设计技巧论文优选九篇

时间:2023-03-17 18:10:14

引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇设计技巧论文范例。如需获取更多原创内容,可随时联系我们的客服老师。

设计技巧论文

第1篇

关键词:桥梁钢结构整体设计

引言

中国钢结构桥梁的发展,近年来取得了骄人的成绩,南京三桥、苏通大桥、昂船洲大桥的建造,表明在大跨径桥梁上钢结构的优势越来越明显。桥梁是为满通功能的建筑物,现代桥梁钢结构由结构钢加上单元经焊(栓)连接组成为复杂的受力系统,有明确的承载安全和服役耐久性要求。

一、钢结构桥梁整体设计理念概述

钢结构的特点是质量轻,强度高,并且具备其抗压以及抗拉等相关优点,对于混凝土结构而言,其外观更为直观,强度等级更高。在我国,钢结构桥梁应用十分广泛。因为作为钢结构的施工而言,其施工周期短。钢结构桥梁主要应用在:①城市立交桥段,尤其是交通要道处,如果采用混凝土桥,必然增加施工周期,对于现场交通不能较好地维护。②大跨径海、江、河桥梁(长江大桥、杭州湾大桥等),因为大跨径的要求下,只能考虑钢结构,因为如果采用混凝土结构,根本满足不了大跨径要求。

1.1钢结构整体设计目标我国桥梁钢结构的设计使用年限为100年,与国际标准(BS5400,EUROCODE)基本一致。完整性设计的目标是确保结构在使用年限内的可靠与安全。桥梁钢结构的完整性设计由荷载、材料性能、结构细节构造、制造工艺、安装方法、使用环境及维护方式等多种因素所确定。设计除对结构、构件连接及构造细节按常规考虑强度、刚度要求外,尚需对损伤与损伤容限、断裂与抗断裂作出评定。

1.2钢结构损伤及损伤容限钢结构从材料加工过程到服役期不可避免的会在内部和表面形成和发生微小缺陷,在一定外部因素(荷载、温度、腐蚀等)作用下,这些缺陷不断扩展与合并形成宏观裂纹,导致材料和结构力学性能劣化。对桥梁钢结构而言,完整性和损伤是相对应的,损伤程度将会对结构的完整性带来影响,损伤极限则是结构的失效。而损伤容限是指钢结构在规定的使用周期内抵抗由缺陷、裂纹或其他损伤而导致破坏的能力。损伤容限概念的使用是承认钢结构在使用前存在有初始缺陷,但可通过结构完整性设计方法评判带缺陷或损伤的钢结构在服役期限内的安全性。

国内桥梁钢结构因损伤导致局部破坏的实例近几年时有发生,结构损伤构成了对桥梁安全与耐久最大的威胁。在引起设计者对焊接结构损伤、损伤扩展以及结构系统失效过程关注的同时,也引发了人们对如何保证桥梁钢结构系统整体完整性的思考。

二、桥梁钢结构整体设计策略

2.1横向抗倾覆稳定设计钢结构的桥梁普遍比较轻而且强度非常高,然而,在小半径以及多车道设计时,其横向抗倾覆是当前研究的热点内容。早前的桥梁施工中,由于设计原因,导致在施工过程中或者桥梁使用过程中发生桥体倾覆。因为连续钢梁的半径比较小,所以相对而言,其跨度显得较大,如果再加上桥面宽于钢梁,这一必定显得活载不是最优,弄不好横梁外侧支座受力增大,而内侧支座出现不受力,这样横梁受力极其不均匀,发生梁体的倾覆。在设计过程中,通过合理的计算,来设计横梁的偏心受力情况,这样即可满足桥梁的荷载要求,也能似的桥体均匀受力。在横梁处采取灌砂措施,并在满足规范的条件下,增加多车道时的桥梁整体稳定度。

2.2焊接结构完整性设计要点桥焊接结构的完整性设计是保障桥梁整体稳定性的重要因素,其焊接的接头形式因受力的不同而各有差异,其接头部位的应力作用导致了母材结构以及受力性能的不同,同时,在焊接过程中不能100%消除应力,焊接应力通常导致焊接接头的变形,造成焊接接头形成大量缺陷,不能满足桥梁整体性设计要求。所以在桥梁整体设计中,必须考虑焊接接头的设计,在满足相干规范的前提下,必须做到:①因地制宜地选择形式,并通过焊接性检测要求来获取静力和疲劳等级,来决定焊缝相关形式。②在焊接设计中,必须详细设计其关键细节,达到焊接中受力均匀,尽可能降低应力。③在设计中必须考虑焊接检测相关要求,必须以无损检测等相关控制指标来检测焊缝质量。2.3加劲肋设置加劲肋是在支座或有集中荷载处,为保证构件局部稳定并传递集中力所设置的条状加强件。加劲肋的设计,通常很多人都认为这方面是可有可无的,实际上必须通过设计计算才能决定是否加劲肋。加劲肋与否,是有腹板的h0/δ的值来决定。如果确定需要加劲肋,则优先考虑竖向加劲肋,并且其设置距离由腹板厚度以及相关剪应力来决定。当竖向加劲肋仍然不能满足要求时,可设置水平加劲肋,水平加劲肋是竖向加劲肋的补充形式。加劲肋的设置是因为原有构件截面的不足而用来增强抵抗弯矩和剪力的,因为设置加劲肋可以缩小原构件截面大小,从而有效的降低用钢量,压缩成本,所以在工程中,一般设置在原有构件上起到增强抵抗弯矩和剪力的作用。

2.4钢箱梁横梁设计当桥梁主道设计过宽时,必须优化车道钢结构宽箱梁,在设计中,重点满足其竖向计算要求,对于横梁的跨径,需要从支座间双悬臂简支梁的计算中得知,在支座处可采取竖向加劲肋相关措施,当竖向加劲肋不能满足要求时,考虑横向加劲肋,其计算措施与纵向计算措施相仿。

2.5施工人孔的设置桥梁的整体设计中,其不可忽视的一环是人孔的设置,通常情况下,人孔是为了方便施工,在桥梁箱梁顶板和腹板上开设。顶板施工人孔的具置可设置在1.5跨径处,而腹板的施工人孔的具置必须设置在应力相对薄弱的地方,比如简支梁,其腹板施工人孔可设置在跨中,而连续梁,必须精确计算剪力,选取剪力最小处。有时候人孔的设计不止一个,不能将所有人孔分布在相同断面,采取错开设置。当应力较大的地方必须加设施工人孔,必须采取加强措施。

2.6结构内力计算结构内力计算是以边孔采用单悬臂,中孔采用简支挂梁作为结构的计算模式。将桥梁纵向划分为多个单元,并对每个单元截面进行编号,然后进行项目原始数据输入。输入的数据信息有:项目总体信息、单元特征信息、预应力钢束信息、施工阶段和使用阶段信息。按全预应力构件对全桥结构安全性进行验算,计算的内容包括预应力、收缩徐变及活载计算。桥台处滑动设支座,桥墩处设固定支座,碇梁与挂梁间存在主从约束,挂梁一端设置固定支座,另一端设滑动支座。牛腿计算是对预先设计好的牛腿尺寸和配筋分4个步骤进行验算:①牛腿的截面内力。求出截面内力后对各种危险截面进行强度校核;②竖截面验算。按偏心受压杆件验算抗弯和抗剪强度或按受弯杆件验算强度;③最弱斜截面验算。求得最弱斜截面位置后,按偏心受拉构件验算此斜截面的强度;④45°斜截面的抗拉验算。:

三、结语

我国基础建设的加快,带动了桥梁技术的长足发展,在当前形势下,桥梁钢结构的整体应用也十分广泛,主要是在设计过程中的优化,才能确保桥梁钢结构的整体性、稳定性。必须从整体性角度出发,全面分析桥梁受力情况,加强焊接形式的优化设计,才能保障桥梁钢结构的整体质量。

参考文献:

[1]中华人民共和国铁道行业标准.铁路桥梁钢结构设计规范(TB10002.2-2005).北京.中国铁道出版社.2005.

第2篇

关键词:导线;布线;灯具;开关;插座

一、导线的选择

导线的选择应根据住户用电负荷的大小而定,应满足供电能力和供电质量的要求,并满足防火的要求。用电设备的负荷电流不能超过导线额定安全载流量。

一般按每户住宅的用电量在4~10KW的水平,每户进户线宜采用截面积为10mm2的铜芯绝缘线,分支回路导线截面不应小于2.5mm2铜芯绝缘导线。对特殊用户则应特别配线。为使所有的用电装置都能够可靠接地,应将接地线引入每户居民住宅,接地线采用不小于2.5mm2的铜芯绝缘线。在房屋装修中,所有线路都应采用铜芯绝缘线穿管暗敷设方式。

特别需要注意的一点是,许多住户在装修时将室内的线路、开关等都更换一新并加大容量,往往忽略了进户线,这将影响居室的供电能力并带来不安全的因素。

二、室内布线

室内布线不仅要安全可靠的输送电能,而且要布置整齐、安装合理、固定牢靠,符合相关技术规范的要求。内线工程的开展应以不能降低建筑物的强度和影响建筑物的美观为前提。室内布线的施工设计要对给排水管道、热力管道、风管道以及通讯线路布线等位置关系给予充分考虑。

室内配线技术要求:①室内布线根据绝缘皮的颜色分清火线、中性线和地线。②选用的绝缘导线其额定电压应大于线路工作电压,导线的绝缘应符合线路的安装方式和敷设的环境条件。③配线时应尽量避免导线有接头。因为往往接头由于工艺不良等原因而使接触电阻太大,发热量较大而引起事故。必须有接头时,可采用压接和焊接,务必使其接触良好,不应松动,接头处不应受到机械力的作用。④当导线互相交叉时,为避免碰线,在每根导线上应套上塑料管或绝缘管,并需将套管固定。⑤若导线所穿的管为钢管时,钢管应接地。当几个回路的导线穿同一根管时,管内的绝缘导线数不得多于8根。穿管敷设的绝缘导线的绝缘电压等级不应小于500V,穿管导线的总截面积(包括外护套)应不大于管内净面积的40%。

三、灯具的设计安装

灯具的高度:室内灯具悬挂要适当,如果悬挂过高,不利于维修,而且降低了照度;如果悬挂过低,会产生眩光,降低人的视力,而且容易与人碰撞,不安全。灯具悬挂的高度应考虑:便于维护管理;保证电气安全;限制直接眩光;与建筑尺寸配合;提高经济性。

灯具布置前,应先了解建筑的高度及是否做吊顶等问题,灯具的基本功能是提供照明。在设计中应注意荧光灯比白炽灯光照度高,直接照明比间接照明灯具效率高,吸顶安装比嵌入安装灯具效率高。灯具遮光材料的透射率及老化问题也应在设计考虑范围之内,选择光效高、寿命长、功率因数高的光源,高效率的灯具和合理的安装使用方法,可以保证照度并节约用电。

灯具现一般推荐采用节能电灯,如稀土荧光灯、三基色高效细荧光灯、紧凑型荧光灯(双D型H型)、小容量卤、钨灯等。灯具的选择视具体房间功能而定,如起居室、卧室可用升降灯,起居室、客厅设置一般照明、灯饰台灯、壁灯、落地灯等。厨房的灯具应选用玻璃或陶瓷制品灯罩配以防潮灯口,并且宜与餐厅用的照明光显色一致。浴室灯应选用防潮灯口的防爆灯。卫生间、浴室的灯具应采用防潮防水型面板开关。

安装灯具时,安装高度低于2.4m时,金属灯具应作接零或接地保护,开关距门框0.15~0.2m,灯头距离易燃物不得小于0.3m;在潮湿有腐蚀性气体的场所,应采用防潮、防爆、防雨的灯头和开关;灯具安装时应牢固可靠,质量超过1kg时,要加装金属吊链或预埋吊钩;灯架和管内的导线不应有接头;灯具配件应齐全,灯具的各种金属配件应进行防腐处理。

四、开关的设计安装

安装开关时,应注意开关的额定电压与供电电压是否相符;开关的额定电流应大于所控制灯具的额定电流;开关结构应适应安装场所的环境;明装时可选用拉线开关,拉线开关距地2.8m,拉线可采用绝缘绳,长度不应小于1.5m;成排安装开关时,高度应一致;开关位置与灯位相对应,同一室内开关的开、闭方向应一致;开关应串联在通往灯头的相线上;安装开关时,无论明装还是暗装,均应安装成往下扳动接通电源,往上扳动切断电源。

五、插座的设计安装

安装插座时,应注意插座的额定电压必须与受电电压相符,额定电流大于所控电器是额定电流;插座的型号应根据所控电器的防触电类别来选用;双孔插座应水平并列安装,不可以垂直安装,三孔或四孔插座的接地孔应置于顶部,不许倒装或横装;一般居室、学校,明装不应低于1.8m,车间和实验室距地距离不应低于0.3m。

插座宜固定安装,切忌吊挂使用。插座吊挂会使电线受摆动,造成压线螺丝松动,并使插头与插座接触不良。对于单相双线或三线的插座,接线时必须按照左中性线、右相(火)线,上接地线的方法进行,与所有家用电器的三线插头配合。

布置插座要充分考虑家庭现有的和未来5~10年可能要添置的家用电器,尽可能多安排一些插座,避免因后期发现插座不够用而重新改造电气线路,将电气事故隐患的概率降到最低。同时住宅内的插座应全部设置为安全型插座,在厨房、卫生间灯比较潮湿的地方应加上防潮盖。

客厅、卧室、厨房、餐厅,卫生间插座的安装高度及容量选择:

客厅:客厅插座底边距地1.0m较为合适。既使用方便,也能与墙裙装修协调,即使有的住户不搞墙裙装修,又能保持统一。另外,小于20m2的客厅,空调机一般采用壁挂式,那么这个空调机插座底边距地为1.8m。如客厅大于20m2,采用柜机插座高度为1.0m,客厅插座容量选择是:壁挂式空调机选用10A三孔插座,柜式空调机选用16A三孔插座,其余选用10A的多用插座。

卧室:住户在卧室装修中,用装饰板搞墙裙的比较少,故建议空调电源插座底边距地为1.8m,其余强、弱电插座底边距地0.3m。空调机电源选用10A三孔插座,其余选用10A二、三孔多用插座。

厨房:厨房是人们制作饭菜的地方,家用电器比较多。主要有冰箱、电饭煲、排气扇、消毒柜、电烤箱、微波炉、洗碗机、壁挂式电话机等。根据给排水设计图及建筑厨房布置大样图,确定污水池、炉台及切菜台的位置。在炉台侧面布置一组多用插座,供排气扇用,在切菜台上方及其它位置均匀布置6组三孔插座,容量均为10A。厨房门边布置电话插座一个,以上插座底边距地均为1.4m。

餐厅:餐厅是人们吃饭的地方,家用电器很少,冬天有电火锅,夏天有落地风扇等,沿墙均匀布置2组(二、三孔)多用插座即可,安装高度底边距地0.3m,容量为10A。装一个电话插座,安装高度底边距地1.4m。

卫生间:卫生间是人们洗澡、方便的地方。家用电器有排气扇、电热水器、电话机等。一个10A多用插座供排气扇用,1个16A三孔插座供电热水器用,底边距地均为1.8m,尽量远离淋浴器,必须采用防溅型插座。电话机插座底边距地1.4m。装电话机的原因是人们在洗澡或方便时,仍然能与外界保持联系,使用方便。

参考文献

第3篇

颜色背景的设计是最为简单的,但同时也是最为常用和最为重要的,因为相对于图片背景来说,它有无与伦比的显示速度上的优势。在网页文件中,一般通过<body>标签来指定页面的颜色背景,其HTML语法为:

<bodybgcolor="color">

其中的"color"表示不同的颜色,可以用各种不同的颜色表示方法,比较常用的有直接用颜色的英文名称,如blue、yellow、black等等,还可以用颜色的十六进制表示方法,如#0000FF、#FFFF00、#000000等等,此外还可以用百分比值法和整数法,其效果都是一样的。

颜色背景虽然比较简单,但也有不少地方需要注意,如要根据不同的页面内容设计背景颜色的冷暖状态,要根据页面的编排设计背景颜色与页面内容的最佳视觉搭配等等。

2.沙纹背景

沙纹背景其实属于图片背景的范畴,它的主要特点是整个页面的背景可以看作是局部背景的反复重排,在这类背景中以沙纹状的背景是为常见,所以我们将其统称为沙纹背景。

初学主页制作者都有这样的经历,当试图把自己的照片作为页面的背景是,却发现浏览器上显示出来的不仅仅是一个照片,而是同一照片在水平和竖直方向上的反复排列。这就是浏览器处理图片背景时的规律方法,利用这一规律我们可以用一小块图片作为页面背景,让它自动在页面上重复排列,铺满整个页面,从而使网页的体积大大减小。

读者到现在恐怕都已经知道了沙纹背景的原理和实现方法,就是找一个小的图片,越小越好,但注意要使最后的背景看起来要像一个整体,而不是若干图片的堆砌。其实现的HTML语法如下:

<bodybackground="picture">

其中的"picture"表示背景图片的URL路径。

3.条状背景

条状背景与沙纹背景是比较相似的,它适用于页面背景在水平或竖直方向上看是重复排列的,而在另一方向上看则是没有规律的。它也是利用浏览器对图片背景的自动重复排列,与沙纹背景所不同的是它只让图片在一个方向上重复排列。

以在竖直方向上排列为例,首先用图像处理软件做一个从左到右为蓝白渐变的水平条状图片,其长度与页面的宽度相当。也通过

<bodybackground="picture">

将其设为页面背景,经浏览器显示后,就成为整个页面从左到右蓝白渐变的分栏颜色背景。当然,也可以用类似的方法实现条状背景在水平方向上的重复排列。

4.照片背景

把自己或朋友的照片作为页面的背景让大家看到,是有点令人激动的事情,但浏览器对图片的自动重复排列却使这一愿望难以实现。怎么办呢?只有想不到的,没有做不到的,这里我们用上一点简单的CSS。在网页文件的<head>……</head>之间加入下面的CSS语句:

<styletype="text/css"><!--body{background-image:url(myphoto.jpg);background-repeat:no-repeat;background-attachment:fixed;background-position:50%50%}--></style>

这样,在网页页面中,就可以看到你的照片位于页面的正中间,而且在拉动浏览器窗口的滚动条时,照片仍然位于页面的正中间而不随页面内容一起滚动。如果你觉得照片位于页面的正中间不满意,你也可以随意地调整它在页面中的位置,只需要调整"background-position"的值就可以了。5.复合背景

如果你在练习上面的“照片背景”时“不小心”也设置了<body>标签里的颜色背景,那么你看到了什么?颜色背景还起作用吗?对,你能看到你的照片浮于你设的颜色背景之上,二者能够同时正常地显示出来。这就是复合背景的魅力,更为吸引人的是,当你所设置的图片背景因为某种不可知的因素而不能正常显示的时候,浏览器能够自动用你所设置的颜色背景取而代之。它的设计方法,就不用我再多说了吧!

6.局部背景

前面我们所说的背景都是整个页面的背景,能不能在页面上为某个局部的内容设置属于它自己的背景呢?回答是肯定的。

最为常见的是在表格的设计当中,我们可以为表格设置一个不同于页面的背景,甚至在不同的表格单元中,我们也可以设置各个表格单元自己的背景。请看下面这个表格例子:

<tableborder="1"width="240"height="101"bgcolor="#C0C0C0">

<tr>

<tdwidth="80"height="46"bgcolor="#00FFFF"></td>

<tdwidth="80"height="46"></td><tdwidth="80"height="46"bgcolor="#00FF00"></td>

</tr>

<tr>

<tdwidth="80"height="47"bgcolor="#FFFF00"></td>

<tdwidth="80"height="47"bgcolor="#FF0000"></td>

<tdwidth="80"height="47"bgcolor="#FF00FF"></td>

</tr>

</table>

在浏览器中的显示效果如图所示,可以看到,不但对于表格整个来说有不同于页面的背景,就是每一个单元格也可以设置各不相同的背景。

除此之外,我们还可以单独为某个文字段落设置背景,甚至为这个文字段落中的某几个文字设置自己的背景,是不是有点相当不错,这也需要用上一些CSS。请先看一下下面的这个例子:

<HTML><HEAD><TITLE>不仅仅是页面的背景</TITLE><STYLETYPE="text/css"><!--BODY{BACKGROUND:#FFFFDD;COLOR:red}div{BACKGROUND:red;COLOR:white}--></STYLE></HEAD><BODY><PSTYLE="BACKGROUND:blackurl(../images/bg.jpg);COLOR:black}">

记得有这么一首诗:"<div>坐地日行八万里,巡于遥看一千河。</div>"伟人就是了不起,……几万里就出去了。</P></BODY></HTML>

第4篇

合理选择输电线路路径

受地形、土质、气候状况的影响,某些地区极易成为雷击的多发区,所以在输电线路设计时必须避开这些地区,降低雷击概率。通常情况下,雷击区包括以下几个类型地段:(1)地下富含导电性矿藏的地区,以及地下水位较高的地区;(2)土质电阻率低的地区,以及土质电阻率发生骤变的地区,如田地、土壤、岩石等拥有不同类型地貌的地区和山坡断层带、交接地带、山谷地带等;(3)顺风的河谷地带和山区的风口等雷暴走廊区;(4)周围布满山丘的湿润盆地,如包围着湖、水塘、沼泽、水库、树林的地区;5.土质条件较好、植被覆盖良好的山丘顶部区域以及向阳面区域。

搭设避雷线

避雷线是当前使用最为广泛的防雷技术,具有防雷效率高、分流、耦合、屏蔽等作用。分流作用是指避雷线能够减少铁塔的雷电流,以使塔顶的电位降低,减轻雷击破坏程度;耦合作用是指通过耦合导线降低输电线路中绝缘子的电压;屏蔽作用是指直接降低雷击后产生的感应过电压。应当根据输电线路的电压级别选择避雷线,20kV的输电线路不需要装设避雷线,200kV以上的输电线路需要全程搭设避雷线,500kV的高压线应当搭设两个避雷线,以提高避雷线的屏蔽功能。为了提高避雷线的保护能力,应确保每个铁塔区的避雷线能够接地,并保证两个避雷线之间设置一个间隙。当前,我国在设计高压和超高压输电线路时通常搭设绝缘避雷线,以降低功率损耗。

安装线路避雷器

避雷器是在避雷线基础上施加的一种防雷措施,以彻底防止绝缘导线上产生过电压。当雷击产生的电压过大时,避雷器通过利用低阻抗的通路将雷电流泄于地面,以保证输电线路电压在安全的范围内。在安设避雷器时,可选择如下类型的铁塔:环境恶劣的山区线路中的铁塔、跨越大的铁塔、水电站和升压站等出口线路处接地电阻较大的铁塔、出现过闪络的铁塔等。

架设耦合地线

在无法实现降低接地电阻的情况下,可在导线的周围或下方敷设一条底线,以使雷电流可以分流,降低绝缘子串两端的感应程度,减小反击电压间的分量。通过架设耦合地线,能够降低雷击时电力系统的跳闸率。

降低铁塔接地电阻

当合理匹配塔脚电阻和避雷线时,可以实现降压的功能。针对小于65kV大于40kV的输电线路不需要增设避雷线,但是必须做好铁塔接地措施。降低铁塔接地电阻的主要方法包括以下几种:(1)对于规模较小、较为集中的接地网,应当使用接地电阻降阻剂。在接地极四周铺设降阻剂,增大接地的面积,以降低铁塔与地面的电阻。由于此种方法具备较好的导电性能,所以应当将该方法推广使用;(2)爆破接地技术。该技术的运用方式是利用爆破来制造破裂,而后将电阻率低的材料通过压力机的作用导入到裂缝中,从而增强土壤的导电性能;(3)加大水平接地体的长度,由于电感效用与水平接地体的长度成正比关系,当接地体的长度达到55m时,其电阻率为500,当长度达到80m时,其电阻率为2000,所以当接地体达到一定长度后,冲击系数会逐步稳定,不再有所下降。

安装自动重合闸装置

电力系统在遭遇雷击时通过自动跳闸可以发挥自我保护作用,在自动跳闸后,此前所产生的部分系统故障便会自动消除。根据资料统计,在安装自动重合闸装置的输电线线路中,70kV以上的线路其重合闸的成功率为80%以上,30kV以下的输电线路重合闸成功率也可以达到60%,这说明自动重合闸装置是当前极为有效的防雷措施之一,各等级电压线路应当积极安装该装置。

第5篇

作者:吴静秋 王竹 唐方清 单位:中国公路工程咨询集团有限公司

斜拉桥:柔性体系、自振周期长,对结构抗震较为有利;由于主跨不大、主塔较高、拉索布设较密,因而成桥结构具有较高的抗扭刚度,抗风稳定性好,但施工阶段最大双伸臂状态抗风稳定性一般;斜拉桥采用对称悬臂现浇,航道适应性好,且桥塔标志性强,利于船舶导向。连续刚构桥:施工、运营期间在地震作用下均较为不利,施工期间最大双伸臂状态在两侧不同方向风力作用下双臂墩受力不利;从已建大跨度连续刚构来看,运营期间混凝土开裂、跨中下挠较大等问题较为明显;连续刚构桥景观一般,双臂墩防船撞的问题较突出。矮塔斜拉桥是介于梁式桥和斜拉桥之间的半柔性桥梁,因而它兼有梁式桥与斜拉桥的共同优点。初步设计通过对设计与施工技术难度、航道适应性、抗风抗震性能、结构耐久性、后期维护工作量、景观效果等几方面进行综合比选后,推荐采用矮塔斜拉桥。 结构体系比选初步设计通航孔桥采用跨径布置为126m+238m+126m的矮塔斜拉桥,为主梁与塔墩分离的半漂浮体系,主塔墩采用“门”形结构,两个主塔墩分别设纵向活动的竖向支座、横向抗风支座、纵向阻尼器,边墩设纵向活动的竖向支座、横向抗震挡块。半漂浮体系从构造上解决了大跨径混凝土结构后期收缩徐变及温度作用内力的问题,从概念设计上解决了抗震设计的问题,达到了现代桥梁设计对地震以防为主、抗为辅的目的;同时,阻尼器在地震的瞬间作用下具有明显的耗能作用,传递到墩底的纵向地震作用力显著减小。但半漂浮体系也存在施工期间体系转换、大吨位支座的后期养护与更换等问题,如采用固接体系可满足受力要求,则可减少施工工序及养护工作量。因此,设计提出了半漂浮体系、柱式墩固接体系、双臂墩固接体系三种方案进行对比计算,以分析采用固接体系的可行性。

对比计算采用相同的桥型,主塔、主梁、承台、桩基基本一致,在其横向受力的主要控制要素方面,风力由迎风面积决定、波浪力由基础尺寸决定、地震力由参与震动质量决定,而结构体系不同则主要影响结构的纵向体系刚度,故本桥的横向受力与采用何种结构体系关系不大,不是体系选择的决定因素,本文限于篇幅不予列举其计算结果。对三种结构体系分别进行静力分析和动力分析,由于不同结构体系对主梁受力影响较小,通过调整预应力钢束配置均可使之满足规范要求,故本文仅列举基础计算情况。柱式墩固接体系静力计算和动力计算均不能满足规范要求,双臂墩固接体系在动力作用下不能满足规范要求,而半漂浮体系则均能满足规范要求,较为明晰地体现了三种结构体系之间的刚度关系:柱式墩固接体系>双臂墩固接体系>半漂浮体系。在地震作用下,三种结构体系下承台底的剪力和弯矩均大幅增加,半漂浮体系在阻尼器的作用下,增加的幅度相对最小。在特定的结构体系和地震作用下,由于地震力只与参与震动质量有关,因此,要达到使固接体系成立的目的,就必须从减小静力作用下所产生的内力入手,而由于本桥桩身自由长度达39m(考虑水深及冲刷),桩顶剪力就成了基础设计的控制性因素。从三种结构体系在静力和动力作用下所对应的剪力比(63.9%、66.6%、61.6%)可以看出,静力作用下所产生的基础剪力为其主因,而固接体系在静力作用下的剪力远大于半漂浮体系,也直观地反映在表1的计算结论中;通过对静力作用下的剪力组合进行分析,成桥后体系温度作用下所产生的基础剪力为主因;因此,设计采用中跨合龙前于中跨合龙段向两侧施加反向顶推力的方式,抵消体系温度力以达到固接体系成立的目的。在固接体系成立的前提下,由于双臂墩固接体系在梁体以上为横向双塔、梁体以下为纵向双臂,构造处理及传力途径均较为复杂,且横向抗风及抗震受力尤为不利,而柱式墩固接体系构造简单、施工方便,因此本桥最终采用柱式墩固接体系。合龙前顶推力的确定以运营时基础内力正负相当为原则进行试算,确定本桥合龙前顶推力为640t,于两侧分别设置4个顶推点同步进行。所采用体系在地震作用下桩基均处于弹性状态,且承载能力有一定富余。

主梁主梁采用单箱单室断面,箱梁结构顶宽14.4m,设置双向2%横坡;两侧各悬臂1.1m,悬臂端部厚60cm、根部厚100cm,为斜拉索锚固区;腹板斜度1∶3.275,梁底宽度8m~10.443m,随梁高变化;箱梁支点梁高8m、跨中梁高4m,分别为中跨的1/29.75和1/59.5,梁底曲线为二次抛物线;主梁近中支点43m为无索区,有索区长度60m,其余为无索区。主梁采用C60海工耐久混凝土;箱梁顶板厚度28cm;底板厚度30~80cm,按二次抛物线变化;腹板厚度分两次变化,近支点无索区腹板厚度为75cm、有索区为60cm、其他无索区为45cm;0号块顶板厚度80cm、底板厚度120cm,设两道1m厚横隔板;边支点横隔梁厚度2m;为减小工程量及施工难度,将斜拉索锚固断面处横隔梁优化成为1.5m高、0.5m厚肋板式横梁。主梁标准断面如图2所示。主梁采用三向预应力体系,纵向预应力分顶板悬臂预应力束(筋)、腹板预应力束,中跨合龙预应力束及边跨合龙预应力束;箱梁腹板竖向预应力筋采用JL32精轧螺纹粗钢筋;桥面板、拉索横梁、0号块横隔板、端横梁均设置横向预应力束。所有的预应力钢束均采用真空注浆施工工艺。 斜拉索斜拉索采用37-s 15.2环氧涂层钢绞线索,拉索群锚锚固体系锚固。全桥共48根斜拉索,以双面索的形式分别布置在两个塔柱上,梁上索距5m、塔上索距1m,斜拉索在塔顶通过分丝管贯通,分丝管为多组钢管组焊而成,塔端设置抗滑锚筒,抗滑锚筒内灌注环氧砂浆,抗滑锚在斜拉索张拉完后安装。 主塔墩及基础主塔墩为“门”形结构,总高度69.415m。上塔柱高30m,为顺桥向5m、横桥向2m的矩形实体截面,两塔柱间净距11.4m,于塔顶下2m处设置横梁。下塔柱高31.415m,两塔柱间净距8.4m,塔柱顺桥向5m、横桥向由3.5m渐变至5m,承台以上5m范围内塔柱为实体、其余为壁厚80cm的箱形截面。基础采用13根直径2.8m钻孔灌注桩,梅花形布置;为增强桩基的抗船撞能力,桩身上段将护筒内壁清理干净后增设外层钢筋笼全截面浇筑,充分利用施工钢护筒将其设计为上段直径3.1m、下段直径2.8m的变截面桩(钢护筒内径3.1m)。承台为六边形承台,横桥向中心长度28.2m、顺桥向宽度15.2m、厚度5m,承台六角为半径2.4m圆角。结构计算全桥总体静力计算采用QJX windows版平面杆系分析程序进行,并采用空间有限元程序进行校核;主塔横向按平面刚架进行分析计算;全桥动力设计算及局部分析采用空间有限元程序进行。计算过程考虑恒载、预应力、混凝土收缩及徐变、基础变位、汽车活载、汽车冲击力、汽车制动力、风荷载、温度作用、支座刚度、波浪力、基础冲刷、地震、船舶撞击、施工荷载等。计算时,通过修正拉索弹性模量的方式计入拉索的几何非线形效应。主要计算内容及结论如下。(1)对桥梁各施工阶段、成桥阶段均进行了静力计算,并对成桥状态下主梁刚度、斜拉索应力进行了检算;主梁运营状态正截面抗裂验算上下缘均未出现拉应力、持久状况正截面压应力最大值16.89MPa、斜拉索最大应力0.56fpk,计算结果均满足规范要求。(2)采用鱼骨梁模型对桥梁最大单伸臂、最大双伸臂及成桥状态下动力性能进行了分析,并对最大双伸臂状态下的各种最不利工况进行了静力抗风分析。成桥状态下弯扭耦合颤振临界风速、离流扭转颤振临界风速分别为342.7m/s、127.9m/s,远大于颤振检验风速(82.8m/s),桥梁具有良好的抗风性能。(3)分别对0号块及塔、梁索锚区进行了局部应力分析,应力分布情况良好。

第6篇

概念设计概论。概论当中,首先整合了桥梁工程的知识体系,介绍了桥梁的基本组成和分类;然后介绍国内外桥梁的最新发展动态。并从中国桥梁建设当中出现的问题的角度,说明概念设计的目的、意义和重要性。最后介绍了《桥梁概念设计》中安全、适用、经济、美观、耐久、环保的原则及其含义,并详细阐述了如何建立创新理念。

桥梁美学设计。美学是人们对于美和丑的认识,虽然不同人拥有不同的看法,但是美学还是有其一般性的规律。在桥梁美学设计当中,首先介绍了东西方美学的哲学基础,提出了桥梁美学的五个基本原则———“多样与统一”“、比例与匀称”“、平衡和和谐”以及“韵律与协调”。并针对桥梁,提出了概念设计中的美学考虑和处理方法。最后,介绍了桥梁美学设计的实例。

设计构思和总体布置。设计构思和总体布置是《桥梁概念设计》中最为关键的环节,是生成概念方案所必须有的过程。设计构思主要是分析桥位处的自然条件、技术条件、人文条件、社会条件,进而对桥梁总体设计进行设计。①自然条件。自然条件主要包括河势、水文、气象气候、地形地貌、地质水质和地震这七个方面。在概念设计阶段,这些资料的应用一般有两个方面:一方面,在理解消化这些资料的基础上,抓住核心要素和控制条件,形成构思和布局的雏形;另一方面,用于总体和关键构件的宏观、控制性的计算和分析,来验证和调整先前的构思和布置。②技术条件。经过近200年的发展,桥梁的上部结构和下部结构已发展形成了一些较为成熟的形式,在当今技术条件下,这些不同类型的上部结构和下部基础都有着各自的适用范围,在桥梁概念设计的初始阶段,我们应当尽可能地根据桥梁所处的自然条件,选择最为合适的上部结构和下部基础。③人文条件。人文条件主要是指桥梁所处地区的历史文化背景和该区域的桥梁使用者对于美的诉求。桥梁作为一种永久建筑物,除了跨越功能之外,其景观功能也是其功能的一个重要方面,在某些情况下,尤其是城市桥梁当中,桥梁的景观功能可能是其最为重要的一个方面。只有在这些准备工作做好之后,才能够根据“变化与统一”、“比例与匀称”、“平衡与和谐”,“韵律与协调”这些基本的美学基本原则,设计出满足人们人文诉求和美学要求的美的桥梁。④社会条件。社会条件主要是指桥梁的使用功能、桥梁的经济性。使用功能包括交通功能、航运功能。交通功能方面,对于公路桥梁、铁路桥梁和城市桥梁,其荷载标准和建筑界限不同;不同的航道等级和通航标准对应的通航净空也不相同。经济性方面,不同的桥型、总体布置、基础方案和施工方案对于桥梁的经济性能均有影响。

4.结构安全验证。在结构安全验证中,介绍了桥梁的荷载,讲解了结构分析的一般方法和结构的强度、刚度、稳定性、动力特性的验算,然后介绍了桥梁耐久性设计的一般原则和耐久性验算的方法。5.工程案例分析。通过分析《桥梁概念设计》的工程实例,来完整的介绍桥梁概念设计的流程,以及各个步骤当中应当注意的问题,使学生在掌握全局的同时不忽略细节。

概念设计教学特色

同济大学桥梁系在国内土木工程专业首先开展了概念设计的课程,作为桥梁工程教学改革的一部分,这门课程尝试了一些新的教学方法。具有以下几个方面的特点。

1.强调桥梁创新和美学设计。通过概论,首先强调《桥梁概念设计》中创新的重要性,从总体布局、结构体系和局部构造三个层次引入创新理念。并分别配以工程实例,深入浅出,强化了创新和美学设计在桥梁设计中的重要性,引导学生在创新和美学方面进行思考。如在讲解从总体布局的角度创新桥梁设计时,列举了某高新区中央岛的桥梁概念设计。由于该区域是交通道路上的重要视觉节点,连岛的两座桥梁需要表现出磅礴的气势和很好的视觉冲击力,常规桥梁无法表现这一特征。虽然可以通过大跨度悬索桥、斜拉桥凸显气势,但是桥位处没有大跨度斜拉桥的要求,同时,大跨度桥梁经济上也不合理。通过总体布局的创新,采用建筑学上借势造景的技法,将一座常规大跨度桥梁一分为二,分别放在南北两个河道处,中间道路形成虚拟的桥梁中跨,远处观看,如同一座十分宏伟的大跨度悬索桥,既凸显了气势,又满足了经济合理的要求。

2.注重讲解概念性的原理。传统的桥梁工程注重从力学计算方面推导出一些公式,通过公式里的参数分析来讲解桥梁工程中的基本力学原理。在《桥梁概念设计》的教学当中,复杂的力学计算不是重点,因为其与概念设计注重概念的理念背道而驰。相反,概念性的原理才是重中之重,一方面,概念性的原理便于理解性记忆;另一方面,如果概念设计不合理,将直接导致后续力学计算结果出现问题,进而需要返工或者通过额外措施解决出现的问题。例如,在讲解桥梁结构体系对于桥梁受力性能的影响时,列举了作者设计的昆山玉峰大桥的外部约束、内部链接和刚度分配处理方法的例子。%%昆山某区域需建立一座城市桥梁,通过概念分析,拟建立一座斜靠拱桥。由于该区域为软土地基,无法承担水平推力。因此,主拱圈采用无水平推力的系杆拱(外部连接),主拱圈承担主要的恒载,主拱圈斜靠拱共同承担活载(刚度分配),进而解决了软土地基的问题。在讲解主拱圈和主梁之间的内部连接方式时,同样也采用了重视概念、简化计算的教学思路。由于主梁为双边箱钢箱梁主梁,在纵横梁上搭设混凝土预制桥面板,桥面板之间通过现浇段和横纵梁上的剪力钉连接,因此在拱梁交接处存在着负弯矩区段,会导致桥面板开裂。为了解决这个问题,主拱圈和主梁之间采用铰接的连接方式,释放了负弯矩;同时,等主梁支架拆除后再浇筑现浇段,通过让混凝土桥面板和钢主梁在不同的阶段参与受力,也减小了拱梁连接处的桥面板拉应力,防止了桥面板开裂。由于一般的系杆拱桥主梁为混凝土箱梁,可以张拉预应力,因此拱梁交接处主梁拉应力不是设计的关键因素,但是在玉峰桥中,在混凝土桥面板中张拉预应力较为困难,因此采用了释放拱梁之间弯矩的铰接的连接方式。

3.教学结合工程实际。以上两个例子,只是《桥梁概念设计》课程教学当中所举的众多例子的一个缩影。为了改变传统桥梁工程教学时,学生只知其然,不知其所以然的状况,在《桥梁概念设计》教学中加入了众多的工程实例,讲解出原因,让学生加深理解,加深印象。例如,在介绍悬索桥抗风问题时,列举了著名的“塔科马大桥风毁”事故,并从悬索桥的计算理论发展的角度,解释了塔科马大桥发生风毁的背景。在线弹性理论当中,不考虑结构变形对于平衡的影响,因此主梁高度很大;随着挠度理论的诞生,人们发现主梁的刚度对于悬索桥的整体刚度贡献不大,最终,从曼哈顿桥到金门大桥,悬索桥主梁高度越来越小。到塔科马大桥时,主梁高跨比只有1/350,主梁形式为抗扭性能差的双边主梁开口断面,最终导致主梁发生风致颤振破坏。这种结合工程事故发生的理论发展背景的讲解思路,让学生的理解更为深入。

4.整合知识体系。通过一个完整的桥梁概念设计流程,学生明白了本科所学课程在桥梁概念设计中的作用以及各个课程之间的关系,进而达到了整合学生的知识体系的目的;同时,概念设计当中历史文化、美学诉求方面的人文内涵需要学生提高综合素质,耐久性、环保以及全寿命设计思想要求学生进一步学习相关知识,从这个角度来说,概念设计也起到了引导学生学习方向的目的。

5.注重学习与实践相结合。让学生更深入地理解《桥梁概念设计》,最好的方式是让学生参与到真实的桥梁概念设计当中。在教师指导下,学生参加桥梁方案竞赛是一个很好的方式。从同济大学桥梁系开设《桥梁概念设计》课程以来,历届学生分别参加了广东省虎门二桥、北京长安街西延永定河桥、北京通州运河区北运河桥和通惠河桥的国际方案竞赛。在参与竞赛的过程中,学生对桥梁概念设计的流程有了更深入地理解,同时也增强了实践能力。下面介绍了长安街西延永定河桥梁的概念设计。桥位位于首钢工业改造区,该区域规划功能定位为北京西部综合服务中心和后工业文化创业产业区。桥位北部为被誉为“燕都第一仙山”的石景山,西岸为门头沟滨水商务区,功能以商业服务,文化娱乐为主。

大桥跨越永定河莲石湖,该湖注水后,形成湖滨绿色生态走廊。概念设计当中,石景山、永定河和首钢是不可或缺的三个元素,桥梁应当与这三个元素相互融合,构建出“一山、一水、一桥,一部钢铁史”的和谐篇章。①跨径布置。桥位处控制桥梁跨径的主要因素有:路线与河道及两侧道路斜交53度;东侧跨越丰沙铁路和东滨河路(红线宽度40米);西侧跨越河堤路(红线宽度30米);河堤处不能设置桥墩。因此,采用东侧一跨跨越丰沙铁路、东滨河路和东河堤,西侧采用一跨跨越西河堤及西河堤路,最小跨径均为120米。河道中桥墩设置不受通航影响,但需要考虑排洪的作用,桥位处上下游桥梁跨径均为40米左右。②桥型选择。

桥型选择考虑结构的外形与周边环境相符,控制结构的高度,是的结构与石景山和山下的首钢厂区高度协调,不遮挡永定河自南向北的视觉走廊。根据跨径布置,梁桥、拱桥、斜拉桥、悬索桥都是可行的。③横断面布置。桥位处道路规划红线宽度为80米,若采用单层桥面布置,桥面宽度约为60米;若采用双幅桥面布置,桥型选择限制较多,如采用横向四片拱肋的拱桥,景观效果不佳;如采用双层桥边,可以使桥宽变为30米左右,同时具有许多优点。非机动车道、人行道和车行道分离,为互通立交的实现提供了很好的条件;双层桥面的下层人行道、非机动车道可以与东滨河路实现平交,方便了行人。④概念生成图3创新总体布局的悬索桥效果

(a)效果图

(b)结构简图

图4玉峰桥与选择。梁桥、拱桥、斜拉桥、悬索桥都是可选桥型,根据上述分析,概念生成了十四个比选方案。从安全适用、结构布置的合理性与经济性、与环境的协调和美观、可设计性和可施工性、耐久环保五个方面进行综合比选打分,最终概念选择了五跨连续桁架拱桥方案、斜拉桥和梁桥组合方案、斜拉桥和拱桥组合方案,进行下一步的设计。以下为三个方案———锦绣河山(五跨连续桁架拱桥方案)、日月同辉(斜拉桥和梁桥组合方案)、龙凤呈祥(斜拉桥和拱桥组合方案)的效果图。⑤概念设计。下面简略介绍锦绣河山方案极其概念设计。

美学处理方面,五跨连续桁架拱桥方案主梁和拱肋均采用钢桁架形式,厚实的金属质感让人们感受到首钢改造区曾经辉煌的钢铁文化。桥面以上主拱圈的高度近似按照黄金分割比设计,犹如连绵起伏的山峦,突出了锦绣河山的主题。桥头堡外形也同样进行了美学优化,参照石景山上宝塔的形象进行了处理。主桥为采用双层桥面的梁拱组合体系,各跨拱脚均采用固定铰支座约束。主梁宽度为32.6m,高度为6.5m。上下桥面每隔6m设置一道横梁,梁高1.5m。采用正交异性钢桥面板,主梁上吊杆间距为6m。除拱肋的风撑与弦杆,腹杆与弦杆采用高强螺栓连接外,其他钢构件采用焊接连接。基础采用钻孔灌注桩。

永定河大桥概念设计是国际方案竞赛,有六家国际知名设计单位的十八个方案参加竞争,最终有六个方案入围。作者指导学生所完成的三个方案均得以入选。部分竞争者的方案因采用大跨、奇异的造型来标新立异而被淘汰,而学生们所完成的方案思路清晰、考虑的因素较为全面,创新性、经济性均较好,设计方案外形也比较优美,因此得以入围。在前面提到的另外两个国际比赛中,学生们的方案也获得了第二和第一名。参加比赛既提高了学生的学习积极性,也达到了《桥梁概念设计》的教学目的。

学生反应

本文第二作者作为《桥梁概念设计基础》课程的学生,也切身体会到了《桥梁概念设计》不同于传统的灌输式教学。传统的桥梁教学思路只重视结构计算,而《桥梁概念设计》重概念、重视原理、重视讲解思路,重视用实例说明抽象的问题。这些教学思路对于学生的理解十分有益。同时,提高了创新和美学考虑在桥梁设计中地位,让听课的学生认识到,新的桥梁设计理念需要工程师从传统的桥梁计算工程师转变到桥梁创新设计工程师甚至是桥梁建筑师,让其更为重视自身的人文修养和综合素质发展。

第7篇

山区公路桥梁是桥梁设计方面最全面的,只有通过计算分析成果和完善的结构设计措施才能确保桥梁结构的质量可靠。山区公路桥梁在计算中用到的恒载、活载、施工荷载等,基本采用平原公路桥梁的数据,它们几乎相同。但是山区的特殊地质条件和自然条件,是的与平原公路桥梁不同的是还受到风荷载、冻胀力、水力等荷载对桥梁的作用。对于一些受破坏的地形则还应采用高墩大跨结构,在这种路段要严格注意其下部结构的刚度分配是否均匀,其稳定性是否可靠等必要条件。山区公路桥梁的施工由于受地形起伏、沟壑错综等因素而很难实施,大型机具也无法顺利运用施工现场,施工十分困难。提供大型的施工现场是很难做到的,山路弯曲运输问题就很难解决,大跨径的预制构件不能用作山区公路桥梁设计之中。使用中、小跨径预制结构更有利于施工,并且节省机具的造价,把它运用到山区公路桥梁施工现场会是很好的抉择。山区公路桥梁由于受很多因素影响,有些是无法使用标准跨径结构的桥梁,还有无法采用互通式立交中的匝道桥梁,只能运用钢筋混凝土现浇结构和预应力混凝土现浇结构桥梁。山区公路桥梁并非一成不变的,有时使用一些小型结构,就很好地对公路设计起着重要作用。与平原公路相比较,由于山区的障碍物很多,致使山区公路桥梁施工难度增高,造价昂贵。对于山区公路桥梁的设计应充分考虑,所选择的桥型的经济是否实惠,不但要在技术上达到要求,而且要在经济上也显示合理性。所以对于山区公路桥梁的建造要充分考虑所处的地理环境和施工条件,列出多种方案进行比较,找出经济技术指标最合理的方案,可以最大限度节省公路桥梁施工费用。山区公路桥梁建设最受地形条件的限制,在山区公路桥梁设计和施工过程中要加大环保力度,与周围环境协调一致。对路段阶段要做好防护措施,对山体不应大填大挖,更不应破坏周围环境,造成植被死亡,河流污染等境地。山区公路桥梁设计原则如下:桥梁结构安全可靠,质量有保证,经济合理有效,施工有安全措施保证,造型美观,环境不受破坏。

2山区公路桥梁与其他建设工程的关系

2.1山区公路桥梁与隧道的关系

山区地形多变,地质复杂,水文特征多变,地面沟壑很多,并且坡度很陡,时而也会有泥石流等地质灾害发生。山区公路受以上条件影响横坡较陡,易受山谷水流冲刷,在U型山谷必须转弯。山区公路桥梁与隧道连接起来是跨越河流,在U型山谷转弯所做的必要措施,也是最好的解决办法,被称为“两桥一遂”方案,设计这种方案需要桥梁和隧道紧密结合。在地形平缓,变化不大的地质条件下可以调整桥台侧墙的高度和长度完成连接,对于地形复杂,隧道明洞无法延伸的情况下,需要增添桩柱式台以及桥梁主梁放置于隧道明洞完成对接。

2.2山区公路桥梁建设与路基的关系

山区公路要适应地形多变环境,需使用错台路基(两端路基不等高)。但是错台路基在需设置转向车道时,很难运用到施工中。由于两端路基不等高需设计半幅桥来进行衔接。当路基一侧要求填土的高度15m左右时,必须综合考虑地质、水文等条件,把加筋挡墙、弃土方案与半幅桥进行比对,来决定最合理的方案。

3山区公路桥梁设计要点

公路桥梁是交通运输领域中不可或缺的重要部分,随着人们生活水平的提高,公路桥梁的设计和管理也应该提高,有一个好的施工质量对公路桥梁的使用和维护起着非常大的作用。山区公路特点地形起伏,地质复杂。山区路线布置的平面、纵向、横向三个方面都被限制,对于山区公路桥梁的设计,考虑到山区的特点,从上部结构设计、下部结构设计来说明。

3.1山区公路桥梁上部结构设计

山区公路桥梁多采用施工容易,造价低廉的标准化,预制装配化结构,而大跨径桥梁方案比较少。山区公路桥梁常采用标准化、装配化桥梁,标准化、装配化跨径一般有16m、20m、25m、30m、40m、50m。当跨径小于30m时,有三种构造分别是空心板、小箱梁、T梁。当跨径为40m、50m时,由于梁的受力特点适于采用T梁。山区公路桥梁没有严格的空间限制,且平面较小的山区公路,会把较高缓和的路段出现在桥上,使用空心板和小箱梁时,架梁的四个支点调平困难,会引起支座脱空,质量无法保证。对于山区公路桥梁标准横断面需采用T梁。当跨径在50m时,山区公路交通运输条件差,场地不能扩大,很难使大型机具进入,50mT梁单片重达150吨,而且架设设备要求很高,难以控制它的运输和安装过程,50mT梁一般不被使用。山区公路桥梁常用标准跨径为20m、25m、30m、40m。

3.2山区公路桥梁下部结构设计

第8篇

海沽道规划为城市主干路,规划道路红线宽50m。本次工程范围为外环南路~东文南路,总长度约10.3km。沿线需跨越现状河道4处,新建4座桥梁跨越,分别为外环河中桥、洪泥河中桥、幸福河中桥、卫津河中桥。由于规划地铁1号线线位与海沽道主线重合,受地铁盾构影响的有洪泥河中桥、幸福河中桥、卫津河中桥3座桥梁。因此桥梁下部结构设计中应充分考虑与轨道交通1号线之间的相对关系,满足地铁盾构施工过程中要求的最小安全距离;同时对桥梁桩基采取有效的防护措施,在施工过程中进行必要的施工监测,以保障本工程的安全实施和使用。本文以洪泥河中桥为例,介绍海沽道工程受地铁盾构影响下桥梁下部结构设计及防护措施。

2水文地质情况

洪泥河全长25.8km,设计流量50m3/s,为区管二级河道,六级航道,性质为排水,规划上河口宽度为50m、下河口宽度为25m。现状洪泥河上河口宽度为45m、下河口宽度为25m、两侧放坡各10m;堤岸为土质边坡,边坡系数为1∶2.5。河底高程为-2.7m,堤顶标高为3.2~3.6m,洪泥河常水位为1.4m,洪水位为2.5m。根据区域地质资料和勘察,本工程所在场地为第四系全新统(Q4)海相、陆相及海陆交互沉积地层。从上而下地层呈层状分布,按成因分为8层,按力学性质可进一步分成15个亚层。该区域主要由杂填土、素填土、粘土、淤泥质土、粉质粘土、粉土组成,各层土水平方向上总体分布稳定,从上而下土质渐好。本工程特殊性岩土主要为人工填土及淤泥质土,填土土质松散,淤泥质土土质软对桥梁桩基施工有一定影响。

3地铁与海沽道线位相对位置关系及安全要求

3.1位置关系

海沽道道路红线宽50m,线位与洪泥河河道斜交,角度为17°。1号线地铁线位分为左右双线,在洪泥河处线位间距为14.8m,每条线位地铁盾构区间宽为6.2m,地铁盾构区间净距为8.6m,地铁盾构顶埋深标高为-9~-15m之间。洪泥河中桥处地铁与海沽道平面位置关系详见图1。

3.2地铁盾构安全距离要求

地铁1号线盾构隧道与跨河桥梁桩基相距较近,二者之间安全间距要求以及附近土层是否需要加固与施工工序有很大关系。为了尽量减小本工程拟建桥梁与地铁1号线之间的相互影响确保工程实施的可行性,经与地铁1号线设计单位多次沟通,由地铁1号线设计单位对地铁盾构施工与桥梁桩基施工之间的安全距离提出具体要求。

(1)桩基先于盾构隧道施工(方案Ⅰ):①在此工况下,桥梁桩基础外边缘距离盾构结构外边缘的距离不得小于1.5m,隧道穿越时,周边土体不需要加固;但桩基设计应考虑桩侧摩阻局部损失。②为了保证桥梁桩基达到其设计强度,桥梁承台及桩基施工完成至盾构侧穿桩基的时间间隔应至少保证1个月。

(2)盾构隧道先于桩基施工(方案Ⅱ)。当盾构区间先行推进,桩基后施工,此种工况对区间隧道影响较大,桥梁桩基外边缘至盾构结构外边缘的最小距离不得小于4m,且周边土体需要加固。方案Ⅰ对本工程桩基影响最小;方案Ⅱ对本工程桩基影响非常大,由于安全距离要求大,周边土体需要加固,直接导致桥梁工程桩基不能实施。由于地铁规划1号线线位与海沽道线位已定,不能调整。最终经各方面沟通协调确定桥梁工程按先于地铁盾构施工进行设计和施工,即满足方案Ⅰ中的要求即可。

4桥梁下部结构设计

4.1桥梁下部结构设计方案的确定

洪泥河中桥桥梁中心桩号为K2+946.274,位于直线上,斜交角度为17°,采用分离式双幅桥,左幅桥宽为25.5m,右幅桥宽为23.5m,跨径为3×25m,梁高1.40m,结构形式采用预应力混凝土简支变连续小箱梁结构。桥梁下部结构的设计为了尽量减少对河道的影响,减少阻水效果,通常采用排架墩。由于地铁盾构的影响,与桩位有冲突,此桥不能采用排架墩,需特殊设计。经设计计算,采用较大跨径盖梁,盖梁下设双柱墩,墩底设承台及桩基,桩基之间预留地铁盾构空间,可以确保与地铁盾构之间安全距离大于1.5m的要求,以此保证后期地铁施工的安全性。地铁盾构间距内桩基1.5m,地铁盾构外侧桩基1.2m,立柱采用1.8m的圆柱墩,以减少河流阻力。由于桥位与河道斜交角度较大为17°,立柱间距较大为19.425m/cos17°=20.313m,导致盖梁截面较大,盖梁梁高2.5m,顺桥向宽度为2.0m,普通的钢筋混凝土结构已经不能满足计算要求,需要采用预应力混凝土结构进行设计。

4.2桥梁下部结构设计的特殊性及处理方法

由于地铁盾构的影响,通过下部结构特殊设计,可满足桩基边缘距盾构边缘距离大于1.5m安全距离的要求;但地铁盾构施工过程中对周围土体产生扰动,引起土体水平位移和竖向位移以及桩基受力及变形发生变化,仍有可能对桥梁桩基造成影响,因此设计及施工中采取以下措施:

(1)设计中不考虑盾构施工影响区域内土的桩侧正摩阻力,对桩长进行加长设计。

(2)设计中在位于地铁上下行之间的桥梁桩基盾构施工影响区域以上采用钢护筒进行防护,该钢护筒不拔出,作为永久性结构使用。

(3)根据地质报告本场地埋深约10.00m以上主要为欠固结软土,软土在自重及其它外荷载作用下将产生固结沉降,对桩侧产生负摩阻力。设计中在验算桩基承载力时,要充分考虑桩侧负摩阻力的影响。

(4)场地分布人工填土及淤泥质软土,填土土质松散,淤泥质土土质软,钻孔灌注桩桩身穿越填土及淤泥质软土时,须注意孔壁坍塌及缩颈现象,可采取埋设护筒、合理调配泥浆比重等措施。

(5)钻孔灌注桩桩身穿越厚层粉土、粉砂时,因钻进速度慢,钻孔施工时间长,易产生塌孔、桩身夹泥等不良现象,施工时应采取调节泥浆比重、成孔后加强清孔等措施防止塌孔、桩身夹泥等不良现象发生,确保成桩质量。

(6)在施工过程中,尚应进行必要的施工监测。检查施工引起的地表沉降是否超过允许范围,决定是否需要采取保护措施,并为确定经济、合理的保护措施提供依据,对桥梁的沉降及倾斜变形应进行相应的实时的监测。一旦发现实测位移超过警戒值应立即对桩周土体进行注浆加固。

(7)盾构施工至少应在桩基施工完成一个月后进行,桩基施工结束后,应对桩身完整性进行检测,在盾构顶进结束后,应重新对地铁上下行之间的桩基完整性进行检测,在检测结果满足规范要求后,方可施工承台。

5盾构施工注意事项

(1)合理安排盾构推进顺序。盾构施工至少应在桩基施工完成一个月后进行,先掘进左线,后掘进右线,为了减少对土的扰动,左右线盾构始发时间间隔为一个月。

(2)桥区段穿越前做好准备工作。在盾构到达桥区段30m界限前,检查刀具磨损量,有磨损立即更换滚刀;确保管片防水和拼装质量;选用质量优良的盾尾油脂。

(3)合理安排施工工序,安排专人负责掘进出土与管片拼装等主要工序,尽量缩短测量、管片、渣土车等待时间,提高运输效率,维持作业面连续施工,加快管片拼装作业,减少对周边土体的影响。

(4)控制施工进度,严格控制盾构纠偏量,稳步前进。增加刀盘转速,降低盾构推进速度,控制油缸推进力,减小盾构推进过程中对周边土体的剪切挤压作用,及时有效的纠正推进偏差。

(5)同步注浆。严格控制同步注浆量和浆液质量,通过同步注浆及时填充建筑空隙,减少施工过程中的土体变形,同步注浆量增加到建筑空隙的200%~250%左右。

(6)二次注浆。为减少同步注浆液早期强度低、隧道受侧向分力影响大、效果不佳等问题,在管片出盾尾5环后,需要进行二次注浆。浆液为瞬凝性好、具有较高的早期强度的双液浆。注浆量根据变形监测情况确定。

(7)根据施工进程和监测结果,及时调整同步注浆和二次注浆的配合比。

6结束语

第9篇

关键词:组合小箱梁桥高架桥预应力盖梁挖孔灌注桩

一、项目概况

灵山高架桥是龙(游)-丽(水)高速公路龙游改建段上的一座高架桥,位于龙游县灵山乡。龙丽高速公路是在龙丽一级公路的基础上改建。由于一级公路改高速后,对一级公路实施时占用的50省道灵山段必须恢复。通过多种方案论证比较后决定采用全线高架桥跨越50省道,桥下的50省道按二级公路标准修建。高架桥上部构造为(45×25)m部分预应力砼组合小箱梁,先简支后连续,全桥分8联。该桥左右幅分离,单幅桥梁宽度为11.75m,全桥长1130m。桥址处地质岩层较浅,岩性单一,属片麻岩。桥位处属亚热带季风气候,极端最高气温41.8℃,极端最低气温-11.4℃,年平均气温在16.3~17.3℃。

二、设计标准

1.公路等级:高速公路;

2.设计荷载:公路-I级;

3.计算行车速度:80km/h;

4.桥梁横断面:整体式路基宽24.5m,桥梁比路基两边窄0.25m,桥梁左右幅分离,单幅桥梁宽度为11.75m,横断面布置为0.5m(钢筋砼防撞护栏)+10.5m(行车道)+0.75m(波形钢护栏);

5.地震动峰值加速度系数:0.05g,重要性修正系数1.3,抗震构造措施按七度设防。

三、总体设计

桥址处地形平坦,两边为灵山乡村民居住区,人员比较密集。已建成的龙丽一级公路为双向四车道,交通量较大。要求施工过程中不能中断龙丽一级公路、50省道的通行,因而桥梁规模、施工难度都比较大。桥型方案设计,力求做到技术可靠、经济合理、施工方便、施工周期短、维护费用低,并且尽量减少对相关工程正常运营的影响。结合初步设计专家评审意见,上部构造选择预制的预应力砼组合小箱梁,先简支后连续。

桥跨布置为:(6×25+5×25+3×(6×25)+2×(5×25)+6×25)m,墩台均按法向布置。全桥分为8联,左右幅布跨相同。下部构造为:矩形墩、肋式台,矩形挖孔灌注桩基础。

四、上、下部结构设计

1.上部结构

本桥上部结构采用25m部分预应力(A类)混凝土组合小箱梁,5~6孔为一联,采用多箱单独预制,简支安装,现浇连续接头的先简支后连续的结构体系。梁高140cm,顶板厚18cm,底板厚从跨中至根部由18cm变化为25cm,腹板厚从跨中至根部由18cm变化为25cm。半幅桥每孔布置4片箱梁,箱梁梁间距为285cm,悬臂长160cm,箱梁之间设18cm厚横向湿接缝。箱梁连续处设1道厚35cm的中横梁,边跨梁端设1道厚25cm的端横梁。小箱梁采用C50混凝土预制。

2.下部结构

下部结构的特点是桥墩类型多,是本桥设计的难点,也是本文要重点介绍的内容。为了保证桥下50省道的通行净空要求,本桥采用二柱或者三柱式桥墩。二柱式墩有37个,其中柱间距为14m的有35个,柱间距为12.4m的有1个,柱间距为15.2m的有1个;三柱式墩有7个。全桥合计有10种不同类型的桥墩。

桥墩盖梁统一采用矩形截面,高为200cm,宽为180cm。其中预应力盖梁设计又是本桥最复杂的部分。盖梁采用C50混凝土,按全预应力砼构件设计。采用ASTMA416/A416M-98标准的低松驰钢铰线,其标准强度1860MPa,直径15.24mm,公称面积140mm2,弹性模量Ey=1.95×105MPa,所使用的预应力锚具应符合国家标准GB/T14370—2000中规定的I类锚具要求。管道采用预埋金属波纹管成型。

桥墩墩身采用等截面矩形实心墩,墩高为600~700cm。两柱式和三柱式中墩的墩身截面尺寸为:180cm(横)×150cm(纵);三柱式边墩为:150cm(横)×150cm(纵)。墩柱按普通钢筋砼构件设计,采用C30混凝土。

为了加快施工进度和减少施工过程中对龙丽一级公路、50省道正常运营的影响,建设单位要求设计单位对桥墩下部桩基进行优化设计。桥址处弱风化岩层比较浅,如果按嵌岩桩设计,桩长只有15~25米,完全可以采用人工开挖。采用这种施工方法每个桥墩之间互相独立不受影响,作业面广,可以同时大面积施工。经过综合分析比较,桥墩下部桩基并没有采用以往通常的做法:群桩加承台;而是采用等截面大尺寸矩形挖孔灌注桩。两柱式和三柱式中墩的桩基截面尺寸为:240cm(横)×180cm(纵),三柱式边墩为:180cm(横)×180cm(纵);采用C25混凝土。桥墩构造见图1和图2。

图1二柱式桥墩一般构造

图2三柱式桥墩一般构造

五、结构计算

1.组合小箱梁

小箱梁内力计算采用平面杆系有限元程序桥梁博士3.0进行计算,荷载横向分配系数采用刚接板(梁)法计算,并用梁格法进行检算,桥面板计算按单向板和悬臂板计算。本设计为部分预应力(A类)混凝土结构,故跨中底板和支点处顶板根据承载能力极限状态设置受力钢筋。此种结构在高速公路上比较常用,有较成熟的设计、施工方法,本文不再赘述。

2.盖梁桥墩盖梁施工及运营阶段的内力计算采用桥梁博士3.0进行计算。预应力混凝土现浇盖梁施工工艺流程为:下部桩基、立柱施工完成后,搭设支架浇筑盖梁砼;盖梁砼达到设计强度后张拉第一批钢束;然后进行上部小箱梁的架设,再张拉第二批钢束;最后进行桥面系施工。按此流程分4个主要工况计算结构各截面内力、应力和位移。成桥运营计算包括恒载、活载、支点沉降和温度等工况,按规范进行最不利荷载组合。温度荷载按体系升温5°C及降温5°C计算;不均匀沉降按10mm计算。

计算结果:在最不利荷载组合下,盖梁上缘最小应力为压应力1.2MPa,盖梁上缘最大应力为压应力5.5MPa,盖梁下缘最小应力为压应力0.5MPa,盖梁下缘最大应力为压应力6.6MPa,均满足规范要求。

3.盖梁与墩柱连接方式对比计算

一般桥墩盖梁与墩柱都是采取直接固结的连接方式,本桥设计中两柱式桥墩也是采用这种方式,见图1。但是在三柱式桥墩盖梁计算中,发现离中柱距离比较大的边柱如果采用梁柱固结,计算很难满足规范要求,因此采取盖梁与墩柱之间设置单向活动盆式支座,见图2。

为弄清2种连接方式对盖梁的影响,在设计中,针对梁柱设置支座和固结2种情况进行对比计算。取5号墩盖梁靠边墩的部分单元在运营阶段的截面应力进行比较,其结果见表1。

单元号

截面号

下缘应力(MPa)

表1说明梁柱之间设置支座可有效增加截面下缘的压应力,对预防盖梁下缘开裂有明显的作用。因此,在该桥设计中,对三柱式桥墩盖梁均设置有盆式支座。其中3、4、39和40号墩两侧边柱设盆式支座,5、6和38号墩单侧边柱设盆式支座。

六、结语

灵山高架是龙丽高速公路上的控制性工程之一,施工工期短、施工场地受限制、下部桥墩构造复杂是该桥的特点也是设计和施工的难点。通过精心设计,努力创新,大胆采用新技术、新工艺,使该桥上下部结构尺寸合理、比例协调,全桥气势宏大,庄重沉稳又不失轻盈美观,符合安全、经济、适用、美观的原则。本工程对类似高架桥工程日后的设计和施工具有一定的参考价值。

参考文献

[1]JTGD60-2004.公路桥涵设计通用规范[S].

免责声明以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
相关文章
相关期刊
服务与支付
发表咨询 润稿咨询 文秘咨询 购买杂志