欢迎来到易发表网,发表咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

卫星通信论文优选九篇

时间:2022-07-13 07:10:12

卫星通信论文

卫星通信论文第1篇

1.1卫星通信具有众多的优势(1)电波覆盖地域比较宽广。(2)传输路数多,通信容量大。(3)通信稳定性好、质量高。(4)卫星通信不受地域限制,运用方式灵活。

1.2卫星通信的一些劣势主要的方面有:(1)延迟现象比较常见。(2)传播过程中由于信号较差,容易出现信号中断的现象。(3)终端产品的选择面不广。

2卫星通信产品的多址体制方式的选择

卫星通信由于具有广播和大范围覆盖的特点,因此,特别适合于多个站之间同时通信,即多址通信。多址通信是指卫星天线波束覆盖区内的任何地球站可以通过共同的卫星进行双边或多边通信。目前比较常用的两种卫星通信多址体制方式为:TDM-FDMA(时分复用-频分多址)和MF-TDMA(跳频-时分多址)。(1)多址体制方式一:TDM-FDMA。(2)多址体制方式二:MF-TDMA。

3卫星通信在铁路应急通信中的应用网络架构

有时候会因为遇到突发性、严重的自然灾害、人为因素导致其他所有通信手段无法使用时,而应急指挥中心又急需现场相关资料,这时就可以利用卫星通信覆盖区域广和快速部署的优势将信息发送到应急指挥中心。常规卫星系统现场接入方式可以分成两种:一种是车载型,一种是便携型,这两种卫星接入方式可以视现场情况而定。而对于铁路应急通信人员来说,以上两种接入方式均可以采用,但在到达应急现场后,还需要在现场对卫星接入设备进行开设,考虑操作使用人员的技术水平和熟练程度,选择自动对星的车载或便携卫星设备就显得非常的方便,可确保快速建立通信链路保证通信。

事发现场人员要将信息传送到应急指挥中心,在铁路应急卫星通信系统网络建设时,可根据实际情况需要,按下文所述三种方案进行建设,如图1所示。

方式一:在中国铁路总公司应急中心建立卫星地面通信站,这样就可以通过应急指挥中心收发数据,再通过地面的有线网络传输到需要数据的各路局应急指挥中心。这种方案对于现代网络资源的应用比较充分,但在遇到一些突况时,数据可能无法通过地面有线网络传输到需要数据的各路局应急指挥中心,这就导致可能会出现一些无法预知的情况。

方式二:在各个路局的应急指挥中心建立卫星通信站,这样就可以在发生状况时迅速的将数据发送到各路局的应急指挥中心,同时各路局也能够及时的下达指令,进行相关问题的处理。这样做的好处是各路局应急指挥中心能及时掌握应急现场状况,但不利的是其建设费用将会大大增加。

方式三:在中国铁路总公司应急指挥中心以及各路局应急指挥中心均设置卫星通信站,这样一来,无论发生什么灾害情况,各路局应急指挥中心与中国铁路总公司应急指挥中心都可以实时掌握事发现场情况。这样做的好处不言而喻,但其建设费用也无疑会昂贵很多。

4结束语

卫星通信论文第2篇

半物理仿真平台的建立采用.NET环境下应用C#编程语言设计具有Windows风格的人机交互半物理仿真平台。通过各个模块的点击模拟操作,可以很好地实现用户对仿真模型的智能化运动控制,并且在完成仿真运动后,读取并记录显示卫星通信机动站运动过程的所有状态位置信息以及虚拟传感器的测距数据,最后生成仿真动画,达到直观的效果,虚拟场景测得的数据最终和真实环境中的实物所得数据进行比较,从而验证智能化控制算法的合理性、适用性。上位机用户平台包括虚拟现实展示、DLL调用测试、卫星通信机动站控制器半物理仿真通讯平台、状态信息的记录与读取、传感器测距信息的记录与读取,状态信号实现卫星通信机动站的虚拟现实运动动画的展示,人机交互半物理仿真平台,如图2所示。

2卫星通信机动站动力学模型的建立

Maplesim是一个多领域物理建模和仿真工具,它提供了一个三维可视化的环境建模以及动画显示仿真结果,在这种环境下,可以通过简单且直观的方式搭建各种复杂系统的模型,还可以可视化分析仿真结果。在Maplesim中能将建立好的模型转换到C代码中,可以在其他应用程序和工具中使用此C代码。在3D可视化建模环境下可以快捷、方便且直观地创建所需要的动力学仿真模型,之后将模型转生成C代码,在VC++环境下编译C代码生成动力学模型的DLL文件,这样可以方便其他应用程序的调用仿真。本研究基于.NET开发平台采用C#语言编写上位机仿真用户界面,进而对生成的DLL文件进行调用。半物理仿真系统开始执行,给定一个初始时间t0(初始值),每次经过t时间后,对动力学模型DLL文件进行调用,从卫星通信机动站的动力学模型DLL中输出第一个状态信号,将这个状态参数传递给卫星通信机动站控制器实物,控制器中对输入的状态参数完成控制算法后将再次发出控制信号并传递给C#软件环境,再经过t时间,再次调用DLL中的动力学模型。此时卫星通信机动站动力学模型的DLL输出第二个状态信号。如此循环反复执行此过程,如图3所示,形成了一个闭环的半物理仿真系统。

3半物理仿真系统设计

卫星通信机动站半物理仿真系统主要由人机交互操作界面、STM32控制器、信号转换器、数据采集系统以及PC机中的卫星通信机动站动力学模型5部分组成。以STM32控制器为核心的卫星通信机动站半物理仿真系统本身是一个闭环系统,在仿真通讯过程中,由卫星通信机动站控制器实物发出控制信号,控制信号模拟量经过信号转换器转换成数字信号,再通过USB虚拟串口通讯传递给PC机,PC机则调用WindowsAPI(Windows系统中可用的核心应用程序编程接口)对数字信号进行接收。PC机将接收到的信号再调用C#软件环境的动力学仿真模型,最后输出一个状态信号。PC机再将输出的状态信号通过WindowsAPI接口发送出去,状态信号经过USB虚拟串口传递给信号转换器。信号转换器将状态信号数字量转换成模拟量后传给卫星通信机动站控制器,在控制器中完成控制算法后,重新输出新的控制信号。此控制信号再经信号转换器PC机动力学模型的DLL,最终返回状态信号,如此循环地执行就形成了一个闭环的半物理仿真系统[4-5],如图4所示为半物理仿真系统框图。

4硬件系统的构建

卫星通信机动站的智能化控制是一个复杂的运动控制系统,其具有多自由度、多传感器、多驱动器、多运动形态的特点,对卫星通信机动站在现实运动过程中的多个传感器的输出模拟量数据进行采集,同时采用SPI串口通讯、蓝牙无线通讯的方式将数据传递给PC机上位机软件用户界面,以数据和虚拟动画相结合的方式直观地显示卫星通信机动站的实时运行状态。采用ADAS3022数据采集系统采集传感器数据,经ADAS3022的数字接口SPI与MCU选用的STM32芯片内部自带的SPI通讯,并且可实现内部自带的ADC(模/数转换器)进行信号转换,再通过HC-05嵌入式蓝牙模块与PC机进行通讯,如图5所示为系统总体设计方案。硬件系统设计了一个完整的5V单电源、8通道、多路复用的数据采集系统,可以集成用于工业级信号的可编程增益仪表放大器(PGIA)[6]。如图6所示为数据采集系统电路原理图。数据采集系统主要是以ADAS3022芯片为核心设计的,ADAS3022芯片上具有完整的DAS,它可以以最高1MSPS转换速率进行转换,能够接受的最大输入信号范围最高可达±24.576V的差分模拟输入信号。与传统的数据采集相比,在标准的数据采集方案中都会涉及到信号缓冲、电平转换、放大、噪声抑制以及其它模拟信号调理等,但是在ADAS3022中则无需这些辅助调理电路。这样一种高性能的核心芯片的应用,简化了具有高精密16位数据采集系统的设计难点,降低了成本。此外,在外观上,它具有更小的外形尺寸(6mm×6mm),40引脚的LFCSP封装;在性能方面,它可以提供最佳的时序和噪声性能,工作温度跨度-40℃到+85℃的工业温度范围[7-8]。此电路系统采用ADAS3022、ADP1613、ADR434和AD8031精密器件的组合,可同时提供高精度和低噪声性能。

5结语

卫星通信论文第3篇

热备件平时与工作设备(主用设备)一起存放于地球站收发设备在线机柜中,与主用设备一同构成二备一工作模式,当主用设备出现故障时,只需通过设备面板本地控制或监控台远程控制进行主备切换,即可完成热备件的取用;对于离线的冷备件,系统采用以下取用策略:(1)系统某主用设备单元故障报警,通过本地控制/远程控制方式进行主备切换,恢复系统正常工作状态;(2)利用备件管理系统查询仓库中相应故障设备单元的完好备件余量,并打印显示完好备件存放位置和相关信息;(3)若有余量且备件性能检测系统中也有相应备件,则率先从备件性能检测系统中取出相应备件进行更换,恢复系统双机热备工作模式,同时从仓库中取出一个相应备件单元放入备件性能检测系统中,恢复备件性能检测系统的完整性,并记录更换信息;(4)若有余量但备件性能检测系统中无相应备件,则根据具体信息从相应库位中选择一个备件进行更换,恢复系统双机热备工作模式,并记录更换信息;(5)替换下的故障单元放入备件性能检测系统进一步确认故障状态和进行故障定位分析,然后做好标记,再存入专门的故障设备仓库中,同时进行故障单元的入库登记;(6)若无可用备件,则修改系统对应故障设备单元的热备件状态以及系统对应的该设备单元的双机热备工作状态,上报备件缺少情况,以便及时采购进行备件补充。

2备件性能检测系统

基于上述备件维护管理策略可知,要实现地球站收发设备备件的离线性能检测,拟设计构建备件性能检测系统,以对备件性能的长期稳定性进行测试与维护,使更换备件的上线成功率达100%,确保更换备件的可用性和可靠性,从而为卫星通信系统的连续稳定运行提供可靠保障。地球站收发设备的备件分为系统级备件和部件级备件,其中系统级备件是指具备集成为有线闭环测试系统条件的备件,部件级备件是指不具备集成为有线闭环测试系统条件的备件。依据收发设备的备件分类情况,可将备件性能检测系统分为系统级备件性能检测系统和部件级备件性能检测平台,组成框图如图1所示。

2.1系统级备件性能检测系统

备件性能检测系统是针对具备集成为有线闭环测试系统条件的备件进行测试的平台,其设计思想是:利用信息产生器及模拟转发器将地球站的发送链路和接收链路的部分零散备件集成为一个自发自收的有线闭环检测链路,用来完成系统级备件的加电测试,并通过监测环路时延值达到对备件的检查与维护,确保更换备件的可用性和可靠性。同时,可完成返修设备及新增设备的验收考核测试、新进人员的业务培训、模拟故障处理演练等任务,具体组成框图如图2所示。

2.2部件级备件性能检测平台

部件级备件性能检测平台是针对不具备集成为有线闭环测试系统条件的备件进行测试的平台,其设计思想是:利用信号源、频谱仪、矢量网络分析仪、逻辑分析仪、功率计等测试仪器对零散的部件级备件进行定期检测维护和指标测试,以确保部件级备件的可用性和可靠性。同时,可作为新购置备件的验收测试平台,具体组成框图如图3所示。

3备件管理系统

3.1备件管理系统的体系结构

对于地球站收发设备的备件设备的管理,传统的管理方法是直接将备件设备放入库房,需要时人工从繁杂的备件设备中查找需要更换的备件设备,费时费力且延误备件上线时间,降低了系统不间断运行的可靠性;并且在系统备件状态发生变化时,表格记录形式无法得到及时更新,容易造成管理上的混乱。因此,为提高备件的使用效率,解决备件分散和备件存取造成的管理混乱等问题,本文建立备件管理系统,通过构建备件信息数据库,设计实现备件出入库管理和备件档案管理流程,实现备件设备信息的科学管理,并为地球站装备管理和采购提供数据支持。备件管理系统的体系结构如图4所示。

3.2备件管理系统的功能模块

本文从系统实用性出发,对信号收发备件管理系统进行需求分析,将系统功能模块划分为基本信息管理、备件库存管理、备件计划管理、使用信息管理、查询统计管理、系统信息管理等几个部分。系统各模块的功能如下:(1)基本信息管理基本信息管理用来设置系统的基础数据信息,如用户信息、备件信息、备件供应商信息、仓库及库位信息等,以便为其它的管理模块提供一个统一规范的基础性数据,并且方便系统的维护。(2)备件库存管理备件库存管理是备件管理系统最为重要的管理模块之一,该模块涵盖了备件从入库到出库之间的全部业务流程,主要实现对备件入库管理、备件出库管理、备件档案管理、库存备件明细、库存备件汇总以及库存报警等的管理。(3)备件计划管理备件计划管理主要实现备件采购计划工作中的备件计划、备件需求统计等功能。(4)库房管理库房及存放柜管理是对备件存放的直接映射,通过库房信息以及备件存放位置的信息,方便快捷地将备件定位到库房存放柜中,解决了原始的纸面记录或无库存记录造成的弊端。(5)使用信息管理使用信息管理主要记录备件上机使用情况,为合理采购备件,提供了第一手资料。(6)查询统计管理查询统计管理可提供灵活多样且直观的查询统计方式,统计出的数据准确可靠,用户可以通过统计汇总出各个备件的库存、维修、使用等数据,为领导决策提供依据。(7)系统信息管理系统信息管理主要完成对信号收发备件管理系统的用户信息和用户密码修改的管理。

4结论

卫星通信论文第4篇

1.1提高网络能力应急通讯系统对数据带宽的要求越来越高,从而造成了海事卫星使用的L波段资源越发的紧张,目前已经无法继续满足出现紧急事件时,救助现场和应急指挥在带宽上的需求量。目前国际上已经加强了对海事卫星的研究,新一代的海事卫星系统在具有原系统特点的技术上提高了信号质量、稳定性以及覆盖范围,从而满足卫星通信对宽带的需求量。第五代海事卫星系统能够在支持89个固定点波束的同时支持多个“移动”点波束,这提高了海事卫星的通信能力,同时带宽也达到了3500MHz。与之配套应用的卫星终端的尺寸为20到60厘米,但却可以为系统提供50MB/s的带宽服务,这对系统传输动态图像和大量的数据传输提供了强力的支持。

1.2海外应急通讯机制在全球经济一体化的影响下,世界各国之间的交流明显增多,海外应急通讯需求也在不断的增加。例如,海地地震的发生。针对该种情况的发生,国家外交、能源、水利水电等大型企业都应当适当的建立海外应急通信机制。在海事卫星的利用上应当对以下问题进行重点考虑。首先,应当在海外组织配带便于携带的承载终端及相应的配套装备,以便在紧急事件发生时为移动通信提供保障。其次,应当在常驻的机构及组织中部署专线,同海事卫星进行网络互连,确保传输通道的可靠和稳定,并成功的将通信网络延至海外。最后,建立合理的网络通信化系统,系统应当合理的将短信、位置、视频、音频等功能进行集成,提供本体和远程一体化解方案。

1.3改善海上航空应急方案网络技术的进步推动了海事卫星的在航空领域上在通信上的发展,同时因为海事卫星在遇到危险后具有安全通信的功能,航空领域的通信的优先级为海事卫星中的最高级。航空领域通信的安全性为海事卫星在航空领域的通信安全提供了有利的支持。目前,在世界各国的推动下,海事卫星在能够完成原有的任务的基础上,对网络宽带进行了完善和优化,实现了在技术上的进一步创新,实现了在语音上的双向优先级呼救,并成功的将其应用到了带宽的终端中,同时在安全服务中加入了IP数据业务,并且建立了热备模式“海上安全数据服务器”;“远程会话”功能主要用于对海上应急工作进行协调;提高在飞行过程中对重要数据的传输能力,从而提高飞机的报告系统与通信地址能够被更好的利用。目前海事卫星正在加快将航空宽带和海洋宽带纳入到ICAO和GMDSS安全通信体系之中,这样在一定程度上也提高了应急通信能力[4]。

1.4完善地面应急通信方案海事卫星应急通信网络目前已经在我国的许多行业中得到了应用,并且取得了不错的效果,但在网络利用上的解决方案尚且不足。一方面为了确保宽带在使用上需要具有一定的稳定性,因此在接入方式上应当发展专网接入。从南极科考、四川汶川大地震等重大事件中对海洋卫星通信的应用案例中可以看出相关部门与政府部门利用专网接入的形式同海事卫星进行连接,这样海事卫星则可以独自享用带宽,在数据传输上的可靠性、稳定性、安全性都将会得到进一步的提高。另一方面对海事卫星的终端进行应用,建立现场延伸解决方案。合理的对SIP、甚高频、IP技术和协议进行应用,从而科学的将海事卫星设备、专用设备、无线设备联系到一起,确保组与组、端到端、现场同异地能够顺利的开展,同时应当利用现代的科技手段不断的提高现场通信中组合性、移动性,从而实现异地和现场的移动指挥,提高医疗救助、公共通讯、救灾抢险等应急能力。

2结论

卫星通信论文第5篇

2013年11月15日,通用动力C4系统公司宣布,通过移动用户目标系统赤道地区的卫星,该公司的一对AN/PRC-155单兵电台成功实现了语音和数据呼叫。该软件定义电台配有移动用户目标系统波形。无论是从北极还是南极的高纬度地区,连通地球赤道静止卫星都是一个难题,因为这些卫星靠近地平线。由于地球是扁圆的球体,在两极地区它会变平,因此,地球表面某些区域看不到赤道上的卫星。“在几近结冰的温度下,在刺骨的北极寒风里,在地球纬度最高地区,唯有PRC-155单兵电台才能连接移动用户目标系统,安全传送语音和调用数据。”通用动力C4系统公司总裁克里斯•麻兹利这样评价该系统。这次验证展示活动于2013年10月中旬进行,涵盖通用动力公司所描述的多种真实场景,包括在阿拉斯加州安克雷奇和巴罗的固定地点,以及绕整个北极圈飞行的飞机。该公司称,除了5名参加试验的人员进行了电话会议,这种双通道AN/PRC-155电台还完成了多重一对一语音通话和数据调用。在演示中,数据调用速率达到了64kb/s。通用动力公司进行过多次测试活动,将该公司的单兵携带和手持电台连通移动用户目标系统。2013年10月份的这次测试为其最新的一次。而在2013年8月,该公司成功通过AN/PRC-155电台将AN/PRC-154“步”电台与移动用户目标系统的一架航空器连通。之前的4月份,该公司基于2012年2月第一次通信验证展示,通过移动用户目标系统完成了电台对电台的语音和数据测试。2012年的演示只是使用卫星模拟器以及装载移动用户目标系统波形的AN/PRC。

2.哈里斯公司“猎鹰”III

哈里斯公司宣布,该公司的AN/PRC-117G“猎鹰”III多波段单兵电台于2013年12月2日与移动用户目标系统卫星成功连通。接下来,该公司又在北极圈进行测试,将“猎鹰”III电台装在一架货运飞机上从阿拉斯加飞往北极,然后返回。北极圈地区当前使用的是甚高频系统。根据该公司提供的数字,有多达30000台的AN/PRC-117G电台可以升级使用移动用户目标系统波形软件。

3.Alico公司相控阵终端

尽管相控阵天线在雷达应用中很常见,但是在通信领域相对少见。然而,Alico系统公司已经在其宽带分布式孔径移动卫星通信系统终端中植入相控阵天线技术,并于2013年6月公布了技术详情。这种X波段系统显示,4个小型矩形平板式天线安装在M1“艾布拉姆斯”坦克和M2“布雷德利”步兵战车车体顶部四周以及MaxxPro防地雷反伏击车的出入口四周。对宽带移动卫星通信相阵天线而言,这种设计考虑非常周全,因为它并没有在车辆的可视部位增加设备,这样就可避免炮塔或者车辆上的货物阻挡信号,也可防止在非常传统系统的突出部分遮挡信号。这就意味着它能在0°~90°的全半球覆盖,从而实现0°~360°连续的全方位覆盖。借助电子束自动转向功能,该系统实现了自动操作,其电子束可以在100Hz频率上指向并跟踪卫星。也就是说,该系统每秒要计算该卫星的相对位置100次。分布式相阵天线还解决了“钥匙孔”(keynole)以及“常平架自锁”(gimballock)问题。前者是稳定电子机械天线系统的难题。由于俯仰角不到90°,这样在顶点处就会有一片空域无法被天线光束覆盖。后者的问题在于其天线系统俯仰角>90°、<180°,所以当常平架达到其仰角极限时,方位转台必须旋转180°才能继续跟踪,因而不能平滑跟踪经过其顶点的卫星。宽波束可以缓解这个问题,但是高增益天线都是窄波束,必须要有所取舍。在相控阵天线覆盖重复区域,可以通过电子方式轻松解决。由于设计之初就是为了解决移动中的语音、数据以及流视频问题,这种全双向系统可以用于很多卫星通信系统,比如美国的全球宽带卫星通信系统(WGS)和XTAR系统、西班牙卫星系统(SpainSat)以及英国的天网卫星系统(Skynet)。该系统采用115V交流电或28V直流电,功耗700W,重68kg。

4.埃尔比特公司

2013年9月,以色列艾尔比特公司(Elbit)在伦敦国际防务展上展示了基于MSR-2000系列的下一代天线Elsat2000E。该天线采用新型被动波导平面面板技术,能够全面覆盖Ku波段。该公司称Elsat2000E技术性能有了巨大提升,大大超越了采用印刷电路多成分平板技术的Elsat2000。Elsat2000E新型天线直径50cm,重15kg,性能和效率是Elsat2000的两倍。埃尔比特公司称其具有30Mb/s的下行速率和5Mb/s的上行速率。该公司强调该系统有个关键特性,即它有先进的三重跟踪机制,具备100°仰角能力,因而可以提升移动中的跟踪和重新锁定性能。该公司声称该系统的G/T比为7dB/K,而这是信号噪声比方式,是天线能够接收的信号。该比值越大,从背景噪音中提取微弱信号的效果就越好。和Elsat2100相似,2000E也集成了该公司的InterSky4M军用战术卫星通信系统平台,能够在视线内、视线外以及超越地平线模式下,提供“无缝”宽带连接。该系统在机械扫描中结合平板相阵技术,最大限度提升了覆盖角度。它能够达成360°全覆盖,俯仰角度从0°~100°,这是其他系统做不到的。通常情况下,天线系统会采用碟状天线,这是因为其增益很好,但是由于高度原因极易被探测到。

5.Ibetor公司X波段终端

2014年2月28日,西班牙Ibetor公司在华盛顿哥伦比亚特区2014卫星展上推出了新型的X波段Ib-Stom100X终端,其特点就是低矮不易探测。由于该终端高度只有20cm,该天线系统实现空气动力的高效能和自由调整(discretion),同时还能在极端地形情况下高效可靠连通。Ib-Stom100X专为舰船、飞机和地面车辆设计,加入了Ibetor公司设计的天线控制单元(ACU),包括惯性单元(IMU)、同千赫兹双GPS接收器、三轴陀螺仪、加速计和磁力计。通过这种组合,该系统号称指向精度提高0.3!,能在移动车辆上获取卫星信号并能“瞬时”再次找回。能做到这一点,部分原因是由于该系统使用的软件程序始终让机械扫描天线指向卫星位置,即使信号受到遮挡仍旧如此。其关键参数为瞬间频率500MHz、G/T比7.5dB/K以及波束中心上行速率高达8Mb/s。依据不同配置,其重量从75~85kg不等。根据Ibetor公司的信息,该系统已在西班牙军队服役。

6.Indra公司

西班牙的Indra公司提供了备选方案,它的Sotm解决方案运行在X和Ku波段上,使用低矮天线,并集成惯性导航。通过IP电台和骨干能力,该系统的卫星通信可为旅、营一级的巡逻部队提供服务。该系统经过专门设计,可用于任何车辆,甚至可用于小型船只。另外,其可选方案还包括Ku波段扩展频率(13.75~14.5GHz)、加密、运行时间20min的不间断电源,还可载有发电机,能够提供10h电力供应。

7.吉拉特卫星网络公司

就在Ibetor公司推出低矮天线终端之后,以色列吉拉特卫星网络公司(Gilat)也紧随其后,于2014年3月11日推出了“低矮光线卫星隐形光线(RaySatStealthRay)300X-M”。该系统经过专门设计,可与任何X波段卫星配套使用,可用于全球宽带卫星通信系统(WGS)以及崎岖道路行驶的车辆。它集成了多种动作传感器,可以进行准确跟踪、在最短时间获取信号以及能够“瞬间”再次找回信号。该系统经过设计,可以轻易装到未经改装的车辆上。它包含一个外置天线,长55.6cm、宽49cm、高25cm、重15kg。另外,它还有内置天线控制单元(ACU),重4.5kg。但是,由于它可以和集成MLT-1000调制解调器一起使用,故不必安装天线控制单元。吉拉特公司新产品的G/T比为2dB/K,传输和接收增益分别是23和25dBi,其接收频率为7.25~7.75GHz,传输频率为7.9!8.4GHz。SR300系列还包括用于Ku波段和Ka波段的低矮天线。

8.DRS技术公司X46-V认证

2013年5月,随着DRS技术公司的X46-V终端获得认证,允许用于美国国防部高性能卫星网络,该公司已能提供X-波段,为更多的偏远、分散的军事单位提供接入全球信息网络(GIG)。该认证由美国国防部联合卫星通信工程中心和美国陆军战略司令部颁发,从而允许X46-V用户接入全球宽带卫星通信系统(WGS),其语音、数据和视频传输速率高达6Mb/s。除了美国部队,澳大利亚、加大那、丹麦、卢森堡、荷兰以及新西兰军队都可以使用该系统卫星。另外,由于可以运行K-y以及Ka波段,该系统能为其它商业和军事卫星提供更大灵活性和冗余能力。该公司还于2013年8月27日宣布,其L-3Linkabit可以提供系列移动卫星通信终端,刚刚升级了Alsat永久移动地球站许可证,可以在美国境内以及其它商业航空器上使用其Ku波段终端。该证书允许的终端包括L-3DatronFSS-4180-LP(0.33×0.46m)、FSS-4180-LC小型孔径天线(圆周长0.46m),还包括LinkabitMPM-1000网络中心IP卫星通信调制解调器。美国陆军的“战术级作战人员信息网”(WIN-T)以及美国海军陆战队的“移动网络”中都采用了L-3终端。

9.全球移动网络主动布局系统

Elexis公司宣布,在成功将全球移动网络主动布局系统(Gnomad)集成到“斯特赖克”装甲车辆之后,公司又将这一经受战斗考验的系统扩展到另一美军的重要平台,并在美国乔治亚州本宁堡的美国陆军第7远征作战试验部队完成安装。全球移动网络主动布局系统易于安装,并且不需要对现有车辆进行改造。该系统包括卫星天线、RF组件以及几代模块底盘,使其可以安装在美国军用产品目录内以及商业用等车辆上,比如“悍马”等。该低矮型天线尺寸为45×35×7in(合114.3×88.9×17.78cm),重量不到25kg,可用于商业和军事卫星。由于采用开放式架构,该系统可以和许多视线内电台以及卫星调制解调器共用,并通过解调器实现全双向语音、数据和视频通信。通过和超高频或甚高频电台配合,比如和“单信道地面及机载无线电系统”(Sincgars)以及嵌入式GPS共用,该系统能够在运行图像中直接嵌入跟踪蓝军数据。该系统传送频率为14.0~14.5GHz、接收频率为17.7GHz或11.7~12.75GHz,速率分别高达512kb/s和2Mb/s。在30°仰角、23℃情况下,G/T值最低为8dB/k。

10.罗克韦尔•柯林斯公司

罗克韦尔•柯林斯瑞典通信技术公司的终端和萨博公司的四轴稳定平台结合,从而产生了一种新型的移动卫星通信终端,既可适用崎岖路面也可用于海上。它可以安装到轻型越野车辆和小型船只上,也可以安装在指挥所车辆和中型滨海船只上。这些应用由于速度快、颠簸剧烈、移动幅度大,建立和保持卫星连接非常困难。但是,该系统可以轻易解决这些问题,在高海况下时速高达50节以及崎岖地形下速度超过40km/h,它都能在1s内自动恢复丢失的连接,同时宽带通信速率可达10Mb/s。该系统全重约140kg,在20°仰角、11.0GHz情况下,G/T值为19dB/K。

11.泰利斯公司

卫星通信论文第6篇

1.1信号采集天线对准某颗通信卫星(如中星6A)后,移动车载站上的卫星信标接收机会收到一定强度的卫星信标,信标值的大小用来衡量对星的准确度。信标机提供串行通信接口,通过串口服务器,将串行通信做协议转换为网络通信协议,再通过一根网线与交换机连接,最终与控制计算机进行数据交换。设备连线后,在计算机上要进行虚拟串口映射,即把串口服务器的串口映射到计算机上,映射成功后,就可以把这些虚拟串口作为计算机上的串口使用,解决计算机本身无串口的问题。载波的发射状态是通过改变调制解调器参数来实现的,控制载波发射状态实际上通过控制调制解调器的发射状态继而达到控制载波状态的目的。调制解调器提供网络接口,通过交换机最终与控制计算机进行数据交换。控制软件实时监视信标机和调制解调器的工作状态,以此作为发送控制指令的依据。

1.2信号处理通过监控软件完成,为了不占用更多的主线程资源,监控软件分别建立两个独立的线程CThreadBeacon信标机线程类和CThreadModem调制解调器线程类,通过这两个线程的通信处理载波的关闭与开启。当确定天线进入遮挡区后,CThreadBeacon信标机线程根据当前的信标强度和调制解调器载波发射的状态,发送打开或关闭载波的消息给CThreadModem线程。CThreadModem线程主要有两个作用,一是读取调制解调器当前的参数,明确设备的工作状态,二是负责接收由CThrea-dBeacon线程发送过来的消息,根据消息的具体内容,向调制解调器发送相应的控制指令。

车载站在载波发射的行进中,如遇到高大的货车或小面积的建筑遮挡瞬间遮挡时,这时关闭载波是不必要的,故在信标机线程中,设定当遮挡超过10s后发送关闭消息给调制解调器线程,进而关闭载波发射。同样在离开遮挡区超过5s后发送开启消息给调制解调器线程,进而开启载波发射。具体流程见图1“载波自动关闭流程图”。

2实现过程

软件以visualc++6.0作为开发编译环境,在基于对话框的应用程序界面中,运用多线程串口通信编程和SNMP网络编程方法,利用线程间通信机制,完成载波自动关闭功能。软件启动时,建立CThreadBeacon线程并启动运行,运用串口通信编程,在InitInstance函数中,初始化串口参数,线程中使用定时器,频率为300ms,按照通信协议格式,以查询方式读取信标强度,经过适当处理后,以浮点数显示在监控界面上,范围是0~10,根据浮点数的大小,来判定天线是否进入遮挡区,如当信标强度小于3时,确定天线进入遮挡区,再以PostThreadMessage的方式发送消息给CThrea-dModem线程。建立CThreadModem线程,运用SNMP网络编程,在In-itInstance函数中,初始化调制解调器SNMP相关参数,创建两消息响应函数OnGetParam_Modem用来获取设备当前状态,和OnSetParam_Modem用来接收由CThreadBeacon线程发送过来的消息,根据消息的附加参数和当前调制解调器的状态,确定发送关闭或开启载波的指令。

3结语

卫星通信论文第7篇

本系统采用LabWindowsCVI来进行设计与开发,系统软件框图如图2所示。软件系统由监控界面、参数设置模块、数据采集模块、程控命令模块、数据处理模块、图像显示模块和数据存储模块组成。各模块功能通过LabWindowsCVI进行模块化设计。计算机通过GPIB通信接口对AV4033的功能控制是通过程控仪器标准指令来实现的,程控指令是可以对频谱仪进行远端控制的一组特殊格式串,包括仪器设置、通道配置、数据扫描方式、控制输出、读取数据、状态报警、接口设置等指令集。这些指令的发送均是字符串形式,所有的频谱仪命令都必须符合特殊的语法规则,在应用高级语言进行编程时,程控指令一般是作为一个独立的参数在调用函数中出现,这类针对远程控制的函数随GPIB接口和采用的高级语言的不同而不同,但其程控指令是相同的,AV4033系列频谱仪的语法命令图如图3所示。本文利用程控指令和频谱仪进行通信时,选择LabWindowsCVI自带的GPIB函数库,可以方便地进行程控命令发送和数据读取操作。

2应用举例

卫星固定通信台站天线口径大波束窄,对天线伺服系统的自动跟踪性能要求较高,为确保通信效果,需定期测量卫星天线系统的自动跟踪性能,传统的测试方法需用频谱仪在射频方舱内测试,且测试结果保持和记录都不方便,利用本系统可以方便进行远程测试,而且可以将测试结果保存在数据存储单元中,方便后续查询和参考。卫星天线跟踪性能测试流程如下:(1)调整卫星天线使其对准通信卫星;(2)在监控主机上按下述过程设置频谱仪;a)按卫星信标频率设置频谱仪中心频率,设置SPAN为0到100KHzb)根据信标信号的电平变化范围设置Sacle/DIV,以使测量过程中的载波电平变化始终落在频谱仪的可显示电平范围内c)根据信标频率稳定度,选择尽可能窄的RBWd)根据载波的峰值频率和功率,调整频谱仪的中心频率和参考电平e)利用键盘调窄SPAN,重复4f)重复5,将SPAN调整到最小g)将SPAN置0,使载波显示谱线作水平运动h)输入扫描时间,确定扫描长度(3)用手控方式调偏卫星天线的方位角和俯仰角,频谱仪显示谱线的电平将随天线偏离卫星而下降(4)启动天线自动跟踪功能,观察卫星信标电平随时间的变化,记录自动跟踪天线的对星过程以及跟踪速度和精度(5)存储记录数据,重复3、4步骤,多记录几次测试结果,分析卫星天线自动跟踪性能。

3结束语

卫星通信论文第8篇

跟踪系统由基本形式均由天线、馈源、接收设备(或计算机)、伺服控制单元等组成。按照天线跟踪目标的方式分类有:①手动跟踪②程序跟踪③自动跟踪

1、手动跟踪

手动跟踪是指根据经验或预知的目标位置数据(如卫星轨道位置)随时间变化的规律,用人工按时调整天线的指向,或者是根据收到信号的大小用人工方式操纵跟踪系统,使其接收最强的信号(用频谱仪或接收机监视)。手动跟踪可以每隔一段时间进行一次。手动跟踪系统由天线、频谱仪(或接收机)、伺服控制器等组成。手动跟踪设备最为简单,可应用于地面站小口径天线对同步卫星的跟踪等指向精度和实时性要求较低的场合。

2、程序跟踪

将卫星的星历数据和天线平台地理坐标和姿态数据一并输入计算机,计算机对这些数据进行处理、运算、比较,得出卫星轨道和天线实际角度在标准时间内的角度差值,然后将此值送入伺服控制器,驱动天线,消除误差角。不断地比较、驱动,使天线一直指向卫星。程序跟踪可以应用在地面或车载小口径天线对卫星的跟踪。由于地球的密度不均匀和其他干扰的影响,星历数据会随着时间有小的变化,一般很难计算出长时间的精确轨道数据。从而进行长时间的跟踪会有积累的误差。

3、自动跟踪

自动跟踪是指根据地球站天线接收到卫星所发的信标信号,通过变频、放大输入跟踪接收机,检测出俯仰和方位误差信号,根据误差信号大小和方向由伺服控制器驱动天线转台系统,使天线自动地对准卫星。这种跟踪方式没有误差积累,可以长时间连续跟踪。由于卫星位置受影响的因素太多,无法长期预测卫星轨道,故目前大、中型地球站主要采用自动跟踪为主,手动跟踪和程序跟踪为辅的方式。按照自动跟踪原理和设备组成,自动跟踪可以具体分为三种体制:步进跟踪、圆锥扫描跟踪和单脉冲跟踪。

3、1步进跟踪

步进跟踪是指天线指向以一定的步进向接收电平增大的方向进行不断调整。步进跟踪是开环方式,跟踪精度较低,跟踪速度较慢。步进跟踪适用于要求跟踪速度较低的系统中,如漂移速度较慢的同步卫星的跟踪。其优点在于实现较为简单。

3、2圆锥扫描跟踪

圆锥扫描跟踪是把馈源绕天线对称轴作圆周运动,或把副面倾斜旋转。这样天线波束呈圆锥状旋转,当天线轴对准卫星时,地球站接收到的信标电平是一恒定值;当天线轴偏离卫星时,接收电平将有一个低频幅度调制。根据调制信号的幅度和相位检测出天线波束的指向误差。这种工作方式的优点也是设备较简单,缺点是馈源永远偏离抛物面的焦点,使天线增益下降。同时需要馈源持续的圆周机械运动,可靠性较差。跟踪时要得到一系列回波脉冲后,才能得到角误差信号,实时性稍差。

3、3单脉冲跟踪

单脉冲跟踪方式由天线馈源输出和信号与差信号,和、差射频信号经射频前端变换处理后送至跟踪接收机,并由跟踪接收机输出两路与天线电轴偏离卫星角度成正比的方位误差信号与俯仰误差信号到伺服控制单元,控制天线运动,完成对卫星的实时跟踪。单脉冲跟踪能从每个接收脉冲中得到完整的角误差信息,这种跟踪方式是一个闭环系统,具有实时性好,跟踪精度高的优点。根据通道数量的不同有单通道、双通道、三通道等三种不同的实现方式。三通道方式中天线接收到的信号,经过和、差网络处理后,产生和信号、方位差信号与俯仰差信号。通过三个通道传送到跟踪接收机进行跟踪处理。双通道方式是方位差信号与俯仰差信号正交相加后合成一个差信道,或者是采用高次模方式产生差信号,与和信道一起构成双信道。单通道方式是在双通道的基础上对差信号进行调制,调制后的差信号与和信号合路形成一个通道。

二、各种方式的比较与应用

在实际应用中,它构成由航天控制中心、测控站和专用通信网为主要内容的.对在轨航天器进行跟踪、测量、控制的综合专用技术网络,包括跟踪、遥测、遥控、实时计算、数据处理、监控显示和通信系统等。其功能是:对航天器进行跟踪测量,获取其运动参数和内部的各种物理、工程、宇航员生理以及侦察参数,监视其飞行和内部工作状态,为指挥、控制提供信息;对导弹和运载火箭实施控制,确保试验安全:对卫星实施控制,支持其正常运行;通过对实测数据的处理、分析,为评价航天器的技术性能和改进设计提供依据。

1、卫星地球站同步卫星的跟踪

在理想的条件下同步卫星的相当于地面的位置是固定的。但由于摄动的原因,卫星轨道存在漂移。为了能实时跟踪卫星的漂移,卫星地球站必须要使用跟踪系统。根据安装位置不同,地球站分为固定站、车载站、船载站和机载站,可以使用单脉冲(或圆锥扫描)跟踪和程序跟踪或同时使用。

卫星通信论文第9篇

一、Ibetor公司X波段终端

2014年2月28日,西班牙Ibetor公司在华盛顿哥伦比亚特区2014卫星展上推出了新型的X波段Ib-Stom100X终端,其特点就是低矮不易探测。由于该终端高度只有20cm,该天线系统实现空气动力的高效能和自由调整(discretion),同时还能在极端地形情况下高效可靠连通。Ib-Stom100X专为舰船、飞机和地面车辆设计,加入了Ibetor公司设计的天线控制单元(ACU),包括惯性单元(IMU)、同千赫兹双GPS接收器、三轴陀螺仪、加速计和磁力计。通过这种组合,该系统号称指向精度提高0.3!,能在移动车辆上获取卫星信号并能“瞬时”再次找回。能做到这一点,部分原因是由于该系统使用的软件程序始终让机械扫描天线指向卫星位置,即使信号受到遮挡仍旧如此。其关键参数为瞬间频率500MHz、G/T比7.5dB/K以及波束中心上行速率高达8Mb/s。依据不同配置,其重量从75~85kg不等。根据Ibetor公司的信息,该系统已在西班牙军队服役。Indra公司西班牙的Indra公司提供了备选方案,它的Sotm解决方案运行在X和Ku波段上,使用低矮天线,并集成惯性导航。通过IP电台和骨干能力,该系统的卫星通信可为旅、营一级的巡逻部队提供服务。该系统经过专门设计,可用于任何车辆,甚至可用于小型船只。另外,其可选方案还包括Ku波段扩展频率(13.75~14.5GHz)、加密、运行时间20min的不间断电源,还可载有发电机,能够提供10h电力供应。吉拉特卫星网络公司就在Ibetor公司推出低矮天线终端之后,以色列吉拉特卫星网络公司(Gilat)也紧随其后,于2014年3月11日推出了“低矮光线卫星隐形光线(RaySatStealthRay)300X-M”。该系统经过专门设计,可与任何X波段卫星配套使用,可用于全球宽带卫星通信系统(WGS)以及崎岖道路行驶的车辆。它集成了多种动作传感器,可以进行准确跟踪、在最短时间获取信号以及能够“瞬间”再次找回信号。该系统经过设计,可以轻易装到未经改装的车辆上。它包含一个外置天线,长55.6cm、宽49cm、高25cm、重15kg。另外,它还有内置天线控制单元(ACU),重4.5kg。但是,由于它可以和集成MLT-1000调制解调器一起使用,故不必安装天线控制单元。吉拉特公司新产品的G/T比为2dB/K,传输和接收增益分别是23和25dBi,其接收频率为7.25~7.75GHz,传输频率为7.9!8.4GHz。SR300系列还包括用于Ku波段和Ka波段的低矮天线。

二、DRS技术公司X46-V认证

2013年5月,随着DRS技术公司的X46-V终端获得认证,允许用于美国国防部高性能卫星网络,该公司已能提供X-波段,为更多的偏远、分散的军事单位提供接入全球信息网络(GIG)。该认证由美国国防部联合卫星通信工程中心和美国陆军战略司令部颁发,从而允许X46-V用户接入全球宽带卫星通信系统(WGS),其语音、数据和视频传输速率高达6Mb/s。除了美国部队,澳大利亚、加大那、丹麦、卢森堡、荷兰以及新西兰军队都可以使用该系统卫星。另外,由于可以运行K-y以及Ka波段,该系统能为其它商业和军事卫星提供更大灵活性和冗余能力。该公司还于2013年8月27日宣布,其L-3Linkabit可以提供系列移动卫星通信终端,刚刚升级了Alsat永久移动地球站许可证,可以在美国境内以及其它商业航空器上使用其Ku波段终端。该证书允许的终端包括L-3DatronFSS-4180-LP(0.33×0.46m)、FSS-4180-LC小型孔径天线(圆周长0.46m),还包括LinkabitMPM-1000网络中心IP卫星通信调制解调器。美国陆军的“战术级作战人员信息网”(WIN-T)以及美国海军陆战队的“移动网络”中都采用了L-3终端。

三、全球移动网络主动布局系统

Elexis公司宣布,在成功将全球移动网络主动布局系统(Gnomad)集成到“斯特赖克”装甲车辆之后,公司又将这一经受战斗考验的系统扩展到另一美军的重要平台,并在美国乔治亚州本宁堡的美国陆军第7远征作战试验部队完成安装。全球移动网络主动布局系统易于安装,并且不需要对现有车辆进行改造。该系统包括卫星天线、RF组件以及几代模块底盘,使其可以安装在美国军用产品目录内以及商业用等车辆上,比如“悍马”等。该低矮型天线尺寸为45×35×7in(合114.3×88.9×17.78cm),重量不到25kg,可用于商业和军事卫星。由于采用开放式架构,该系统可以和许多视线内电台以及卫星调制解调器共用,并通过解调器实现全双向语音、数据和视频通信。通过和超高频或甚高频电台配合,比如和“单信道地面及机载无线电系统”(Sincgars)以及嵌入式GPS共用,该系统能够在运行图像中直接嵌入跟踪蓝军数据。该系统传送频率为14.0~14.5GHz、接收频率为17.7GHz或11.7~12.75GHz,速率分别高达512kb/s和2Mb/s。在30°仰角、23℃情况下,G/T值最低为8dB/k。罗克韦尔•柯林斯公司罗克韦尔•柯林斯瑞典通信技术公司的终端和萨博公司的四轴稳定平台结合,从而产生了一种新型的移动卫星通信终端,既可适用崎岖路面也可用于海上。它可以安装到轻型越野车辆和小型船只上,也可以安装在指挥所车辆和中型滨海船只上。这些应用由于速度快、颠簸剧烈、移动幅度大,建立和保持卫星连接非常困难。但是,该系统可以轻易解决这些问题,在高海况下时速高达50节以及崎岖地形下速度超过40km/h,它都能在1s内自动恢复丢失的连接,同时宽带通信速率可达10Mb/s。该系统全重约140kg,在20°仰角、11.0GHz情况下,G/T值为19dB/K。

四、泰利斯公司