实现,主要是采用是基于IEEE802.11标准的WLAN技术,主要存在以下问题:

(1)系统稳定性低

WLAN无线网络单站点AP覆盖范围有限,最多不超过200米,所设站址较多,从而造成隧道内维护困难,在高速移动情况下无法保障数据传输的质量。

(2)抗干扰能力弱

地铁WLAN无线通信没有专用频段,只能使用免费开放的2.4GHz和5.0GHz公共频段,干扰源太多,干扰太大,也许一个普通手机用户的手机热点都可能对WLAN的传输质量产生影响

(3)数据传输带宽受限

随着城轨信息化的发展,无线通信领域对数据传输带宽提出了新的要求。车内旅客信息系统(PIS)要求车地通信能够提供单车6~8Mbit/s的下行传输带宽,CCTV监控系统要求能够为单车提供4~6Mbit/s的上行传输带宽。在保证CBTC列车控制信息正常传输的基础上,满足上述PIS、CCTV业务数据的传输,对现有的WLAN通信系统提出了新的要求。

(4)数据传输安全性低

由于WLAN采用公共电磁波作为载体进行数据传输,任何人都有条件和可能窃听或干扰信息,存在电磁波泄露或者数据被截听的安全隐患。因此,对于WLAN的安全保密问题显得尤为突出。

(5)组网成本高

城轨车地专用无线通信业务主要分为三部分:以TETRA为代表的语音调度业务;保障CBTC系统运行的WI-FI网络;车载PIS(乘客信息系统)与CCTV(闭路电视)的专用WI-FI网络。这三种业务彼此独立,各自单独组建网络,所建成本较高,不利于轨道交通业务的长期发展。

2移动通信技术

(1)第一代移动通信技术

第一代移动通信技术产生与上世纪80年代,是最初的模拟蜂窝网络标准,称为FDMA(频分多址)技术。第一代移动通信技术的一大成就就在于用户第一次能够在移动的状态下拨打电话,但是它们只能提供基本的语音会话业务,不能提供非语音业务,并且容量有限、制式太多、互不兼容、保密性差、通话质量不高、不能提供数据业务和漫游业务等,上世纪90年代就基本被淘汰了。

(2)第二代移动通信技术

也称为2G通信技术,是为解决第一代移动通信四分五裂的局面而提出来的数字蜂窝网络技术,其数字无线标准有:GSM和CDMAIS-95。第二代移动通信系统在引入数字无线电技术以后,数字蜂窝移动通信系统提供了更好的网络技术,不仅改善了语音通话质量,提高了保密性,防止了并机盗打,而且也为移动用户提供了无缝的国际漫游。

(3)第三代移动通信技术

第三代移动通信技术简称3G,它是一种真正意义上的宽带移动多媒体通信系统,它能提供高质量的宽带多媒体综合业务,并且实现了全球无缝覆盖,它的数据传输速率高达2Mbit/s,其通信容量是第二代移动通信技术的2-5倍。目前,最具代表性的3G标准有有美国提出的CDMA2000,欧洲和日本提出的WCDMA以及中国提出的TD-SCDMA。

(4)第四代移动通信技术

第四代移动通信同样被称为4G技术,它是3G技术的进一步演化,是基于LTE标准(长期演进技术)之上,为我们提供高速移动的网络带宽业务,它的最高无线传输速度可达每秒100Mbps。4G是集3G与WLAN于一体,并能够快速传输数据、高质量、音频、视频和图像,并且能够满足几乎所有用户对于无线服务的要求,有着不可比拟的优越性。

3移动通信技术在城轨交通车地通信中应用的优势

(1)多种网络覆盖方案,提高系统稳定性

移动通信站点是通过基站进行无线网络覆盖,单个分布在隧道的基站覆盖范围可达1.2km。另外,基站的组网设置原则比较灵活,依据列车的运行速度设置基站的安装位置,增大或者减少基站网络覆盖的重叠长度,可保证高速环境下成功的进行越区切换,提高数据传输的稳定性。

(2)使用专用频段,无线网络抗干扰能力强

移动通信技术采用的是专用频段,不同于WLAN的公共频段,其干扰源少,抗干扰能力强,保证了数据传输的可靠性。

(3)蜂窝网络技术,数据传输容量大

移动通信技术也称为蜂窝网络通信,通过设置基站,划分小区,成百上千倍地增大了频率的空间复用率,极大提高了数据传输量。另外,LTE技术的应用,为第四代移动通信技无线宽带业务提供了技术基础,使得无线传输速度可达100Mbps/S。

(4)多种数据加密方式,数据安全性高

移动通信的鉴权中心主要有两个功能:一是对用户的IMSI号进行鉴权,防止非本网络用户接入网络;二是为无线路径上的通信数据进行加密,保证了通信数据的安全性。

(5)网络功能强大,降低组网成本

移动通信网络具有多种业务功能,除了基本语音通信业务之外,也可实现高速传输数据、音频、视频和图像等大数据量业务。因此可完全替代TETRA集群通信和WLAN网络,实现语音调度业务,保障CBTC系统运行和车载PIS与CCTV的专用车地通信无线网络,避免单独建网,降低组网成本。

4结语

无线通信系统是城市轨道交通车地通信的命脉,它直接影响着城轨控制系统的稳定性与可靠性。基于移动通信系统技术的优势以及良好的发展形式,移动通信车地通信系统的优越性也值得我们去关注和研究,为城轨交通业务的发展需求提供强大的技术支持。

参考文献:

[1]李春.城市轨道交通车地宽带移动通信技术选择分析[J].城市轨道交通研究,2009(6):73-74.

[2]甘玉玺.轨道交通车地无线通信技术研讨[J].城市轨道交通研究,2014(1):103-106.

[3]张定铭.轨道交通车地宽带无线通信系统研究[J].信息通信,2014(2):168-169.

城市轨道通信技术第6篇

我国城市轨道交通随着经济发展和科技进步,正在不断的建设和开拓,当前已进入快速发展阶段,其舒适度和安全性成为社会各界十分关注的一个重要问题。①当前乘客并不满足于少量单一类型的声音和文本信息等服务,为了满足广大乘客的需要并吸引更多的乘客,城市轨道交通建设迫切的需要提高自身信息化服务的水平;②国外城市轨道交通频繁出现恶性事件,这就要求地铁和列车都要有相应的监控设施,以保证城市轨道交通现场的情况能够被清晰记录并及时传达,这就需要较高速率的传输通道来满足车载视频信息的传送。由此可以看出,为了确保城市轨道交通的管理工作和服务质量的高水平,城市轨道交通对于车地无线通信系统提出了较高要求。

2无线传输技术介绍

城市轨道交通车地无线通信系统作为车辆和地面之间进行信息传输的通道,可为视频监控系统和乘客信息系统提供车站和车辆之间,乃至控制中心之间的无线传输媒介,是一种传输网络的延伸。除此之外,车地无线通信系统还要求具有较高的可靠性,支持列车在运行速度达到80km/h或者比其更高速度之下的视频信息和多媒体信息的可靠传输,整个系统进行实时传输过程中应能有效的避免黑客和非法信息的侵入,确保整个信息播出时的安全和可靠。当前主要的无线传输技术主要有以下几种:

(1)TETRA、GSM、CDMA:这几种为非常成熟的无线传输技术,应用较为广泛,但是,这三种技术对于车地无线通信系统来说,都满足不了其所要求的传输速率。TETRA其上行速率大约为几kb/s,下行速率大约为几十kb/s,GSM和CDMA的运行速率大致相同,其上行速率和下行速率分别为十几kb/s和几十kb/s。

(2)3G的传输速率与CDMA、TETRA、GSM相比,其在数据的传输速率方面已经有了大幅度的提高,在低速运行状态时的下行速率可以达到几百kb/s,上行速率可以达到几十kb/s;静止状态下的下行速率甚至可以达到2Mb/s。尽管如此,3G的传输速率仍然不能满足车地无线通信系统的需求。

(3)TRainCom-MT是德国得力风根公司专有的车地无线通信技术,其应用领域主要是面向城市轨道无线通信技术,其也是为了城市轨道车地无线交通系统特别研制和发明的。其可以支持高速移动环境下,车地双向无线通信最高达到16Mb/s的传输速度。TRainCom-MT作为一项非标转化的无线传输技术,此系统的协议并不具有开放性,因此,整个系统相关的升级、二次开发与维护都需要依赖技术的开发部门和持有公司,即该项技术只能由德国得力风根公司进行,因此,也就决定其具有较差的市场维护和选择性。

(4)WLAN作为一项宽带的无线传输网络技术,与其他技术相比,具有宽带化、网络化等优势。其目前具有的标准也多样化,例如,其具有802.11a,其工作频段在5.8G,传输的速度一般也可以达到54Mb/s,具有干扰较少的特性,除此之外,一般在5.8G频段的无线传输技术具有非免费开放的特点,因此需要进行申请;802.11b,其工作频段在2.4G,传输速度一般最高能达到11Mb/s;此外,802.11g其工作频段也在2.4G,其主要采用了OFDM调制技术,其数据传输速度同样可高达54Mb/s。WLAN作为一种宽带无线传输网络系统,虽然具有较大的通道带宽,但是其覆盖范围不能满足车地无线通信系统的需求,轨道AP在直线隧道一般每隔二百米就需要进行无线网路设置,导致系统切换和调制较为频繁;同时,与公用WLAN技术采用相同的频段也使得其安全性无法得到有效保障。

(5)WiMax(802.16),即802.16无线域网,其已在2007年10月成为新的3G标准中的一员,当前其主要具有802.16d固定宽带无线接入标准和802.16e支持移动特性的宽带无线接入标准。802.16无线域网采用了未来通信技术OFDM、OFD-MA、MIMO、AAS等先进技术,OFDM、MIMO、AAS,OFDMA也是未来通信技术的发展方向,其最高可达到70Mbps的传输速度,数据传输的距离也达到了50km,除此之外,还具有应用频道较宽、Qos制度完善、业务丰富灵活、频谱利用较高、灵活分配宽带等优势。尽管如此,WiMax技术还是存在高速移动中无法达到无缝切换的最大问题;同时,受制于产业链的发展缓慢等因素,都使得WiMax技术并未得到广泛的推广和应用。

(6)LTE无线传输技术,其主要是3G技术的不断演进和改善,其也是当前3G和4G技术的过渡阶段,作为3.9G的全球无线标准,其在市场上受到了极力的推广,大部分国内外的厂商也对LTE技术给予很大的期望。其主要是改进和增强了当前3G中的空中接入技术,同时也是目前众多无线传输技术之中,少数几个引入OFDM和MIMO概念的技术之一。与3G相比,其还具有延迟降低、极高数据传输速度、分组传送、向下兼容和光域覆盖等技术上的支持和优势,因此,也被作为3G向4G的主流技术的转变,主流运营商一般也都采取LTE技术标准。因此,通过对比以上几种目前较为成熟的无线传输技术,分析得出目前LTE无线传输技术应用在城市轨道交通车地无线通信技术中,能够提高信息的传输速度,实现大数据量信息的共享,完善并解决了车载视频监控系统实时数据传输难的问题,有效保障了信息的及时性和可靠性。

3LTE技术在城市轨道交通车地无线通信系统中的应用

为了从根本上解决城市轨道交通车地无线通信系统中的干扰问题,保证数据通信不断的稳定工作和系统的可靠,只能通过采取优秀的无线通信技术来达到技术上的解决和完善。工作者根据对城市轨道交通车地无线通信系统的相关研究发现,城市轨道交通无线通信系统主要具有:高效的数据业务传输效率、较低的数据业务传输延迟、较高的可靠性、良好的移动性能等特点。LTE技术主要应用在城市轨道交通车地无线通信系统中,具有如下的特点:

(1)LTE系统采取了扁平化的组织方案,具有较为简化的组织网络结构,因此,减少了网元的数量、系统的可靠性也较高。

(2)LTE技术的数据频谱的利用率也较高,数据业务速率也较强,优于TETRA、WIFI、GSM-R等技术。

(3)LTE技术系统扁平化的组织结构,也有效的缩短了两端之间的传输效率,使得信息及时传输,更加满足了城市轨道交通信息传输的实时性和共享性,能够满足城市轨道交通车地无线通信系统的应用需求。

(4)LTE技术可支持列车移动速度达到350km/h的移动传输性能,而目前城市轨道交通行车一般不会超过100km/h的速度,否则会导致移动数据传输性能下降,但是LTE技术却避免了此项不足,使得移动状态下,也能较好的进行数据传输,同时也为未来列车提速创造了有利条件。

(5)LTE技术还具有频谱较为灵活的特点,可以适应不同大小频率的频谱分配,使其在不同频谱中进行分配和部署。车地无线通信技术在隧道中都设置有天线,也可以采用商用的通信泄漏电缆实现信号覆盖。隧道内的单个RRU覆盖可以达到1.2km,提供更为稳定的覆盖面积。而通过多个RRU共小区,可以减少由于更新和切换,导致的信息传输的延迟和抖动,甚至丢失的情况,保证城市轨道交通高速度切换下带宽和频率的稳定。

4结语

城市轨道通信技术第7篇

[关键词]城市轨道交通;信号系统;关键技术;分析

城市轨道交通信号系统在当今社会中发挥着重要的作用,是轨道交通发展中必不可少的科研成果。随着科技信息技术高速发展,列车对信号系统要求越来越高,不仅表现在安全方面,同时还表现在效率方面,都需要信号系统具有较强的技术基础,为此,下文对城市中城市轨道交通信号系统的关键技术进行深入研究。

1城市轨道交通信号系统

1.1城市轨道交通信号系统在生活中的作用

城市轨道交通在实际运行中具有舒适性、不间断性、准点性等特点,基于城市轨道交通的这些特点,在城市轨道交通系统中采用轨道交通信号系统能够将信号设备的作用充分发挥,达到事半功倍的效果。从世界上先进的轨道交通运营中发现,只有高水平的信号系统,才能够在交通中实现提高列车运行的效率,并且安全性能比较高[1]。

1.2城市轨道交通信号系统特征

第一,城市轨道交通中所承担的客流量比较多,基于安全角度考虑,对于行车之间的最小行车间距要求比较高,进而对列车的速度监控提出了较高的要求,其主要的目的就是为了实现列车运行中的安全保障。第二,对城市轨道交通运输速度进行分析,城市轨道交通运行中的实际速度与铁路干线相比,数值上相差很多,所以,在实际的城市轨道交通信号系统中,不需要数据传输较快的信号系统,只需要传输速度较低的系统就可以实现信号传输功能;第三,由于在城市中,列车的运行间隔比较小,运行中所展现的规律性比较强[2]。

2城市轨道交通信号系统设计情况

由于我国在城市轨道交通信号系统研发中起步比较晚,与国际水平间存在一定的距离。在城市轨道交通信号系统建设阶段,由于在各项技术上,外商对信号系统设计的核心技术掌握着主动权,因此,在国内市场中,不得不对信号系统进行比较长时间的调试;在信号系统的运营阶段,进口设备在实际运行与维护上存在很多障碍,一些比较轻微的故障就需要外援,并且设备在实际运行中的风险比较大;在建设阶段,对于网络化比较复杂的城市,存在多种形式的信号系统,因此,在实际的信号系统投入使用中,要想实现多元化网络系统的实际使用,需要在多种线路中进行线路互联,但是该种方式在某种程度上严重影响了资源的共享[3]。

3基于LTE技术的城市轨道交通信号系统技术分析

3.1LTE技术概述

LTE技术是当今比较适用的交通信号技术,该项技术在实际城市轨道交通信号系统中能够实现高传输速率,低时延,并支持信号系统中的多种功能,支持广播组的播出业务,具有无线接入架构。LTE技术的主体性能为:在20MHz频谱带宽条件下,技术系统能够提供上行、下行分别为100Mb/s和50Mb/s的峰值速率。实现的城市轨道交通覆盖率达到了100Km。为了实现更加优化的功能,LTE系统中采取一种网格化结构,集成了适用于宽带移动传输的众多先进技术。LTE技术优势有很多,能够实现传输效率高、频谱使用灵活等功能[4]。

3.2LTE技术与WLAN技术性能对比

第一,在项目干扰方面,LTE技术能够申请比较专业的频段,有效避免外部设备的信号干扰,并且由ICIC来解决系统内部干扰。但是WLAN技术在该方面采用的是开放性的频段,信号很容易受到外部的干扰。从技术的可维护性上进行分析,LTE技术在网元上的数量比较少,实现无线覆盖距离比较远,城市轨道交通轨旁设备之间的距离比较大。在WLAN技术下,其信号覆盖距离比较短,每200米就需要设置无线设备,后者在维护比较困难;从移动性上进行分析,LTE自动频率校正技术性能比较高,能够保证信号平稳。而WLAN只适合于低速环境;从技术的服务质量上进行分析,LTE技术支持优先级的设置,能够保证信号系统的无线传输,但是WLAN技术却不能实现信号系统的优先级。

3.3LTE信号系统在城市轨道交通中应用

随着科技不断发展,LTE技术在城市轨道交通中的应用越来越广泛,LTE技术在诸多个城市轨道交通中应用。信号系统主要涉及的问题就是安全,无线信息系统要想实现稳定性以及可靠性,对于信息系统的要求比较高。信号系统在进行通讯传输时实时性要求比较高,而在PIS系统中,无线通信传输要求比较低,但是在宽带方面的需求比较大。两者在技术需求上的方向不同,因此,不能单一的将PIS系统中的LTE技术灵活应用到城市轨道交通信号系统中来[5]。2014年,在北京地铁指挥中心的支持下,多家信号厂商对LTE技术在信号系统中的实际应用进行现场测试,希望能够通过专业的技能检测,促进城市轨道交通信号技术发展。在现场测试中,具有代表性的厂商有华为、中兴、普天等,通过这些厂商对LTE技术的实际测试,得出结论,并提出LTE技术在信号系统中应用的测试结果:第一,从延时方面,其传输时延的测试结果为10~25ms,其中最长的延时为106.5ms;第二,从信号方面,信号丢包率上下行均为0.005%以下;切换延时为34~46ms左右,其中最长时间为135ms;15MHz频宽的平均吞吐量为,上行11Mb/s,下行19Mb/s。在实际的测量下,LTE技术能够完全满足信号系统在无线传输中的要求。在频率信息选择上,工信部了与无线接入系统频率使用的相关事宜,对城市中轨道交通的申请使用提供支持以及肯定,换言之,城市轨道交通单位可以使用该频段,并获取得该频段的使用权。民用手持设备中,对于信号的频段占位将不会影响频段的使用。与WLAN的开放频段相比,专用频段能够有效缓解外部信息的干扰。LTE技术逐渐成为移动通信发展中的关键技术,在城市轨道交通信号系统中发挥着重要的作用。

4结论

本文中所介绍的城市轨道交通信号系统,在轨道交通行业发展中作用突出,是城市轨道交通的主力军。在科技不断发展的进程中,城市轨道交通信号系统与科技相结合,逐步实现智能化与科技化。本文立足于城市轨道交通信号系统的作用、特点,针对目前我国城市轨道交通信号系统的发展近况,对相关问题进行分析,为信号系统中的关键技术的发展研究提供了一定的帮助。

[参考文献]

[1]刘晓娟.城市轨道交通CBTC系统关键技术研究[D].兰州交通大学,2009.

[2]王飞杰.城轨CBTC智能调度指挥系统关键技术的研究[D].北京邮电大学,2011.

[3]阚庭明.城市轨道交通乘客信息系统关键技术研究[D].中国铁道科学研究院,2013.

[4]王东.轨道交通信号系统仿真测试与验证技术研究与应用[D].浙江大学,2014.

城市轨道通信技术第8篇

【关键词】城市轨道交通;通信技术;传输系统

前言

21世纪科学技术的飞速发展和城市化进程的不断加快,城市交通的压力剧增,而轨道交通的出现有效缓解了地面交通压力,实现了短途的快捷运输。在轨道交通系统中,城市轨道交通通信系统是直接服务于轨道交通运营和管理的,不仅是轨道交通正常运转的保障,也是其他重要系统的传输通道。轨道交通通信系统在提高轨道列车的工作效率和自动化程度上发挥着重要作用,使各部门之间得以密切联系,在很大程度上使列车安全快速的运行的得到了保证。城市轨道通信系统包括众多的子系统,主要有传输系统、电源系统、专用电话系统、公话电话系统等。各子系统之间的密切配合实现了整个大系统的正常运行。未来,城市轨道交通通信系统将以促进城市轨道交通健康发展、优化轨道交通服务为目标,主要从宽带化、新系统的开发及应用两个方面出发进行创新发展。

1 我国城市轨道交通通信系统技术的应用及研究现状

城市轨道交通通信系统的正常运行是实现轨道列车正常、快速、安全、准点以及高效率运行的重要保障。目前,我国城市轨道交通通信系统在城市轨道交通的各方面得到了有效的应用,达到了城市交通系统和交通通信系统的高度契合。轨道交通通信系统由众多子系统组成,除了主要的传输系统、电源系统、专用电话系统、公话电话系统,还包括广播系统、闭路电视系统、时钟系统、数据通信系统、报警系统、自动售票系统、管理系统、综合布线系统、报警系统等。这些子系统覆盖在城市轨道交通系统的各个方面、各个工作层次,全方位地为城市轨道交通系统服务。其中,传输系统是所有子系统中的核心和骨干,承担着及时、高效地传递各种重任,是其他子系统正常工作的前提。随着城市化进程的加快,城市轨道交通的发展也出现了变化,不仅发展方向越来越多样化,还出现了大中运量并存、市郊线同在的局面,这无疑为城市轨道交通系统尤其是交通通信系统提出了挑战。为了适应城市发展的要求,为城市化建设服务,就需要从研究创新交通通信技术出发,进一步提升我国城市轨道交通的整体技术水平。

2 通信技术在城市轨道交通中的应用

2.1 WLAN局域网

WLAN(WirelessLocalAreaNetworks,局域网)的多媒体信息传输技术基于802.11协议族,IEEE802.11a规定WLAN的频点为5GHz,数据传输速率为1-2Mb/s是一种适用于室内移动环境的通信技术。当前我国诸多城市的轨道交通都采用WLAN标准和技术,但是WLAN通信技术在接入更多的子系统时会存在许多问题。例如在WLAN通信系统中介入CCTV和VOIP电话,会影响通信系统整体容量以及性能。

2.2 3G技术

3G(第三代移动通信技术)具有TD-SCDMA、CDMA200和WCDMA三种不同的制式,3G技术不仅可以对音频等多媒体形式进行处理,还能为客户提供电子商务、网页浏览和电话会议等多种服务。其中,3G数据服务的重点是多媒体业务,因而3G技术必须具备较高的传输速率才能要求。高速移动中的多媒体业务要求3G技术的传输速率必须达到144kb/s,满移动和静止状态下的3G技术的传输速率则需分别达到384kb/s和2Mb/s。虽然3G技术的高速、慢速和静止状态下的传输速率较高,但仍不能满足车载CCTV和PIDS系统(乘客信息显示系统,passagerinformationdisplaysystem)对通信技术传输速率的要求。此外,3G技术属于公网应用的范畴,因此城市轨道交通的通信技术不适合采用3G技术。

2.3 Wi-Fi技术

Wi-Fi(WIreless-Fidelity,保真技术)和蓝牙技术有一定的相似性,Wi-Fi也属于短距通信技术。例如CBTC,它是基于802.11b网络规范,频点在2.4GHz左右浮动,其最高的宽带可达到11Mb/s。如果存在一定的干扰或者Wi-Fi信号较弱,CBTC的宽带可降低至5.2Mb/s和1Mb/s。Wi-Fi通信技术具备的自动调整功能使Wi-Fi通信技术的稳定性和可靠性更强,而且Wi-Fi通信技术的可兼容性也较高,可兼容各种802.11DSS直接序列设备。此外,Wi-Fi通信技术的具有速度快和可靠性高的特点,使Wi-Fi通信技术在开放性区域的通信距离和封闭性开放区域的距离可分别达到300m和120m以上,与现有有限以太网的的整合更加便捷,组合成本也大大降低。

3 我国城市轨道交通通信系统的发展趋势

我国正处在高速城市化的进程中,低碳、节能环保以及创新是目前经济发展的主要形式,城市轨道交通也应在这个趋势中得到更快的发展。目前,由于各地的实际情况不同,对于城市轨道交通通信系统的要求也不尽如一,但是总体的发展趋势上应该还是具有相当的共同之处。

(1)安全性将成为首要评估标准。更多利用RAMS(可靠、可用、可维修、安全)标准对轨道交通通信网络进行评估和管理。根据RAMS标准对整个轨道交通通信系统及其子系统进行设计、建设和管理。将各系统中的故障降到最低,满足整个通信系统的的安全可靠性。

(2)数字集群通信系统TETRA将更广泛地被使用。这种技术经过了长期的发展和实践,在指挥调度、通信管理方面有着比较明显的优势,而且其技术已经非常成熟,应该成为我国城市轨道交通通信中的主流技术。该技术与全PI网络、政府应急网络以及控制器和车载核心设备之间的联通,可以在提供更加高效、准确通信服务的同时,节省建设成本。目前我国采用的TETRA系统大部分都是从国外引进的,为了支持我国各地地铁项目的快速发展,在引进消化基础上,我国应该加强对TETRA系统自主知识产权的研发,在数字集群控制器、基站、交换机和车载台等核心部件的研发和生产上取得突破,尽早打破国外企业在数字集群通信系统的垄断局面。

(3)传输系统是通信系统的骨干网,既要考虑发展的方向,又要考虑交通的安全,还要考虑交通通信业务的多样性、复杂性而对通信系统业务接口的要求,因此传输系统选用PIoverSHD和综合业务接入相结合也是未来地铁通信系统发展的趋势。

(4)提供更多地人性化服务。城市轨道交通系统所提供的是最基础的城市公共产品,要满足绝大多数城市居民出行的需求,也是轨道交通通信系统未来发展和优化的重要空间。在目前,许多城市的轨道交通已经增设了wifi网络的覆盖、移动安全监控、乘客身份识别追踪系统等既能提高乘客乘坐体验,又能增添轨道交通运行可靠性的人性化服务。在今后的发展中,随着技术的进步,通过对视频、图像、时钟和广播系统的优化等技术的广泛利用,一定能为乘客提供更多地可选择,提高乘客体验,综合提高城市轨道交通的服务质量。

4 结束语

综上所述,通信技术在城市轨道交通中发挥着重要作用,作为关键部分的传输系统更起着传输的用。随着轨道交通的增多,其技术要求也不断提升,通信技术在城市轨道交通中的应用也受到人们的广泛关注。

参考文献:

[1]高E,韩晓亮,刘培欣,杨志华.地铁通信系统建设方案研究[J].数字通信,2014(01).

[2]薛连斌.地铁通信系统现状及发展趋势研究[J].中国新通信,2014(17).

城市轨道通信技术第9篇

Abstract: This paper starts from the composition of urban rail transit engineering communication system, combs the cost composition and proportion of communication system, analyzes the technical and economic indicators of each subsystem and the main factors influencing the indicators, and provides reference for the follow-up project.

关键词:城市轨道交通工程;通信系统;技术经济指标;分析

Key words: urban rail transit engineering;communication system;technical and economic indicators;analyze

中图分类号:U239.5 文献标识码:A 文章编号:1006-4311(2017)22-0055-02

1 概述

城市轨道交通通信系统是一个适应城市轨道交通运输效率、保证行车安全、提高现代化管理水平,并能迅速、准确、可靠地传递语音、数据、图像和文字等各种信息的机电系统。

通信系统由专用通信系统、公安通信系统、民用通信引入系统组成[1]。

专用通信系统包括传输系统、无线通信系统、公务电话系统、专用电话系统、视频监视系统、广播系统、乘客信息系统、时钟系统、办公自动化系统、电源系统及接地、集中告警系统等子系统。

公安通信系统包括公安视频监视系统、公安无线通信引入系统、公安数据网络、公安电源系统等子系统。部分城市根据公安部门的要求增设了公安传输系统。

民用通信引入系统包括民用传输系统、移动通信引入系统、民用电源系统等子系统。

2 总指标及费用比例

通信系统由专用通信、公安通信及民用通信引入系统三部分组成。由于4B、6B、6A、8A等4种编组类型车站规模不一样,导致各项目通信系统正线公里指标存在一定差异。

目前约100多个在建或规划建设城市轨道交通的大中型城市主要采用6B编组,本文以6B编组的通信系统作为分析对象。工程实例经历了实践检验,具有代表性。合肥市轨道交通3号线为6B编组,线路全长37.20公里,设站33座,站间距1.16km,设车辆段及停车场各1座,其通信系统包括专用通信、公安通信及民用通信引入系统3部分,是6B编组通信系统的典型代表,其初步设计概算费用及指标如表1所示,编制期为2014年10月。本文以合肥市轨道交通3号线通信系统为例,分析通信系统的主要技术经济指标、费用组成及比例。

各城市对民用通信引入系统是否纳入城市轨道交通投资做法不统一。有些城市,例如武汉,民用通信引入系统由运营商自行建设、维护,费用由运营商承担,不纳入城市轨道交通投资,有些城市,例如合肥,民用通信引入系统由地铁集团建设、维护,费用纳入城市轨道交通投资。

通信系统费用一般由专用通信、公安通信及民用通信引入系统3部分组成。专用通信、公安通信及民用通信引入系统分别占通信系统费用的60%、20%、20%,如图1所示。

3 主要技术经济指标

合肥轨道交通3号线通信系统指标为1552.76万元/正线公里,通信系统指标主要受站间距、公安系统方案、民用通信引入系统是否列入、线路敷设方式、移动通信新技术等因素影响。一般6B编组城市轨道交通工程通信系统指标约为1450万元/正线公里,较合肥轨道交通3号线低,主要原因是其站间距较合肥轨道交通3号线大。

3.1 专用通信系统

专用通信系统费用指标约为930万元/正线公里,指标主要受站间距等影响,其指标如表2所示。

3.2 公安通信系统

公安通信系统指标约300万元/正线公里,公安通信系统指标主要受站间距、公安通信系统方案等影响,其指标如表3所示。

3.3 民用通信引入系统

民用通信引入系统指标约为320万元/正线公里,主要受站间距、线路敷设方式及移动通信新技术等影响,其指标如表4所示。

4 指标分析

通过费用组成及比例分析,得出专用通信、公安通信、民用通信引入系统分别约占通信系统费用的60%、20%、20%。

专用通信系统方案比较稳定,主要设备是影响其指标的关键因素;公安通信系统指标主要受系统方案影响;民用通信引入系统指标主要受线路敷设方式、移动通信新技术影响,因此,公安通信系统方案、线路敷设方式、移动通信新技术等是影响通信系统指标的重要因素。

4.1 公安通信系统指标分析

公安通信系统指标与系统方案有关。以公安视频监视系统为例,公安通信系统视频监视系统的服务器、存储设备、摄像机可以与专用通信系统视频监视系统共用,也可以独立设置。武汉轨道交通11号线东段公安通信系统与专用通信系统共用视频监视系统的服务器、存储设备和摄像机等设备,仅新设少量视频监视终端,公安通信系统指标为169.86万元/正线公里,合肥轨道交通3号线独立设置公安视频监视系统的的服务器、存储设备和摄像机等设备,公安通信指标为305.13万元/正线公里,较武汉轨道交通11号线指标高135.27万元/正线公里。

4.2 民用通信引入系统指标分析

民用通信引入系统指标与线路敷设方式有关,当线路采用高架或地面敷设时,不需设置民用通信引入系统车站级设备。以宁波至奉化城际铁路工程(以下简称“宁奉城际”)民用通信引入系统为例,该线仅在宁波轨道交通3号线陈婆渡站引出处有一小段地下区间,仅需在此地下区间设置民用通信引入系统,其民用通信引入系统指标仅为10.65万元/正线公里,其指标如表5所示。

民用通信引入系统指标与移动通信新技术有关。随着移动通信技术的发展,新的移动通信制式也需引入到城市轨道交通中,民用通信引入系统指标增加。以4G信号引入为例,工业和信息化部于2013年12月4日向中国移动、中国电信、中国联通发放4G牌照,在此之前的城市轨道交通未考虑4G信号引入,如武汉轨道交通7号线初步设计于2013年10月批复,未考虑4G信号引入,民用通信引入系统指标为260.35万元/正线公里,而合肥轨道交通3号线考虑引入4G信号,民用通信引入系统指标为316.60万元/正线公里,较武汉轨道交通7号线指标高约56.25万元/正线公里。

参考文献:

[1]建设部标准定额司.城市轨道交通工程设计概预算编制办法[S].北京:中国计划出版社,2007.

相关文章
相关期刊
友情链接