欢迎来到易发表网,发表咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

量子通信论文优选九篇

时间:2022-12-03 14:20:07

量子通信论文

量子通信论文第1篇

量子力学诞生于1926年,是人类对微观世界加以认识的理论基础之一。量子力学和相对论之间的不相容性在1935年被爱因斯坦、波多尔基斯和罗森论证后,约翰•贝尔于1964年提出贝尔理论,,阿斯派克等人于1982年证明了超光速响应的存在。1989年第一次演示成功量子密钥传输,1997年量子态隐形传输的原理性实验验证由奥地利蔡林格小组在室内首次完成,2004年,该小组又将量子态隐形传输距离成功提高到600米。2007年开始我国架设了长达16公里的自由空间量子信道,于2009年成功实现世界上量子隐形传态的最远距离。

二、量子通信技术的发展趋势

量子通信技术的研究方向除了包括量子隐形传态还包括量子安全直接通信等,突破了现有信息技术,引起了学术界和社会的高度重视。与传统通信技术相比,量子通信除具有超强抗干扰能力外且不需对传统信道进行借助;与此同时量子通信的密码被破译的可能性几乎没有,具有较强的保密性;另外,量子通信几乎不存在线路时延,传输速度很快。量子通信发展仅仅经历了20年左右,但其发展却十分迅猛,目前已经被很多国家和军方给予高度关注。

量子通信在国防和军事上具有广阔的应用前景,作为量子技术的最大特征,量子技术的安全性是传统加密通信所无可企及的。量子通信技术的超强保密性,能够有效保证己方军事密件和军事行动不被敌方破译及侦析,在国防和军事领域显示出无与伦比的魅力。另一方面,在破解复杂的加密算法上,也许现有计算机可能需要好几万年的时间,在现实中是完全无法接受且几乎没有实用价值的。但量子计算机却能在几分钟内将加密算法破解,如果未来这种技术被投入实用,传统的数学密码体制将处于危险之中,而量子通信技术则能能够抵御这种破解和威胁。

在民间通信领域量子通信技术的应用前景也同样广阔。中国科技大学在2009年对界上首个5节点的全通型量子通信网络进行组建后,使得实时语音量子保密通信被首次实现,城市范围的安全量子通信网络在这种“城域量子通信网络”基础上成为了现实。

三、总结

量子通信论文第2篇

[关键词]量子计算 量子通信 通信效率 安全通信

中图分类号:TN918 文献标识码:A 文章编号:1009-914X(2016)09-0128-01

引言

随着科学技术的飞速发展,量子信息学逐渐得到人们的关注与重视,在近代物理学、计算机科学等领域都有所涉及。通过量子力学的基础,不断的发展与延伸。量子信息学,是量子力学与信息科学相结合的产物,是以量子力学的态叠加原理为基础,研究信息处理的一门新兴前沿科学。包括量子密码术、量子通信、量子计算机等几个方面。我们在这里,着重的了解一些量子通信。

一、 量子通信协议概念

1,量子通信协议定义

量子通信系统的基本部件包括量子态发生器、量子通道和量子测量装置。按其所传输的信息是经典还是量子而分为两类。前者主要用于量子密钥的传输,后者则可用于量子隐形传态和量子纠缠的分发。其中隐形传送是指脱离实物的一种“完全”的信息传送。可以想象:先提取原物的所有信息,然后将这些信息传送到接收地点,接收者依据这些信息,选取与构成原物完全相同的基本单元,制造出原物完美的复制品。实际上是一种对于通信地保密性的传输。是一种在理论上可以保证通信绝对安全的一种通信方式。由于量子力学中的不确定性原理,是不允许精确地提取原物的全部信息,因此长期以来,隐形传送不过是一种幻想而已。

2,量子通信与光通信的区别

量子通信与光通信的区别,在于在通信中用的光的强度是不同的。光通信一般采用是强光,包括无线电、微波、光缆、电缆等具体形式。通过偏振或相位等的调制方式来实现。量子通信讨论的是光子级别的很弱的光,通过对光子态的调制,但是主要利用了光子的特性,量子态不可克隆原理和海森堡不确定性关系。这也是区别于光通信的重点。

二、量子通信基本方式

量子通信在量子力学原理的基础上,通过量子态编码和携带信息进行加工处理,将信息进行传递。只要包括:量子隐形传态、量子密钥分发等,下面主要介绍这两个组成部分:

1,量子隐形传态

量子隐形传态,又称量子遥传、量子隐形传输。经由经典通道和EPR 通道传送未知量子态。利用分散量子缠结与一些物理讯息的转换来传送量子态至任意距离的位置的技术。它传输是量子态携带的量子信息。想要实现量子隐形传态,要求接收方和发送方拥有一对共享的EPR对,即BELL态(贝尔态)。发送方对他的一半EPR对与发送的信息所在的粒子进行结合,而接收方所有的另一半EPR对将在瞬间坍缩为另一状态。根据这条信息,接收方对自己所拥有的另一半EPR对做相应幺正变换即可恢复原本信息。到乙地,根据这些信息,在乙地构造出原量子态的全貌。量子隐形传态大致可以这样描述:准备一对纠缠光子对,一个光子发送给有原始量子态(即第三个光子)的甲方,另一个光子发送给要复制第三光子的量子态的乙方。甲方让收到的一个光子与第三光子相互干涉(“再纠缠”),再随机选取偏振片的方向测量干涉的结果,将测量方向与结果通过普通信道告诉乙方;乙方据此选择相应的测量方向测量他收到的光子,就能使该光子处于第三光子的量子态。

量子隐形传态作为量子通信中最简单的一种,是实现全球量子通信网络的可行性的前提研究。它的存在与应用,可以完全的保证用户的信息安全,通信保密,同时如果出现有人窃听的现象,将会及时的进行信息的改变,保证内容的“独一无二”。

2,量子密钥分发

量子密钥分发以量子物理与信息学为基础,是量子密码研究方向中不可缺少的重要部分。被认为是安全性最高的加密方式,实现绝对安全的密码体制。当然这只是理论上的内容,在现实生活中还是有一定的差距。只是理论上具有无条件的安全性。1969年提出用量子力学的理论知识进行加密信息处理。到了1984年,第一次提出量子密钥分发协议,即BB84协议。随后又提出B92协议。2007年,中国科学技术大学院士潘建伟小组在国际上首次实现百公里量级的诱骗态量子密钥分发,解决了非理想单光子源带来的安全漏洞。后又与美国斯坦福大学联合开发了国际上迄今为止最先进的室温通信波段单光子探测器――基于周期极化铌酸锂波导的上转换探测器。解决了现实环境中单光子探测系统易被黑客攻击的安全隐患。保证了非理想光源系统的安全性。生成量子密钥大致为:准备一批纠缠光子对,一个光子发送给发信方,另一个光子发送给收信方。测量光子极化方向的偏振片的方位约定好两种。两人每次测量一个光子时选择的方向都是随机的,但要记录下每次选择的方向,当然也要记录下每次测量的结果,有光子通过偏振片就记1,无光子通过则记0。通过普通信道两人交换测量方向的记录,那些测量方向不一致的测量结果的记录都舍去不要,剩下的那些测量方向相同所对应的测量结果,两人应一致,这一致的记录就可作为两人共同的密钥。

总结

经典通信较光量子通信相比,量子通信具有传统通信方式所不具备的绝对安全特性。具有保密性强、大容量、远距离传输等特点。量子通信不仅在军事、国防等领域具有重要的作用,而且会极大地促进国民经济的发展。逐渐走进人们的日常生活。为了让量子通信从理论走到现实,从上世纪90年代开始,国内外科学家做了大量的研究工作。自1993年美国IBM的研究人员提出量子通信理论以来,美国国家科学基金会和国防高级研究计划局都对此项目进行了深入的研究,欧盟在1999年集中国际力量致力于量子通信的研究,研究项目多达12个,日本邮政省把量子通信作为21世纪的战略项目。我国从上世纪80年代开始从事量子光学领域的研究,近几年来,中国科学技术大学的量子研究小组在量子通信方面取得了突出的成绩。

参考文献

[1]莫玲 - 基于专利分析的欧盟量子通信技术发展现状研究《淮北师范大学学报:自然科学版》 - 2015.

[2]徐兵杰,刘文林,毛钧庆,量子通信技术发展现状及面临的问题研究《通信技术》 - 2014.

[3]胡广军,王建 -量子通信技术发展现状及发展趋势研究 《中国新通信》 - 2014.

[4]肖玲玲,金成城 - 基于专利分析的量子通信技术发展研究《全球科技经济t望》 - 2015.

[5]宋斌 - 空间量子通信技术发展现状《移动信息》 - 2015.

量子通信论文第3篇

关键词:量子通信 量子纠缠 隔空传物

中图分类号:TN91 文献标识码:A 文章编号:1007-9416(2012)10-0060-01

1、概论

量子技术于上个世纪八十年代诞生并在二十世纪末在国际学术界引起了巨大兴趣和高度重视。以量子纠缠为原理的量子信息技术突破了现有信息技术的物理极限,在通信科学领域中提供新的原理和方法。二十一世纪信息科学将从“经典”时代跨越到“量子”时代,其发展将对国民经济军事、国防安全等都有着直接而重大的影响,各国都将量子技术作为重大战略点投入并发展。

2、量子纠缠技术

量子纠缠是一种存在于多种量子系统中的一种子系统。从测量学的角度分析,量子纠缠的结果无法独立于单独的系统且必定联系其他系统的参数。通常,一个量子是无法产生纠缠态的,至少要有两个量子位。假设由C和D构成一个复合系统,如果其量子态不能表示为该系统的纠缠态,则此复合系统的波函数不能表示为该子系统的直积:

常见的纠缠态有:两个粒子构成的贝尔基,它两两相交且具有最大的纠缠态;三个粒子构成的GHZ纠缠态等。

量子纠缠的实质是一种微观的多系统之间的一种非定域的关联,它是传递量子信息的通道,这也是用于实现量子通信的基础。

3、量子通信技术

量子通信是以量子纠缠技术作为基础,通过量子纠缠所产生的连锁效应来实现信息传递的一种新型的通信方式。量子通信结合了量子论和信息论,主要应用于量子密码通信,远程传态等。

量子通信的信息单位称为量子比特(qubit),它是两种逻辑态的叠加。在量子通信中,我们用量子态来表示信息,信息传递和信息处理中遇到的问题都采用量子理论来处理,其中,信息的传输是利用量子态在量子通道中的传送,信息的处理和计算是利用量子态的幺正变换,信息的提取是对量子系统进行测量。

我们看到,信息一旦量子化,则量子力学便成为了实现量子通信的物理基础,量子具有如下特性:

(1)量子的纠缠性。

(2)量子的不可克隆性。

(3)量子的叠加性和相干性。

在量子通信系统中,两个共享信息的人必须共享两个几乎一致的成对的量子(如光子),当其中一个量子携带了信息,则此信息会消失或者重现在另一个光子上,以此实现“不加外力”方式传输信息。所谓的“不加外力”传输是指信息在一个地方消失,又能在另一个地方重现的过程。由于报文是一种“不加外力”方式传输信息,因此,量子通信中的发信者与收信者利用报文方式传输所共享的量子的数量取决于发送报文本身的长度。由于量子只能成对产生且只能在一对发送者和接受者之间进行传输,所以量子通信网络也只能是一个链路一个链路地建立。

量子通信的特点在于量子通信中的信息传递可以不通过通信双方之间的空间,从而使得通信不会受到空间环境的制约与影响;量子通信的传输线路时延可以为0,是最快的通信方式;量子通信中,第三方是无法进行干扰和窃听。信息的载体—量子,是完全只保存在通信双方处;量子通信不存在任何电磁辐射污染,属于环保型新技术。

4、量子通信前沿

量子通信的实现方式通常有两种:

(1)利用量子耦合技术,制造出多粒子的量子耦合态。

(2)利用生物技术,建立意识生物的意识器官之间的某种量子耦合。

今年五月,中国科学院成功实现了远距离量子通信隐态传输。量子的运动不遵循中学学过的牛顿定律和麦克斯韦电磁定律,也不遵循描述宏观物体运动规律的相对论。量子通信最突出的是不能同时满足实在性和定域性。由于量子处于所有可能状态的叠加态,当你以不同方式观测它时,它才明确呈现出特定的状态,呈现何种状态与观测者和观测方式有关。其实现量子通信隐态传输原理如下:第一,把相干的两个量子A和B分别传送到信息的发端和收端;第二,另取一个量子C(这个C就是要被传输的东西),在发端对A和C做某种联合测量;第三,通过经典信道(比如打电话、发邮件等)把联合测量A与C的结果告知B;第四,收端在得知A与C联合测量的结果之后,做某种运算(或测量),运算之后B的状态与C在测量之前的状态就一致了(在发端对A和C进行测量的瞬间,由于A和B是相干的,B的状态也受到了某种程度的影响,这种影响,是C的初始状态可以在B上还原的根本原因)。到此为止,量子C在发端消失了(对量子的测量会导致量子状态的变化,从这个意义上讲,测量之后的C已经不是原来的C了),它又出现在收端(收端量子B的状态与原来C的状态相同,从这个意义上讲,C在收端重现了)。具体到物体从某地消失,瞬间又出现在另外的地方,从上面的解释可以知道,单从物理原理上说是可能的。更严格的说法是物体在某地被销毁,然后在另一地用相同的原料被重构。

与现在的通信方式相比,量子通信最大的特点是信道资源不再是瓶颈,甚至不再是有限的,量子信道的容量无限大,量子态传输的速度无限快,而且量子态的传输无法拦截,因而是绝对安全的。

参考文献

量子通信论文第4篇

立足大背景 寻求新发展

量子信息物理,顾名思义,这是一个由信息科学与量子力学学科交叉产生的、全新的研究方向。

“这门学科的出现有其重要的意义。”崔海涛介绍,“根据摩尔(Moore)定律,每18个月,计算机微处理器的速度就会增长一倍,其中单位面积(或体积)上集成的元件数目也会相应地增加。可以预见,在不久的将来,芯片元件就会达到它能以经典方式工作的极限尺度。因此,如何突破这种尺度极限是当代信息科学所面临的一个重大科学问题。量子信息的研究就是充分利用量子物理基本原理的研究成果,发挥量子相干特性的强大作用,探索以全新的方式进行计算、编码和信息传输的可能性,为突破芯片极限提供新概念、新思路和新途径。”“量子力学与信息科学结合,不仅充分显示了学科交叉的重要性,而且量子信息的最终物理实现,会导致信息科学观念和模式的重大变革。”崔海涛说。

时至今日,量子信息技术的发展不仅引起了学术界的关注,各发达国家也针对其制定了本国的研究发展规划,以期抢占未来信息科技的制高点,并投入大量人力、物力用于支撑该领域的基础性、前瞻性的研究。我国也于2006年9月了国家中长期科学和技术发展规划纲要(2006-2020年),将以量子调控技术为代表的量子信息技术的研究纳入到基础研究重大科学研究计划当中。正如《纲要》中所描述的那样:“以微电子为基础的信息技术将达到物理极限,对信息科技发展提出了严峻的挑战,人类必须寻求新出路,而以量子效应为基础的新的信息手段初露端倪,并正在成为发达国家激烈竞争的焦点。量子调控就是探索新的量子现象,发展量子信息学、关联电子学、量子通信、受限小量子体系及人工带隙系统,构建未来信息技术理论基础,具有明显的前瞻性,有可能在20~30年后对人类社会经济发展产生难以估量的影响。”崔海涛团队的研究项目就是在这一大背景下展开,致力于解决量子信息技术中关键的、基础性的问题,并对相关实验技术的发展产生重要的理论指导作用。

紧扣量子纠缠 顺通量子信息

细看崔海涛的研究履历,其关键词便是“量子纠缠”。

“如果说量子信息主要是基于量子力学的相干特征、重构密码、计算和通讯的基本原理,那么,量子纠缠在其中发挥的是非常重要而且非常基本的作用。”在多年的学习和研究过程中,崔海涛认识到,一方面,许多重要的量子信息技术都需要量子纠缠的参与才能实现,例如,量子远程传态、量子保密通讯、量子密钥分发等;另一方面,由于量子体系与其他自由度的相互作用,这种作用最终导致体系的自由度与其他自由度的量子纠缠,由于环境选择的结果,量子体系的相干性质会逐渐消失,此即所谓退相干过程。退相干是实现量子信息过程所面临的最大障碍,如何有效克服退相干,延长量子体系的相干时间是当前量子信息技术研究的前沿课题。“就是这样奇特的物理性质,物理学家们对它的理解至今也非常有限,这严重制约了量子信息技术的发展,因此,建立对量子纠缠普遍的物理理解已经成为当今量子信息领域最为急迫需要解决的问题之一。”

如何建立对多体量子态纠缠的普遍理解?如何在具体的物理系统中制备纠缠的量子多体态?看上去,只要解决了这两个问题,量子纠缠就不再是瓶颈,然而,真的如此简单么?“最直观的做法是将两体纠缠的理解推广到多体。但经事实证明,这种推广具有很大的局限,因为量子多体态的纠缠具有远比两体纠缠更为丰富的内容。”接着,崔海涛进行了举例说明,“在3量子比特中,存在两个随机定域操作与经典通讯操作下不等价的三体纠缠态;GHZ态和W态。它们都是真正的三体纠缠态,却表现出完全不同的纠缠性质。对于GHZ态,任意一个或两个量子比特的约化密度矩阵都是单位阵;而W态,通过对任一量子比特的测量,可以得到其他两个量子比特的最大纠缠态。4个量子比特情况就更为复杂,迄今为止也没有一个完整的分类。”

直观推广不成,崔海涛又开始考虑换角度钻研。他认为,多体纠缠的度量应该包括两方面的内容:纠缠模式(pattern)和纠缠强度(intensity)。纠缠强度即纠缠的大小,现已有一些比较好的度量方式,如几何纠缠;纠缠模式则是指对应多体纠缠的分类。而伴随着纠缠模式,又出现了一个新的问题――多体态不同纠缠模式表示什么样的物理意义?“因为这涉及到如何在实验室中制备不同的多体纠缠。不同的纠缠模式必然对应完全不同的物理性质,SLOCC不等价关系的存在也限制了从‘最大纠缠态’得到其他任意纠缠态的可能。对于不同的纠缠模式,我们需要不同的物理系统(Hamilton量)来制备。这些系统之间又是怎样的关系呢?”

为了解惑,在国家自然科学基金项目“几何相与量子纠缠的理论研究”和“多体系统中的量子纠缠及其几何分类的理论研究”的支持下,崔海涛带领研究团队在此研究方向上刻苦钻研多年,并取得了一些深刻的认识。通过附加对称性的要求,例如,量子态的平移不变性质,他们发现完全可以普遍地建立这些多体纠缠态间的等价关系。而且,经进一步研究发现,这些等价关系可以通过态的几何性质很好地区分。也就是说,不等价的多体纠缠对应体系的不同几何结构。更为重要的是,这些几何结构可以通过几何相物理地加以描述。多体纠缠中的非平庸几何结构的发现并不是孤立的,联系最近凝聚态体系中相关几何效应的发现,有理由相信他们之间存在某种形式的联系。相关的研究工作正在进行中。

事实上,围绕多体系统中的几何相与量子纠缠的理论问题,崔海涛自攻读博士期间就产生了浓厚的兴趣。特别是近5年来,陆续发表了一些高水平的学术成果,并主持承担了一些科研项目。迄今为止共发表学术论文22篇,均为SCI收录,论文总引用次数137次,他引超过80次。其中,有7篇文章发表在国际权威物理学期刊“Physical Review A”上。2007年发表在“Physics Letter A”上的论文“A Study on the suddendeath of entanglement”已被引用60次(他引57次),其他论文亦有不同程度的引用。

对于热爱这项研究的崔海涛来说,这种对未知科学世界的探索是他甘之如饴的兴趣和追求,也是他情愿脚踏实地“做一辈子的职业”。

量子通信论文第5篇

关键词:量子通信;量子纠缠;滑动窗口

中图分类号: TN915.04文献标识码:A文章编号:1005-3824(2014)03-0004-04

0引言

近几年来,随着人们对于网络信息传输质量的要求越来越高,并且各种应用的增加导致整个网络信息量增大,亟需有效提高网络的服务质量。基于量子纠缠态理论,在数据链路层对通信协议进行分析,得到停等协议和选择重传量子通信协议,可以明显减少信息在链路中的传输时延,有效提高信息在链路中的传输速率[12]。但是,选择自动重传协议对于每一个发送的数据帧都要求进行应答,一定程度上加重了通信负担;滑动窗口协议只要求对于一定量的数据帧发送一个应答即可,将有效简化通信过程。因此,研究基于量子纠缠态的滑动窗口通信协议具有一定的意义。本文利用量子理论中量子纠缠态,提出一种基于数据链路层的滑动窗口量子通信协议,并对该协议进行分析。

1量子纠缠态

量子信息学是近20多年来由量子理论、信息科学以及计算机科学相结合起来的新型学科[3],主要利用量子态的特性,探索以全新的方式对信息进行存储、计算、编码和传输的可能性[45]。量子纠缠态是量子光学和量子信息学领域中的一个重要概念,量子态的纠缠是量子信息工程中的重要资源,并广泛应用于量子通信和量子计算的理论研究中[67]。量子纠缠现象最先是由(einsteinpodolskyrosen,EPR)发现的量子力学的特殊现象,对于2个或多个量子系统之间的非定域、非经典的关联性描述,是量子系统内各个子系统或各自由度之间关联的力学属性。那么,量子纠缠态是实现信息高速传输的不可破译通信的理论基础[4]。由量子纠缠交换实现量子远程通信,表明量子状态的转移是瞬间实现的,极大缩短了通信时间。

2滑动窗口通信协议

滑动窗口协议是基于数据链路层允许多个数据帧同时进行信息传输以此来提高传输效率而提出的[8]。对于每一个数据帧用一定位数的二进制标识,并限定每个窗口的最大传输的数据帧数。同时,分别在发送方设置发送窗口,接收方设置相应的接收窗口;接收方不必对每一个数据帧进行应答,只需对这个窗口的最后一个数据帧进行应答,表示整个窗口的所有数据帧接收正确,之后接收下一个窗口的数据。对于当产生错误或者丢失一个、多个数据帧时,需要重传这个窗口的所有数据帧。

对于滑动窗口协议,假如待传送的数据帧为m个,每个滑动窗口最多N个数据帧,且每个数据帧在传输的过程中出错和丢失的概率为p。假定每个数据帧的发送时延为ta,数据帧沿发送链路从发送端到接收端的传输时延为tp,接收端接收到数据帧的所用的处理时延为tpr,接收端发送确认帧的发送时延为tb,确认帧在链路中的传输时延为tp,假设发送端的处理时延也同为tpr。由于数据帧的传输过程中是连续发送,则存在数据帧之间传输时间的重叠。即设时间重叠的系数为β,则0≤β

也就是说,如果出错或丢失的数据帧越多,则滑动窗口量子通信协议将越有效;并且在无差错信息传输中滑动窗口量子通信协议也将比选择连续重传量子通信协议更好。可得出:在单一一个窗口的出错或丢失需要重传的数据帧的概率为p1=y/x,那么对于所有的数据帧有:当p1>c+1xt4+t5(t4+t5)x-1时,滑动窗口量子通信协议比选择连续重传量子通信协议更优。因此,滑动窗口量子通信协议在远程通信和通信信道较差、出错率很高以及传输时延很高的情况下具有更明显的优势。

4结论

利用量子力学中的量子纠缠态,提出了一种基于数据链路层的滑动窗口量子通信协议。该协议在链路的空闲时段通过量子纠缠态的分发建立量子信道,信息的发送通过经典信道进行传输,而后通过量子信道进行反馈确认信息来完成。由于确认量子信息传输的瞬时性,可有效减少信息的传输时间,提高了链路的吞吐量。通过与选择连续重传量子通信协议对比,滑动窗口量子通信协议在十分严峻的环境和远程通信中能够更好地提高信息的传输效率,特别是在卫星通信方面将有更大作用。但是对于所需要重传的数据帧是整个窗口的所有数据帧进行重传,但是整个窗口的所有数据帧并不是全部都出错或丢失需要重传,有的数据帧是完整接收依然被丢弃重传,造成了一些不必要的数据帧的传输,信道的利用率下降。如果能够对于滑动窗口量子通信协议中需要重传的数据帧进行选择性重传将是更有效的解决方案。参考文献:

[1]周南润,曾贵华,龚黎华,等.基于纠缠的数据链路层量子通信协议[J].物理学报,2007,56(9): 50665070.

[2]周南润,曾宾阳,王立军,等.基于纠缠的选择自动重传量子同步通信协议[J].物理学报,2010,59(4):21932199.

[3]王剑,陈皇卿,张权,等. 基于纠缠交换的量子安全通信协议[J].国防科技大学学报,2007,29(2):5660.

[4]陈汉武. 量子信息与量子计算简明教程[M].南京:东南大学,2006.

[5]周小清,邬云文. 量子隐形传态网络的广播与组播[J].物理学报,2012,61(17):16.

[6]LEUNG D,OPPENHEIM J,WINTER A. Quantum network communication―the butterfly and beyond[J].IEEE Transactions on Information Theory, 2010, 56(7):34783490.

[7]唐彦.量子通信及其实现的关键性问题探讨[J].数字通信,2013,40(5):710.

[8]赵静,张来保,张健.连续重传协议和选择重传协议的性能分析[J].通信技术,2003(1):7088.

量子通信论文第6篇

关键词:量子密码 量子通信

中图分类号:TN91 文献标识码:A 文章编号:1007-3973(2011)002-059-01

量子理论诞生以来,科学家就试图利用量子效应来实现远距离、无时延、“绝对安全”的通信,量子通信将成为人类通信技术史上的又一次革命。

1 量子通信技术简介

1.1 基本量子理论

量子态是指原子、中子、质子等粒子的状态,它可表征粒子的能量、旋转、运动、磁场以及其他的物理特性。量子理论主要包括量子纠缠和量子测不准原理,是现代物理学的核心理论。

量子纠缠指的是在量子力学中,有共同来源的两个微观粒子之间存在着某种纠缠关系,不管它们被分开多远,只要一个粒子发生变化,另一个粒子的状态也会立刻发生相同的变化,这也是利用量子效应传递密码的基础。

Heisenberg量子测不准原理是量子力学的基本原理,指在同一时刻以相同精度测定量子的位置与动量是不可能的,只能精确测定两者之一。

1.2 量子通信的原理

量子通信是利用量子纠缠效应进行信息传递的一种新型通信方式。在量子通信系统中,信息的发送方和接收方共享两个纠缠在一起的几乎完全一致的成对光子。当发送方将信息赋予一个光子时,接收方的纠缠光子就会几乎同时发生一致的变化,从而实现用不加外力的方式传输信息,传输的只是表达量子信息的“状态”,作为信息载体的光子本身并不被传输。在这一过程中,发送和接受方需要纠缠光子的数量取决于报文的长度。

量子通信系统的基本部件包括量子态发生器、量子通道和量子测量装置。量子通信的主要应用在于量子密码的传输,与传统通信的唯一区别在于,量子通信采用了一种新的密码生成方式,而且密码不可能被第三方获取。

1.3 量子密码技术

依据Heisenberg的量子测不准原理,通过窃听不能得到确定的有效信息。同时,任何针对量子信号的窃听都将不可避免的留下痕迹,从而被通信方所警觉。量子密码技术就是利用这一原理来判断是否有人窃取传输的密码信息,从而实现密码的绝对安全。

量子密钥分配原理来源于光子偏振的原理。光子任意时刻的偏振方向具有随机性,在两个纠缠光子之间设置偏振片。当光子的偏振方向与偏振偏振片的倾斜方向的夹角很小时,光子改变偏振方向并通过偏振滤光器的概率大,否则就小。特别是当=90°,其概率为0:=45°时,其概率为0.5;=0°,其概率为1°通过公开渠道告知对方是如何旋转的,把检测到一个光子记为“1”,没有检测到记为“0”,双方都能记录到相同的一组二进制数列,以作为密码。如果有人在半路监听,同样需要放置偏振片,就不可避免改变光子的偏振方向,使发送者和接受者记录的数列产生差异。

2 量子通信的发展动态及应用

1926年量子力学诞生,成为人类认识微观世界的理论基础。1935年,爱因斯坦、波多尔基斯和罗森论证了量子力学和相对论之间的不相容性。1964年,约翰・贝尔提出了贝尔理论,阐明用实验来检验超光速响应的可能性。1982年阿斯派克等人证明了超光速响应的存在。1984年,有人提出了用单光子偏振态编码量子密码技术方案,开始了量子密码的研究。1989年,量子密钥传输第一次演示获得成功。1997年,奥地利蔡林格小组在室内首次完成了量子态隐形传输的原理性实验验证;2004年,该小组利用多瑙河底的光纤信道,成功的将量子态隐形传输距离提高到600米。

我国的量子通信技术发展迅速,位居世界前列。2007年开始,中国科大-清华大学联合研究小组开始在北京八达岭与河北怀来之间架设长达16公里的自由空间量子信道,并取得了一系列关键技术突破,最终在2009年成功实现了世界上最远距离的量子隐形传态,这一距离是目前国际上自由空间纠缠光子分发的最远距离,也是目前国际上没有窃听漏洞的量子密钥分发的最大距离。中国科学家在自由空间量子通信方 向上的一系列工作引起了国际学术界的广泛关注。英国的《新科学家》、美国的《今日物理》等多家学术新闻媒体均对这些工作进行了报道。下一步科学家们正在计划通过自由空间实现几百公里的量子通信,超越光纤传输的极限。

量子通信比较传统通信技术具有明显优势:抗干扰能力强,不需要借助传统信道;量子密码几乎不可能被破译,保密性强;线路时延几乎为零,传输速度快。

量子通信论文第7篇

关键词 量子物理;现代信息技术;关系;原理应用

中图分类号:O41 文献标识码:A 文章编号:1671-7597(2013)15-0001-02

量子物理是人们认识微观世界结构和运动规律的科学,它的建立带来了一系列重大的技术应用,使社会生产和生活发生了巨大的变革。量子世界的奇妙特性在提高运算速度、确保信息安全、增大信息容量等方面发挥重要的作用,基于量子物理基本原理的量子信息技术已成为当前各国研究与发展的重要科学技术领域。

随着世界电子信息技术的迅猛发展,以微电子技术为基础的信息技术即将达到物理极限,同时信息安全、隐私问题等越来越突出。2013年5月美国“棱镜门”事件的爆发,引发了对保护信息安全的高度重视,将成为推动量子物理科学与现代信息技术的交融和相互促进发展的契机。因此,充分认识量子物理学的基本原理在现代信息技术中发展的基础地位与作用,是促进现代信息技术发展的前提,也是丰富和发展量子物理学的需要。

1 量子物理基本原理

1)海森堡测不准原理。在量子力学中,任何两组不可同时测量的物理量是共扼的,满足互补性。在进行测量时,对其中一组量的精确测量必然导致另一组量的完全不确定,只能精确测定两者之一。

2)量子不可克隆定理。在量子力学中,不能实现对各未知量子态的精确复制,因为要复制单个量子就只能先作测量,而测量必然改变量子的状态,无法获得与初始量子态完全相同的复制态。

3)态叠加原理。若量子力学系统可能处于和描述的态中,那么态中的线性叠加态也是系统的一个可能态。如果一个量子事件能够用两个或更多可分离的方式来实现,那么系统的态就是每一可能方式的同时迭加。

4)量子纠缠原理。是指微观世界里,有共同来源的两个微观粒子之间存在着纠缠关系,不管它们距离多远,只要一个粒子状态发生变化,另一个粒子状态随即发生相应变化。换言之,存在纠缠关系的粒子无论何时何地,都能“感应”对方状态的变化。

2 量子物理与现代信息技术的关系

2.1 量子物理是现代信息技术的基础与先导

物理学一直是整个科学技术领域中的带头学科并成为整个自然科学的基础,成为推动整个科学技术发展的最主要的动力和源泉。量子力学是20世纪初期为了解决物理上的一些疑难问题而建立起来的一种理论,它不仅解释了微观世界里的许多现象、经验事实,而且还开拓了一系列新的技术领域,直接导致了原子能、半导体、超导、激光、计算机、光通讯等一系列高新技术产业的产生和发展。可以说,从电话的发明到互联网络的实时通信,从晶体管的发明到高速计算机技术的成熟,量子物理开辟了一种全新的信息技术,使人类进人信息化的新时代,因此,量子物理学是现代信息技术发展的主要源泉,而且随着现代科学技术的飞速发展,量子物理学的先导和基础作用将更加显著和重要。

2.2 量子物理为现代信息技术的持续发展提供新的原理和方法

现代信息技术本质上是应用了量子力学基本原理的经典调控技术,随着世界科学技术的迅猛发展,以经典物理学为基础的信息技术即将达到物理极限。因此,现代信息技术的突破,实现可持续发展必须借助于新的原理和新的方法。量子力学作为原子层次的动力学理论,经过飞速发展,已向其他自然科学的各学科领域以及高新技术全面地延伸,量子信息技术就是量子物理学与信息科学相结合产生的新兴学科,它为信息科学技术的持续发展提供了新的原理和方法,使信息技术获得了活力与新特性,量子信息技术也成为当今世界各国研究发展的热点领域。因此,未来的信息技术将是应用到诸如量子态、相位、强关联等深层次量子特性的量子调控技术,充分利用量子物理的新性质开发新的信息功能,突破现代信息技术的物理极限。

2.3 现代信息技术对量子物理学发展的影响

量子信息技术应用量子力学原理和方法来研究信息科学,从而开发出现经典信息无法做到的新信息功能,反过来,现代信息技术的发展大大地丰富了量子物理学的研究内容,也将不断地影响量子物理学的研究方法,有力地将量子理论推向更深层次的发展阶段,使人类对自然界的认识更深刻、更本质。近年来,随着量子信息技术领域研究的不断深入,量子信息技术的发展也使量子物理学研究取得了不少成果,如量子关联、基于熵的不确定关系、量子开放系统环境的控制等问题研究取得了巨大进展。

3 基于量子物理学原理的量子信息技术

基于量子物理原理和方法的量子信息技术成为21世纪信息技术发展的方向,也是引领未来科技发展的重要领域。当前量子物理学的基本原理已经在量子密码术、量子通信、量子计算机等方面得到充分的理论论证和一定的实践应用。

3.1 量子计算机——量子叠加原理

经典计算机建立在经典物理学基础上,遵循普通物理学电学原理的逻辑计算方式,即用电位高低表示0和1以进行运算,因此,经典计算机只能靠以缩小芯片布线间距,加大其单位面积上的数据处理量来提高运算速度。而量子计算遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息。计算方式是建立在微观量子物理学关于量子具有波粒两重性和双位双旋特性的基础上,量子算法的中心思想是利用量子态的叠加态与纠缠态。在量子效应的作用下,量子比特可以同时处于0和1两种相反的状态(量子叠加),这使量子计算机可以同时进行大量运算,因此,量子计算的并行处理,使量子计算机实现了最快的计算速度。未来,基于量子物理原理的量子计算机,不仅运算速度快,存储量大、功耗低,而且体积会大大缩小。

3.2 量子通信——量子纠缠原理

量子通信是一种利用量子纠缠效应进行信息传递的新型通信方式。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等。从信息学上理解,量子通信是利用量子力学的量子态隐形传输或者其他基本原理,以量子系统特有属性及量子测量方法,完成两地之间的信息传递;从物理学上讲,量子通信是采用量子通道来传送量子信息,利用量子效应实现的高性能通信方式,突破现代通信物理极限。量子力学中的纠缠性与非定域性可以保障量子通信中的绝对安全的量子通信,保证量子信息的隐形传态,实现远距离信息转输。所以,与现代通信技术相比,量子通信具有巨大的优越性,具有保密性强、大容量、远距离传输等特点,量子通信创建了新的通信原理和方法。

3.3 量子密码——不可克隆定理

经典密码是以数学为基础,通过经典信号实现,在密钥传送过程中有可能被窃听且不被觉察,故经典密码的密钥不安全。量子密码是一种以现代密码学和量子力学为基础,利用量子物理学方法实现密码思想和操作的新型密码体制,通过量子信号实现。量子密码主要基于量子物理中的测不准原理、量子不可克隆定理等,通信双方在进行保密通信之前,首先使用量子光源,依照量子密钥分配协议在通信双方之间建立对称密钥,再使用建立起来的密钥对明文进行加密,通过公开的量子信道,完成安全密钥分发。因此量子密码技术能够保证:

1)绝对的安全性。对输运光子线路的窃听会破坏原通讯线路之间的相互关系,通讯会被中断,且合法的通信双方可觉察潜在的窃听者并采取相应的措施。

2)不可检测性。无论破译者有多么强大的计算能力,都会在对量子的测量过程中改变量子的状态而使得破译者只能得到一些毫无意义的数据。因此,量子不可克隆定理既是量子密码安全性的依靠,也给量子信息的提取设置了不可逾越的界限,即无条件安全性和对窃听者的可检测性成为量子密码的两个基本特征。

4 结论

量子物理是现代信息技术诞生的基础,是现代信息技术突破物理极限,实现持续发展的动力与源泉。基于量子物理学的原理、特性,如量子叠加原理、量子纠缠原理、海森堡测不准原理和不可克隆定理等,使得量子计算机具有巨大的并行计算能力,提供功能更强的新型运算模式;量子通信可以突破现代信息技术的物理极限,开拓出新的信息功能;量子密码绝对的安全性和不可检测性,实现了绝对的保密通信。随着量子物理学理论在信息技术中的深入应用,量子信息技术将开拓出后莫尔时代的新一代的信息技术。

参考文献

[1]陈枫.量子通信:划时代的崭新技术[N].报,2011.

[2]曾谨言.量子物理学百年回顾[J].北京大学物理学科90年专题特约专稿,2003(10).

[3]李应真,吴斌.物理学是当代高新技术的主要源泉[J].学术论坛,2012.

[4]董新平,杨纲.量子信息原理及其进展[J].许昌学院学报,2007.

[5]周正威,陈巍,孙方稳,项国勇,李传锋.量子信息技术纵览[J].中国科学,2012(17).

[6]郭光灿.量子信息技术[J].中国科学院院刊,2002(5).

[7]朱焕东、黄春晖.量子密码技术及其应用[J].国外电子测量技术,2006(12).

量子通信论文第8篇

【关键词】 量子通信技术 发展现状 趋势 研究

近年来量子通信在各类学术会议或期刊中频频出现,作为一个古老而又新鲜的话题,电视等各种媒体中经常出现各种关于量子通信技术重大突破的报道。在国家技术规划中,“量子调控研究”被列为重大基础科学研究计划之一,在20-30年后预计量子技术将会给人类社会带来巨大影响。量子通信技术的重要性,要求我们必须予以其关注。首先,我们应该对量子通信技术的发展现状有一定了解。

一、量子通信技术的发展现状

在量子通信的概念上,不同的角度对其有不同的表述。总体来说,量子通信是一种新型的通信方式,是量子力学和通信科学的综合产物,它通过对量子纠缠效应的利用来传递信息。量子通信的基本思想主要包括两部分,一为量子密钥分发,二为量子态隐形传输。通过量子密钥分发可以对安全的通信密码加以建立,在一次一次的加密方式下,点对点方式的安全经典通信便得以实现,且这种安全性已经被数学严格证明,是迄今为止经典通信仍然做不到的。百公里量级的量子密钥分发,目前的量子密钥分发技术能够轻松完成的,在光开关等技术辅佐下量子密钥分发技术还可以实现量子密钥分发网络。量子态隐形传输是一种物理载体,能促使量子态(量子信息) 的空间转移的同时又不移动量子态的实现,类似于将从一个信封内将密封信件内容转移到另一个信封内且信息载体自身并不会被移动,这种经典通信中无法想象的事是基于量子纠缠态的分发与量子联合测量完成的。量子中继器这种以量子态隐形传输技术和量子存储技术为基础的技术可以促使任意远距离量子密钥分发及网络的实现。

量子力学诞生于1926年,是人类对微观世界加以认识的理论基础之一。量子力学和相对论之间的不相容性在1935年被爱因斯坦、波多尔基斯和罗森论证后,约翰・贝尔于1964年提出贝尔理论,,阿斯派克等人于1982年证明了超光速响应的存在。1989年第一次演示成功量子密钥传输,1997年量子态隐形传输的原理性实验验证由奥地利蔡林格小组在室内首次完成,2004年,该小组又将量子态隐形传输距离成功提高到600米。2007年开始我国架设了长达16 公里的自由空间量子信道,于2009年成功实现世界上量子隐形传态的最远距离。

二、量子通信技术的发展趋势

量子通信技术的研究方向除了包括量子隐形传态还包括量子安全直接通信等,突破了现有信息技术,引起了学术界和社会的高度重视。与传统通信技术相比,量子通信除具有超强抗干扰能力外且不需对传统信道进行借助;与此同时量子通信的密码被破译的可能性几乎没有,具有较强的保密性;另外,量子通信几乎不存在线路时延,传输速度很快。量子通信发展仅仅经历了20年左右,但其发展却十分迅猛,目前已经被很多国家和军方给予高度关注。

量子通信在国防和军事上具有广阔的应用前景,作为量子技术的最大特征,量子技术的安全性是传统加密通信所无可企及的。量子通信技术的超强保密性,能够有效保证己方军事密件和军事行动不被敌方破译及侦析,在国防和军事领域显示出无与伦比的魅力。另一方面,在破解复杂的加密算法上,也许现有计算机可能需要好几万年的时间,在现实中是完全无法接受且几乎没有实用价值的。但量子计算机却能在几分钟内将加密算法破解,如果未来这种技术被投入实用,传统的数学密码体制将处于危险之中,而量子通信技术则能能够抵御这种破解和威胁。此外,在民间通信领域量子通信技术的应用前景也同样广阔。中国科技大学在2009年对界上首个5 节点的全通型量子通信网络进行组建后,使得实时语音量子保密通信被首次实现,城市范围的安全量子通信网络在这种“城域量子通信网络”基础上成为了现实。

各国正是瞅准了量子通信技术的无限应用前景,纷纷加大对量子通信技术方面的投入力度。在未来的量子通信技术还应注意一些关键性的问题,如单光子源成本的降低、通信传输距离的加大以及检测概率的增强等,都仍需要进一步的研究。

参考文献

[1]新华.量子通信走进人们日常生活[J].军民两用技术与产品,2011,6(06):55-57

[2]池灏,章献民,朱华飞,陈抗生.量子密码的原理、应用和研究进展[J].光电子・激光,2010,1(01):133-134

量子通信论文第9篇

 

关键词:电子商务;科技创新;结构方程模型

 

1文献综述

 

自熊彼特在其经典著作《经济发展理论》中提出创新概念后,创新就成为学术界广泛关注的研究课题。在有关创新的大量研究中,企业创新因素研究具有十分重要的理论和实践意义:国内外学者针对企业创新进行了大量研究表明,创新是企业成长和经济发展和核心驱动力,清晰认知创新影响因素对企业管理、组织架构和激励机制等方面的设计具有重要价值;同时更清晰地认知创新因素有助于学术界加深对创新形成机理的了解。

 

目前有关创新影响因素的研究主要聚焦于以下四方面。首先是“人力资本论”,不少学者认为企业家精神、技术人员本身的创新性劳动是驱动企业技术创新的主要因素[1];其次是“环境诱致论”,部分学者认为企业所处的制度环境,尤其是市场行业环境[2]、宏观经济环境、监管政策环境等是影响企业科技创新行为的重要因素;再次是“组织模式论”,一些学者指出供应链中的企业与企业之间,企业内部不同部门之间协作是创新的重要来源,企业文化、激励机制等组织管理协作模式对企业科技创新具有相当重要的影响[3];最后是“金融刺激论”,不少学者经过实证分析后认为区域的金融发展水平对该地的企业科技创新具有显著影响,实证证据表明,金融体系越完善,区域内企业(尤其是中小型企业)的创新发生率就越高,这主要是基于创新活动需要大量风险资金投入的判断[4]。

 

纵观上述有关创新因素的研究,绝大部分是针对前人提出的某种理论假设,在现实中搜集相关案例和统计数据加以验证,如果与企业科技创新直接正相关,就可以被认为是影响企业科技创新的因素之一。这种方式具有一定客观合理性,但同时也存在其局限性:由于企业科技创新活动是一项多因素共同发生作用的系统工程,因此以目前主流实证方式验证的结论事实上是以相关关系替代因果关系,其结论并不能很好的处理多个因变量相互作用所导致的内生性问题。

 

电子商务作为近年来兴起的新经济形态,其带来的商业模式创新已经引起部分学者的关注。以电子商务为载体的云计算、物联网、VR/AR等技术使得数据信息量快速增长,而信息收集、处理和传播的成本下降和效率提升,导致企业技术创新比以往任何时期都更加容易。李虹[5]认为电子商务给传统企业的供应链体系造成了相当的冲击,传统企业需要顺应电子商务的发展趋势,主动进行技术创新与之对接,从而形成传统业态与电商业态之间的联动;邵鹏等[6]从平台经济的角度讨论了电子商务在商业模式创新方面的动因、驱动力和效果,认为自组织性是电子商务驱动科技创新的关键,并以阿里巴巴等企业为案例进行验证。

 

由于电子商务是近年来刚刚兴起的新型经济业态,因此学术界关于电子商务与企业科技创新之间关系的研究并不多见,且多停留在以定性分析、案例分析为主的质性讨论层面。尽管从直觉上讲电子商务的发展所带来的管理理念、组织模式和营销战略的影响将必然在某种程度上导致企业不断进行科技创新来加以适应,并且从统计数据上我们也同样能够观察出电子商务与企业创新之间存在某种正相关联系(如图1所示),但电子商务对企业科技创新是如何发生作用的?其具体路径又如何?这些都需要深入系统的研究。加之企业创新行为是多种因素共同发挥作用的结果,因此要想真正观察两者之间的关系,单纯讨论电子商务与企业科技创新之间的关系意义不大,需要将可能的因素尽可能全面的纳入到系统中加以分析讨论。

基于此,本研究以电子商务与企业科技创新为主要研究对象,借助结构方程模型系统考察电子商务促进企业科技创新的可能路径。本文第二部分介绍结构方程模型和数据情况;第三部分分析实证研究结果;第四部分为总结和政策建议。

 

2研究方法和数据说明

 

2.1研究假设

 

根据经验和以往研究,我们认为区域电子商务发展可能经过以下假设路径影响企业创新。首先,相当多的研究表明电子商务与经济发展具有相互促进的关系[7—8],而较高的经济发展水平事实上给企业的科技创新提供了良好的土壤。其次,电子商务发展与区域商贸流通体系建设具有较高的相关度[9],一般来说,商贸流通体系是电子商务发展的基础,某地商贸流通体系越成熟,电子商务发展越良好,另一方面,电子商务也反向促进传统商贸流通行业的转型升级[10]。而商贸流通体系的完善为企业科技创新提供了“土壤”。最后,电子商务促进了区域信息化水平的提高,而信息化水平的提高能够有效促进知识的扩散,进而提高区域科技创新水平。

 

尽管我们可以假设电子商务发展通过上述3条

 

路径促进企业科技创新,但现实实践中这5个要素是相互相关的。基于这一客观事实,我们进一步提出以下4组假设。

 

首先,如上文所述,区域内电子商务发展水平会对经济发展、商贸流通体系和信息化水平产生影响。建立第一组假设H1。

 

H1a:区域电子商务发展经济发展水平;H1b:区域电子商务发展商贸流通体系;H1c:区域电子商务发展区域信息化水平。

 

其次,经济发展水平对区域的商贸流通体系、信息化水平和企业科技创新存在影响。第一,经济发展水平与区域商贸流通体系的完善程度存在正向相关关系,区域的经济发展水平越高,对与之适应的商贸流通体系要求越高,所以经济发展需求会刺激本地商贸流通体系的建设。第二,经济发展水平与信息化水平呈正相关关系[11],主要机制是经济发展为信息化能力建设和应用提供基础。第三,区域经济发展水平与企业科技创新水平呈正比例关系,区域的经济发展水平越高,企业进行科技创新的基础和条件就越良好。据此建立第二组假设H2。

 

H2a:经济发展水平商贸流通体系;H2b:经济发展水平区域信息化水平;H2c:经济发展水平企业科技创新。

 

再次,区域的商贸流通体系完善程度影响着该地的经济发展水平、电子商务发展和企业科技创新水平。第一,商贸流通体系会促进经济发展,商贸流通体系越完善,企业生产效率越高,则经济发展水平越高[12]。

 

第二,商贸流通体系的完善程度影响该地电子商务的发展,只有健全的商贸流通体系作为支撑,电子商务才能获得良好发展。第三,商贸流通体系的完善降低企业运行效率,让企业拥有更多的资源投入技术创新。据此建立第三组假设H3。

 

H3a:商贸流通体系经济发展水平;H3b:商贸流通体系区域电子商务发展;H3c:商贸流通体系企业科技创新。

 

最后,信息化水平促进该地的经济发展、商贸流通体系建设和企业科技创新。第一,有关信息化与经济发展之间关系的研究已经汗牛充栋,其中多数认为信息化对经济发展具有促进作用,其机制是信息化通过对传统产业效率的提升促进经济发展[13]。第二,信息化将促进区域的商贸流通业态的发展,一般来说,区域的信息化水平越高,企业的流通效率就越高,商贸流通业态的社会化、专业化水平就越高[14]。第三,区域的信息化水平与企业创新呈正相关关系,一般来说,多数研究表明信息化水平越高,企业创新的成本越低(叶茂林等[15])。据此建立第四组假设H4。

 

H4a:区域信息化水平经济发展水平;H4b:区域信息化水平商贸流通体系;H4c:区域信息化水平企业科技创新。

 

根据以上假设,我们可以建立企业科技创新及其影响因素的概念模型,如图2所示。

2.2方法说明

 

鉴于上文对电子商务发展与企业科技创新水平的假设,本文应用结构方程模型评估两者之间的关系和电子商务发展的作用路径。结构方程模型(Structure Equation Model,SEM)也被称为潜变量模型,或者LISREL分析[16]。该模型整合了因子分析和路径分析两种统计方法,适用于分析多个无法直接测量的因素之间的系数估计。结构方程模型由测量模型和概念模型组成,测量模型反映的是潜变量和可测变量之间的关系,所谓潜变量是指现实中不易直接衡量的变量,如本研究中的企业科技创新、区域信息化水平等,这类变量一般需要借助可测量的指标表示。如式(1)和式(2)所示。

其中X是的观察指标,Y是的观察指标;

 

是X的测量误差,是Y的测量误差;x是

 

qn维的系数矩阵,由X在上的因子载荷组成;

 

y是pn维的系数矩阵,由Y在上的因子载荷

 

组成。p为内生可测变量的数目;q为外生可测变量的数目。

 

概念模型(图2)反映的是潜变量之间的关系。如式(3)所示。

 

其中是内生潜变量,是外生潜变量,是随机干扰项;B是内生潜变量系数矩阵,是外生潜变量系数矩阵;m和n分别表示内生潜变量和外生潜变量的数目。

 

我们使用Amos17软件提供的极大似然估计法估计式(3),极大似然估计法在大样本情况下具有无偏性、一致性和有效性等优秀统计特性。其估计式的形式如式(4)。

其中,tr(S1

 

())是矩阵S1

 

()的迹,log()表示()的行列式的对数,log S表示矩阵S的行列式的对数,

 

p和q

 

是内生可测变量和外生可测变量的个数。

 

2.3数据说明

 

本研究采用的数据来自各类统计年鉴和研究报告。由于各类调查报告的调查时间不定,所以本研究主要使用2014年和2015年的数据,少量缺失数据通过查询周边年份数据进行补齐。其中区域电商发展的指标来自《中国电子商务发展报告(2014—2015)》,区域信息化水平的指标分别来自《中国统计年鉴》《中国互联网发展状况统计报告(2014)》和《腾讯互联网+指数报告》,企业科技创新的指标来自《中国科技统计年鉴(2015)》,商贸流通体系的指标来自《2015大中型批发零售和住宿餐饮企业统计年鉴》,经济发展水平的指标来自《中国统计年鉴》。通过spss软件进行因子分析筛选出20个指标构建本研究所用数据库,这些指标的描述性统计如表所示。

2.4信度和效度检验

 

为了验证本研究所选数据集能够说明本文结论,我们需要对数据的可信程度和有效程度(即信度和效度)进行检验。由于所选各类指标的单位不同,因此本研究先使用SPSS软件进行标准化无量纲处理,之后进行信度和效度检验。

 

信度(reliabilty)是指数据一致性或稳定性的程度,主要反映各测量指标之间含有相同“特质”的比例。本研究使用Chronbach提出的系数法用于衡量信度水平[17]。计算公式如式(5)所示。

其中,K为指标数量,Yi和X分别为组内方差和总体方差。一般认为当系数介于0.35和0.7之间时,数据集具有较好的信度。本研究使用SPSS软件对数据集进行信度测算,如表所示,除了经济发展水平的信度值较低外,其他变量的信度值均符合基本要求,且总体系数为0.605,因此本研究中的数据集具有较好的信度。

效度(validity)是指测量工具能够正确测量出目标特质的程度,按照目标特质的不同可以分为内容效度、效标效度和结构效度。因子分析显示,各变量之间的KMO估计值为0.802,大于通行标准0.7,因此模型的效度水平可以接受。

 

3实证分析结果

 

本文对结构方程模型的拟合优度采用似然比卡方检验、GFI和RMR检验。为了方便比较,我们假设经济发展水平对企业科技创新的促进作用为显著的单位影响,检验结果显示,模型的各项检验值均与饱和模型接近,这说明模型的拟合优度较好。

 

如表3所示,除了经济发展水平影响区域信息化水平和区域信息化水平影响商贸流通体系两个路径不显著外,其他路径均显示在10%的水平上显著,只是显著程度不同而已。这说明本文建立的结构模型能够大致模拟区域电子商务发展与企业科技创新的路径结构和作用水平。基于此,我们可以梳理出区域电子商务发展促进企业科技创新的3条路径。

路径1:区域电子商务发展区域信息化水平企业科技创新。这条路径是本文实证分析结果中最明显的路径:一方面,众所周知,电子商务发展水平与区域的信息化水平存在强烈的正相关关系,通常意义上讲,电子商务是信息化的主要应用之一,基础性的信息化建设是电子商务发展的前提,但近年来我们观察到在中国多数中西部地区,电子商务带动区域信息化发展的作用越来越明显:通过电子商务的使用,带动电子政务、企业信息化,即以盈利性的电子商务驱动各地投入资源进行盈利性相对较小信息化项目建设,以此更好的承接电子商务。另一方面,区域信息化水平的提高能够有力刺激企业科技创新,其机制是信息化水平的提高加快了区域内信息流动和知识扩散,为企业科技创新提供了“土壤”。

 

路径2:区域电子商务发展商贸流通体系企业科技创新。这是一条相对较弱的路径:一方面,尽管实证结果表明区域电子商务的发展对商贸流通体系的影响在10%的水平上显著,但在现实中我们更多地观察到两者在不同地区呈现出不同的关系,一般而言,在大部分地区,电子商务对传统商贸流通体系的冲击作用明显,两者更多的是以一种竞争的关系出现在终端市场中,但在一些本地商贸流通业相对发达的地区,线上线下渠道融合已经成为未来商贸流通业的发展趋势[18]。在本研究中,不同地区的数据“抵消”,但毫无疑问,区域电子商务发展和商贸流通体系具有密切的联系。另一方面,商贸流通体系的成熟度对企业科技创新至关重要,这在以往文献中已有体现,不再赘述。