欢迎来到易发表网,发表咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

电力系统研究分析优选九篇

时间:2023-06-06 15:36:57

电力系统研究分析

电力系统研究分析第1篇

【关键词】电厂 节能 能源 方法研究

1 电厂热力系统的现状

目前,热力系统计算目前的工作量特别大,比如说是某一些机组的运行以及性能分析、热力系统的优化改进都是每天比较常见到的工作。为了确保机组的每一项热性指标都可以正常运行,所以每天对热力系统进行计算也是必不可少的工作。热力系统所用到的计算方法有很多种,按照我们所学的化学知识知道,热力学定律最常用到的可以分为热力学第一定律和热力学第二定律,所以,由此我们可以将计算方法分为:第一定律的分析方法以及第二定律的分析方法。

根据第一定律分析方法,热平衡法就是在质量平衡和能量平衡两者结合的基础上,针对实际的热力系统进行计算的一种方法。就在这个基础上提出了热力系统计算的新方法,这样使得热力系统的计算具备了系统整体的分析功能。第二定律分析方法根据热力学第二定律所得出,又得出一个计算热力系统的好方法,本方法主要是根据熵平衡对体系进行方法分析,通过求取熵值得大小来改进热力系统的计算,在热力学第一定律和热力学第二定律这两大定量的理论基础上,再加上与环境相结合从而对热力学计算做到全面的认识,从能量的角度出发提出来的一种方法,它可以作为表示热力学设备或者是热力学过程是不是完善的科学依据。

2 电厂热力系统的问题

现在,我国的能源问题存在能源消耗大,普通的热力系统计算方法不完善,数学运算的工具也有待进一步发展。这就需要利用计算机来对热力系统所存在的耗能分析做出进一步的分析调整,来解决目前优化运行的热力系统所遇到的计算方法的不足之处,使得尽量得到改善。当然,从系统的本质上来说,几乎所有系统的研究都归属于相对稳定的研究,也就是很多人称为的稳态研究。书面上称为热力系y研究的基础就在于所发电的系统有一部分的热力学参数保持一致,并且在运行的过程当中保持相对稳定,这就会让我们所研究的相对复杂程度大大降低,但是,这也同时显示出有太强的局限性。我们所得到的热力系统理论不同,是因为我们本身就是从不同的角度来研究的,但是现在的不足就是对不同的理论之间相互联系的研究比较少,就导致有些理论之间不能相互交叉得到应用。在我们的日程研究计算当中,无论是参数比较高的大型机组,还是参数较低小型机组,都需要有一种相对较为准确的理论来进行引导,这样的话才能合理地来确定并且在此基础上进行优化性能指标。

就目前在我国,对于热力系统节省能量的分析应用于工业化的研究还是比较少见的。就目前有一种调试的方法比较常见,但是会有很多的问题出现。在平常的使用中,不管是大型的机组,还是比较小的机件,在运行了一段时间以后,各个方面的性能都会多多少少的发生一些变化,本身的运行参数就会偏离最开始的设计,这个时候,在热力系统的环境下,对其进行全面的调试,再由试验所得到的结果来确定机组参数,在理论上也是说得过去的。但是这种方法也是有很多的限制的,实际上,有限的几个试验值去确定整体机组的参数运行标准值会产生特别大的偏差,再者来说,试验法在确定参数运行标准值的时候所产生的费用非常昂贵,如果我们所有的参数运行标准值都用这种方法来进行调试确定的话,所需要的费用已经超出了一个工厂所能承受的范围,这也是为什么不能进行工业化很重要的因素。

3 电厂热力系统问题的解决方法

目前,针对以上问题所提出来的解决办法也不是没有,热力系统节能途径可以实现的有很多条。比如说可以设计更优化的机组,优化机组设计,合理进行配套来实现节能;而针对于运行的机组,就通过实时监控,不间断诊断,然后优化改造,从而来实现节能目标。目前查阅资料所得到的优化改造基本上可以分为这么两类,其中一类就是通过提高本身机器内部的效率,以期来达到降地能耗的目的;另外一类就是降低能耗的同时来相应的提高机内的出力。具体改造措施目前研究出来的还不是很多。

就我们平常所见到的火力发电厂,一般情况下热力系统运行参数标准值的确定方式有两种方法。而合理的确定运行参数的标准值也是现在我国电厂热力系统节省能量降低能耗的一种方法,最主要就是针对于电厂的热力系统进行实时的监控,合理来确定机组在改变工作情况下每一项运行参数的改变情况,只要可以确定每一项运行参数与其标准值相差的情况,就能毫无疑问的将运行参数偏离标准值然后所造成的经济损失给计算出来。除此之外,每一项的损失恰当归类也是影响运行参数标准值的确定的一项因素,所以也会对软件所提供出来的分析结果的相对准确性以及参数运行指导的是否合理性产生一定的影响。

4 结语

先如今,我国面临着的两大重要的挑战,一个是能源这种重要的资源逐渐匮乏,另外一个就是目前能源的总需求量日益增大,这就告诉我们国人节省能源降低能降耗是一刻都等不了的了。所以针对尤其像电厂热力系统,我们国家与发达国家相比,远远超过了发达国家的能量消耗,所以我们国家在电力热力系统的节能降耗上还是有着很大的发展空间的。所以我们有理由相信,随着我国电力热力系统逐步完善与发展,我国的能源消耗一定可以取得很大的突破。

参考文献:

[1]王宁玲.基于数据挖掘的大型燃煤发电机组节能诊断优化理论与方法研究[D].华北电力大学(北京),2011年.

电力系统研究分析第2篇

电力系统潮流计算具有很重要的现实意义:可以合理规划电网中的电源容量和电源接入点以及确定最佳的电网架构;可以找出电网中因为负荷增长和新设备投入而导致的薄弱环节,方便对电网进行网架结构的改进以及基建的加速;提供发电厂进行有功、无功调整以及负荷调整的计算依据;可以分析未来可能发生的事故以及设备的投切对电力系统静态稳定性的影响,进而得出相应的运行方式和调整方案。

在过去半个世纪以前,人们都是采用手工方法计算电力系统潮流,主要依靠计算尺。但是由于电力系统日渐复杂,手工计算起来非常复杂,不仅耗时费力,同时也容易出错。与此同时,伴随着计算机行业的飞速发展,就出现了后来的计算机算法。

在传统的“电力系统分析”教学课程中,教师们一般仅针对一些简单的电力系统(节点数很少)进行潮流计算,而忽视了现有潮流计算最通行常用的计算机算法。这种课程教学不仅枯燥,学生难以深刻领悟,而且与实际研究脱轨,因为目前现实中的电力系统都很复杂,采用手算不切实际,也就失去了教学的根本意义。本文针对课程教学中潮流计算方面存在的问题而进行教学改革研究。

DIgSILENT软件的潮流计算简介

电力系统仿真软件DIgSILENT的名称来源于数字仿真和电网计算程序(Digital Simulation and Electrical Network),是德国DIgSILENT GmbH公司开发的电力系统仿真软件。

DIgSILENT软件几乎包含了所有电力系统的常用分析功能,如潮流计算、短路计算(包括对称短路和不对称短路计算)、机电暂态和电磁暂态计算、谐波分析以及小干扰稳定性分析等等。另外一个重要的特点是把机电暂态分析模型与电磁暂态分析模型结合到一起,这样做的好处就是它不仅能够分析电网的暂态故障,而且又能研究电网的长期的电能质量问题及其控制手段。

DIgSILENT/Power Factory提供了非常全面的电力系统元件的模型库,包括发电机、电动机、控制器、动态负荷、线路、变压器、并联设备的模型,甚至包括风电机组电气部分的模型,如:双馈感应电机、变频器等等;其他部分如风速、机械传动系统、空气动力学部分以及控制系统都采用动态仿真语言DSL进行搭建。

DIgSILENT可以描述复杂的单相和三相AC系统及各种交直流混合系统。利用DIgSILENT进行潮流计算时,通过指定发电机、异步电动机、负荷等系统元件的特性来确定与之相连的母线在潮流计算中相应的属性,这样就能够以简单的操作方式来模拟复杂而真实的系统。此外,程序还提供了多种远程控制模式,例如多个发电机共同控制系统频率或母线电压等。DIgSILENT以更加接近实际情况的方式执行网络的控制模式,使操作和计算均得到简化。潮流求解过程提供了3种方法以供选择:经典的牛顿-拉夫逊算法、牛顿-拉夫逊电流迭代法和线性方程法。与此同时,DIgSILENT软件还可以进行变电站控制、网络控制以及变压器分接头调整控制。当潮流计算遇到不收敛的情况时,程序会自动将非线性的元件模型逐步线性化(主要是将所有负荷逐步转变为恒定阻抗,将非平衡节点发电机转变为带内阻抗的简单电压源),进而得出计算结果,该结果可用于对系统不收敛的原因作进一步分析。潮流计算的同时,DIgSILENT软件还可以实现过负荷校验计算等功能。

此外,最新版本的DIgSILENT还提供了最优潮流计算(OPF)功能。所谓最优潮流计算就是对基本潮流计算的有益补充。最优潮流计算主要采用内点法,而且提供了多种约束条件和控制手段,其目标函数主要有最小网损、最小燃料费用、最大利润及最小区域交换潮流。

DIgSILENT软件正逐渐成为电力系统研究方面最为认可的计算机软件之一,其所提供的潮流计算以及仿真结果已经在世界范围内得到广泛认可。

课程教学安排

手算

潮流计算可以用一组高阶的非线性的方程来表示,但是不含有微分方程,主要是因为潮流计算隶属于稳态分析,故不涉及系统元件的动态特性和过渡过程,而解非线性代数方程组最基本的方法就是迭代。因此,设计潮流计算算法的首要任务同时也是最为关键的问题就是收敛性,最终得出合理的解。

虽然目前计算机潮流算法运用十分广泛,但是掌握一些手算方法,不仅可以加深对其物理概念的理解,而且即便采用计算机算法,之前通常仍需采用手算求取某些原始数据。

这里所说的潮流计算手算方法主要针对简单网络的潮流分布,但是所谓的简单网络和复杂网络之间并没有明显的界限。课前老师把所需进行手算的算例以及分析资料分发给学生,让大家提前预习并先进行独立计算。然后在实验课上针对大家可能出现的共同问题进行详细讲解,并推导全过程,加深大家对潮流计算的认识和理解,掌握其原理。

运用DIgSILENT软件计算电力系统潮流

前面已经说到,计算机算法是大势所趋,而且已经得到广泛运用,是电气工程专业学生必须掌握的一项重要技能,也是未来继续深造以及竞争重要工作岗位的一个重要砝码。所以掌握并熟练运用计算机软件对本专业学生的未来发展起着重要的推动作用。

众所周知,DIgSILENT软件正逐渐成为电力系统研究方面最为认可的计算机软件之一。无一例外,任何一种电气设计软件都是先寻找或是自己搭建元件模型,然后通过所述关系搭建网络模型,其次就是设置元件参数,最后进行潮流计算。那么,如何判断一种设计软件是否优越,就是一看元件模型库是否丰富、准确,二看元件参数设置是否简单明了,再者就是看控制语言是否简洁易懂。

DIgSILNET采用有名值进行计算,电网元件从类型数据和个体数据两个层面被严格定义。类型数据包含了该类型元件用于各个计算功能的基本信息,例如某一架空线路的类型为OHL110kV-1,该类型的架空线为潮流计算提供的基本信息为,,,为短路计算提供的基本信息为,。对某一类型数据的改变将影响到所有采用该类型属性的元件。个体数据则是每个元件在分析计算中所要用到的仅与该元件本身相关的数据,例如某一架空线路的长为。采用该种方法进行计算机计算是有很多好处的。首先,我们无需再进行标幺值计算,避免了繁琐的计算,可以直接采用一些直观的铭牌数据等;其次,对于软件来讲,这也大大减少了数据的重复储存,显然对提高计算机速度也有一定的帮助。

在DIgSILNET中执行潮流计算、故障分析、谐波分析、动态仿真等功能时,可以引入多种电力电子元件,包括FACTS装置(如SVS、TCSC和UPFC)、直流整流和逆变器等。DIgSILENT为所使用的电力电子元件提供了丰富、开放且定期更新的模型库。

这些对于课程教学来说,减轻了单纯的软件学习难度,可以缓解学生对新软件学习的畏难心理。这种人机交互的友好界面,不仅老师们授课讲解起来比较轻松,而且学生们更易于接受,更为重要的是可激发学生的自主学习兴趣。

对比手算与机算

在课程的最后一个环节,但也是很重要的一个步骤,就是对比分析潮流分布的手算以及计算机算法。众所周知,学习的一个关键环节就是要学会对比分析以及总结,这种能力是学生们亟待培养和掌握的。最后,通过对比两种方法的结果,计算两者之间的误差,再分析一下导致这种后果的原因,原因可能是计算机算法或是手算采用了哪些近似处理,或是计算结果精确度的不同,这些都是需要学生自己进行总结归纳的。这一步看似可有可无,电力系统潮流分布的手算以及机算的结果都已经出来,课程已经结束。实则不然,这关键的最后一步恰恰是中国高等教育中最缺乏的部分,就是对新知识的分析与自我总结。做好这一步,对于学生自主学习创新能力的提升起到关键作用。

电力系统研究分析第3篇

关键词:电力系统分析;教学研究;仿真;编程

1 引言

《电力系统分析》主要研究电力系统在正常及故障情况下的运行状态,包含电力系统稳态分析、电力系统暂态分析和电力系统稳定性分析三部分内容,是电气工程及其自动化专业重要的专业基础课,对培养学生运用所学理论解决工程实际问题的能力起着非常重要的作用。由于该课程具有理论性强、工程性强、涉及面广的特点,学习难度大,学生的学习兴趣不高。近年来,将多媒体技术引入课堂教学已成为一种趋势,采用多媒体课件配合板书的教学方法,使得教学更加具体化、形象化,在一定程度上提高了课堂教学效果。

随着计算机科学的不断发展,各种仿真软件的日益广泛应用给专业课的教学提供了现代化的教学手段,MATLAB就是其中之一。自上世纪80年代问世以来,MATLAB以其高性能的数值计算和可视化的图形绘制功能以及简单易学的编程方式迅速成为应用于多学科的大型软件。将MATLAB的数值分析功能、矩阵计算功能和可视化的Simulink仿真功能应用于《电力系统分析》课程的潮流计算和短路分析教学中,已成为《电力系统分析》课程教学改革的一个重要方面。

2 MATLAB在《电力系统分析》教学中的应用

2.1基于MATLAB的电力系统潮流计算——节点导纳矩阵的形成

潮流计算是电力系统稳态分析的重要内容,也是计算系统动态稳定和静态稳定的基础。潮流计算的方法有很多,其本质都是对一组多元非线性方程进行求解,其解法都离不开迭代。潮流计算中需要先形成网络的节点导纳(阻抗)矩阵,如果采用手工计算,即使节点数不多的系统也仍然有相当大的工作量,只有应用计算机才能快速而准确地完成这些计算任务。下面为潮流计算中节点导纳矩阵的形成程序:

n=input('请输入节点数:n=');

n1=input('请输入支路数:n1=');

B=input('请输入由支路参数形成的矩阵:B=');

X=input('请输入由节点号及其对地阻抗形成的矩阵:X=');

Y=zeros(n);

for i=1:n

if X(i,2)=~0;

p=X(i,1);

Y(p,p)=1./X(i,2);

end

end

for i=1:n1

if B(i,6)==0

p=B(i,1);q=B(i,2);

else

p=B(i,2);q=B(i,1);

end

Y(p,q)=Y(p,q)-1./(B(i,3)*B(i,5));

Y(q,p)=Y(p,q);

Y(q,q)=Y(q,q)+1./(B(i,3)*B(i,5)^2)+B(i,4)./2;

Y(p,p)=Y(p,p)+1./B(i,3)+B(i,4)./2;

end

disp(Y)

根据所给系统图,输入网络节点数、支路数及参数矩阵B和X之后,即可形成应用于潮流计算程序的节点导纳矩阵。

2.2采用Simulink/PSB进行电力系统短路仿真分析

1998年推出的MATLAB5.2在Simulink中增加了电力系统模块库PSB(Power System Block)。PSB主要由六个子模块库组成,涵盖了电路、电力电子、电气传动和电力系统等学科中常用的基本元件,可以对非线性、刚性和非连续系统进行非常精确的仿真。

如图为某恒压源系统突然短路的仿真模型。

将故障发生器设置为三相短路,故障时间为(0.01-0.05)s,得到如下仿真波形:

可见,无穷大电源系统短路时,电源端电压只有一些波动,没有发生显著变化。短路点三相电流有效值相等,为对称短路。

类似地建立同步电机三相短路模型,仿真后将结果与上例进行比较,可使学生更加深刻地理解这两种系统发生三相短路时的电磁暂态过程。

改变短路故障发生器的选项设置,可以得到两相短路、单相接地等不同类型短路故障时的电压、电流波形。

3 结论

在《电力系统分析》课程教学中引入MATLAB/PSB对潮流计算、短路故障等重要内容进行辅助分析,具有形象直观、交互性能好等优点,弥补了传统电力系统分析教学的不足,使学生加强了对理论知识的理解,激发了学习兴趣,很好地提高了教学效果。

参考文献:

[1]孟祥萍.电力系统分析[M].北京:高等教育出版社,2004.

[2]吴天明.MATLAB电力系统设计与分析[M].北京:国防工业出版社,2004.

[3]徐敏.MATLAB在《电力系统分析》教学中的应用[J].电力系统及其自动化学报,2010,22(3):152-155.

电力系统研究分析第4篇

[论文摘要]分析电力系统中故障数据分析系统的功能、现状和特点,提出故障数据分析平台的概念并对其进行研究。介绍平台的主要特点,给出平台设计的整体架构,并说明各组成模块的功能划分,还对模块间的关系等相关问题进行了阐述。

一、引言

电力 工业 是为国民 经济 和社会 发展 提供能源的重要基础产业,也是关系国计民生的公用事业。但日益复杂的电力系统,发生故障的几率也在不断增加,某些扰动可能导致大面积停电和稳定性问题尖锐化,严重时系统可能失去稳定。

目前电力系统中的常用的故障分析系统有故障录波系统、输电线路行波测距系统、小电流接地选线系统和电能质量监测系统等,这些系统为分析电网故障、确定电力系统在特定情况下的运行状况提供了强有力的支持。这一类应用的共同点是都要对某些模拟量数据进行记录、分析和 计算 ,从而实现不同故障分析系统的功能。但目前处理录波数据的系统一般只针对具体的应用而开发,相互之间尽管在数据处理方面有许多共性,却是由不同公司各自开发的,系统的开放性差,只适用于某一种特定的应用,缺少平台化的设计思想。这样就形成了所谓的“自动化孤岛”现象。

二、故障数据分析平台的功能分析

目前电力系统中常用的故障数据分析系统有以下几种:

(一)故障录波分析系统

故障录波系统是电力系统发生故障及振荡时能自动记录的一种系统,它可以记录因短路故障、系统振荡、频率崩溃、电压崩溃等大扰动引起的系统电流、电压及其导出量,如有功、无功及系统频率的全过程变化现象。主要用于检测继电保护与安全自动装置的动作行为,了解系统暂态过程中系统各电参量的变化 规律 ,校核电力系统计算程序及模型参数的正确性,故障录波已成为分析系统故障的重要依据。

系统主要由电流(电压)智能监视模块、通信链路、监视微机和分析软件四部分组成,该系统将多个智能监视模块统一编址,通过通信网与分析主机相连,组成故障录波系统。每一个智能监视模块相当于一个独立的微型故障录波器,在线监视一条线路的运行状况,连续采集数据。当该线路发生异常时,相应模块连续采集一段设定时间段的线路运行数据,然后,将异常出现时刻前后各一段设定时间的数据作为故障录波信息保存,并上传给分析主机;分析主机将模块上传的数据加以保存、远传和处理,并可将异常波形显示并打印出来。

(二)输电线路行波测距系统

当输电线路发生故障后,必须通过寻线找出故障点,并根据故障造成的损坏程度判断线路能否继续运行还是须停电检修。行波测距是目前应用广泛的故障测距方法,其基本原理是:在电力系统发生故障后,在故障点将产生向两端运行的暂态行波,暂态行波在传播过程中遇到不均匀介质时,将发生折射和反射,因此在故障点和母线检测处暂态行波会发生反射和透射,这样就可以利用两个波头之间的时间差来完成故障定位。

行波采集与处理系统安装在厂站端,采用集中组屏式结构,一般包括行波采集装置、t-gps电力系统同步时钟以及当地处理机三部分。行波采集装置主要负责暂态电流信号的采集、缓存以及暂态启动,并生成启动报告;t-gps负责提供精确同步脉冲信号及全球统一时间信息;当地处理机由一台工控机构成,负责接收、存储来自装置的暂态启动报告,并与安装在线路对端所在变电所内的行波采集与处理系统交换启动数据,从而自动给出双端行波故障测距结果。

(三)小电流接地选线系统

电力系统配电网故障中绝大部分是单相接地故障。由于故障电流小,系统可带故障继续运行一定时间,小电流接地方式可显著提高供电可靠性,同时也具有提高对设备和人身安全性、降低对通讯系统电磁干扰等优点。但长时间带故障运行,特别是间歇性弧光接地故障时,过电压容易使电力设备出现新的接地点使事故扩大;同时故障电流可能使故障点永久烧坏,最终引短路故障。因此故障后快速选择故障线路就显得十分重要,在发生故障时须准确选出故障线路,以便及时切除故障。

由以上分析可以得出故障处理系统的共性:首先进行数据的采集和存储,再由数据处理模块进行数据的分析、 计算 及各种特征的提取等操作,最后对所得结果进行保存、显示和打印等。但目前不同的故障处理系统只针对具体应用开发,缺少通用平台的概念。

三、平台的主要功能模块与工作流程

参数设置模块可以对平台运行的参数进行设置,使平台在合适的状态下运行。前置机通过规约处理模块与站端装置进行通信,接收不同监测装置上传的各种录波数据,包括对不同通信规约传输数据的打包与解规约。数据通讯模块负责与后台机交换信息,若从装置收到的录波数据格式不符合comtrade标准则先调用数据格式转换模块然后再将转换后的数据交给数据通讯模块。

故障处理模块负责把接收到的数据进行分析处理,将数据分析后通过数据库管理模块送入数据库服务器中,故障处理模块还提供与高级应用程序的接口。报表管理模块从数据库中取得数据生成各种报表,装置参数整定模块在后台机上发送参数整定命令,通过前置机发到装置以调整装置的运行状态。装置运行监控模块实现监测与控制装置运行状况的功能,告警模块处理装置上报或是系统操作所产生的各种告警信息。

当用户要查看录波数据曲线时调用录波查询模块查找到满足要求的数据,再通过录波曲线显示模块对要分析的数据进行查看。用户权限设置模块设定用户的使用权限,以提高平台的安全性。

四、结束语

本文提出的电力系统故障数据分析平台,遵循标准化、模块化、分布式、分层次的设计原则,具有良好的通用性和可扩展性,为开发故障录波系统、行波测距、小电流接地故障监测和电能质量监测等以处理录波数据为主的信息管理系统提供全面的底层支持。平台的使用可以提高软件的重复利用率,避免重复开发,减少电力 企业 的投资,有利于提高电网的运行和管理自动化水平。

参考 文献 :

[1]刘念、谢驰、滕福生,电力系统安全稳定问题研究[j].四川电力技术. 2004.(1):1-6.

[2]王洪涛、王剑、朱诚,电力系统信息管理自动化的研究[j].电力自动化设备.2001.21(2):20-23.

电力系统研究分析第5篇

关键词:电力系统;暂态稳定;分析方法

中图分类号:TM712 文献标识码:A 文章编号:1674-7712 (2014) 02-0000-01

一、引言

电力系统的稳定,对于我们如今的社会来说是非常重要的。电力系统的稳定性出现了问题,意思是指在电力系统正常运行的时候,受到外界的干扰,会出现运行数值的变化。

在电力系统的稳定性出现的问题当中,我们主要可以分为两大类,分别是静态稳定与暂态稳定。静态稳定是指电力系统由于受到外界的干扰之后,不会出现周期性的变化,而自动恢复到原来的电力系统状态。而另一种暂态稳定就是在电力系统在受到外界的干扰之后,不会恢复到原来的状态,而以一种新的运行状态来继续运行。所以我们要从不同的分析方法来分析电力系统的稳定性。

二、电力系统静态稳定分析

上面我们也说过,静态系统稳定是指在电力系统受到外界的干扰之后,本身的运行周期不会发生变化,而在干扰之后会自行的恢复的原来的运行状态,这样的电力系统就是静态稳定。静态稳定是基本上不需要我们来进行研究的,因为这样的电力系统,它会自动调节回来,不会对我们的生活造成太大的影响。而暂态稳定在受到外界的干扰之后,不但会出现本身运行周期的变化,在震荡之后,并不会回到原来的运行状态,而是以一种新的状态来运行。接下来我们将分别分析两中电力系统的稳定。

首先我们要讲述的是静态稳定的电力系统,这种静态的电力系统可以由以下这样的方法来分析,比如说全特征值分析法以及部分特征值分析法等。

首先我们可以用全特征值分析法来分析,在整个电力系统形成了雅可比矩阵A后,我们可以应用QR算法来完成整个矩阵的全部特征值,通过这样的方法来判断整个电力系统是不是静态稳定,这种方法具有的特点是占用的内存太大,同时整个预算的过程又太慢了,同时要是在计算大规模的电力系统的时候,就有可能出现误差,所以这种计算分析方法只能够应用于一些中小规模的电力系统,对于大规模的电力系统的实用性并不大[1]。

还有一种是部分特征值计算法,对于这种分析方法来说,主要就是为了关注整个矩阵中与需要分析目标相关的那一部分特征值,对于出现了震荡的不稳现象时,也是主要关注其中较大的特征值。采用这样的分析方法主要是针对在整个电力系统的低频震荡的分析,在整个矩阵中采取其中的主导特征值,这种从矩阵的部分特征值来分析的方法中,有点是将矩阵进行降阶后在进行分析,而有的分析方法却是直接在用矩阵来进行的分析计算的。以上的都是利用矩阵的特征值来进行的分析,其实在除了利用特征值来分析电力系统的稳定外,还可以用到的另一种就是频域分析法。

三、电力系统暂态稳定分析

这中电力系统是在受到外界的干扰之后,不会恢复的到原来状态的一种电力稳定系统。这是在电力系统受到外界大的扰动而引发的一种电磁的暂态过程,这种过程还会牵扯出机械运动的暂态过程一种相对要复杂的一种过程。在整个过程中,由于这种过程太过复杂,所以在分析这中电力系统的稳定的时候,我们需要注意一些问题。第一是不要考虑发动机对暂态过程的影响,应该电力系统中交流系统的变化。不考虑在频率变化时对整个电力系统中对系统的参数的影响。在这样的情况下,对于暂态稳定我们可以用以下这两中方法来进行分析,分别是数值解法以及直接解法这两种。

(一)数值解法

这种方法是在了解完暂态系统的微分方程以及它的代数方程之后,来计算求解的。主要应用的是各种的数值积分法来进行的求解来进行的计算分析。在这种利用各种方程来进行的计算的基础上,我们可以拓展出交替求解法以及联力求解法来。

首先我们要先分析的是交替求解法,这种方法可以在积分方程与代数方程两种方程中来选择。数值解法还应该要考虑的是对各种方程特性的适应性。在这中数值解法中主要应用到的方程可以有以下的一些方程,比如说稳定欧拉法、高斯-塞德尔迭代法、抗矩阵迭代法等。在这么多的计算方法中[2],有一种梯形隐试积分法在计算电力暂态稳定当中具有很好的适应性。在如今的计算暂态稳定的方法中,都认为梯形积分法是最理想的一种方法了。

(二)直接解法

这种解法的中心思想是,在整个电力系统遭受到外界的干扰之后,不管是什么情况下,都会恢复到稳定的状态。所以直接法就是在整个状态的空间中找到一个稳定的平衡点,在以这个点为中心,将周边的范围作为一个稳定的区域,再使用李雅普诺夫函数来计算分析。要是出现的扰动不在稳定域内,也不可以说整个系统就是不稳定的,这也是在直接解法所占有的保守性特性。在直接的解法当中,还有一些实用的方法主要有不稳定平衡点法,势能界面法,单机能量函数法等。这些方法都可以应用到各种复杂的电力系统中去。

在整个暂态稳定的分析方法中,除了上述的几种方法之外,还有一种是概率分析方法,这种应用各个方面的因素来得出某些概率的方法也可以用来检测电力系统的稳定性

四、结束语

电力系统的稳定在整个中国电网中,是占据着非常重要的作用的,它直接会影响到一个国家的发展与进步。所以本文通过分析电力系统的各种稳定性的方法,来提取出对于电力系统有帮助的稳定性分析方法,希望对于我国的电力系统有帮助。

参考文献:

[1]薛禹胜.运动稳定性量化理论[M].南京:江苏科学技术出版社,2009.

电力系统研究分析第6篇

对于高速铁路来说,电力系统的安全性涉及到整个铁路的运行平稳与否,在铁路运营繁荣发展的背后支持下,电力系统起到了很大的作用,目前,铁路运行速度非常快,工程规模的不断变化也对供电系统的安全性有了更高的需求,高速铁路电力系统成了决定铁路事业发展最直接的因素,一直以来,铁路都被认为是相对比较安全的运输方式,因此,铁路运输一旦出现安全事故,势必会给人们的身体与心理造成双重的打击,所以,加强电力系统的安全性,真正做到防患于,保证铁路运输的安全性势在必行。

二、电力系统可靠性分析

高速铁路电力系统的组成比较复杂,按照功能与作用主要可以分为牵引和电力两部分前者是为高速铁路行车提供电源系统,后者是承担牵引供电以外所有铁路负荷的供电任务,包括信号系统、生产、车站、供水系统以及生活等铁路用电负荷的高速铁路电力供电系统,其供电可靠性不仅直接影响铁路运输系统的正常安全运行,还关系到很多铁路职能部门的正常工作,铁路电力供电系统由于应用的特殊性,在系统构成和功能上都有一些有别于电力系统的特点,主要体现电压等级低、系统接线形式简单以及供电可靠性要求高这三方面:

第一,从电力系统的角度看,铁路负荷属于终端负荷,直接面对最终用户,所以,铁路供电系统中绝大多数为10kV和35kV变配电所,这取决于地方供电系统电源的情况和铁路就地负荷的要求;第二,铁路供电系统的接线就像铁路一样,是一个沿铁路敷设的单一辐射网,各变电所沿线基本均匀分布,并且互相连接,构成手拉手供电方式;连接线自闭线和贯通线两种,连接线除了实现相邻所之间的电气连接外,还为铁路供电最重要的负荷提供电源;第三,铁路供电系统虽然电压等级低,接线方式简单,但对供电可靠性的要求却很高,其负荷的供电中断时间不能超过150ms,否则,将会导致所有供电区间的自动闭塞信号灯变为红灯,影响铁路的正常运输。

三、提高电力系统可靠性的措施

铁路沿线分布着车站和通信基站,这些地面设施是保证铁路运输畅通和安全的基础设施,上述设施需要电力可靠供应,高速铁路对电力供电提出了更高的可靠性要求,全线供电安全、可靠性取决电力贯通线的运行水平,供电可靠性依赖于铁路供电设备配置水平,采用的可靠性措施主要有三方面:

第一,保证系统可靠备用,各配电所自国家电网接引两路电源;各配电所采用单母线分断接线型式;10kV配电网络采用双路环网电力电缆;变配电所、箱式变电站内配电变压器按双台配置;第二,提高设备可靠性,配电所选用SF6气体绝缘开关柜;箱式变电站选用SF6气体绝缘环网开关柜;变压器选用干式变压器;低压开关柜采用高可靠性、模数化、组合式柜型;第三,提高系统抵抗自然灾害能力,电线入地;设备进屋;备用发电机;从高压到低压全部采用远动。

四、高速铁路电力供电系统新技术的分析与研究

高速铁路全线设置了两回 10kV 电力贯通线,贯通线采用不锈钢铠装的单芯铜芯电缆沿路基、隧道、桥梁预留的电力电缆槽敷设, 由于高速铁路线路较长,如此长距离的电力贯通电缆线路是我国铁路建设史上从未有过的,必须进行技术创新;关于长距离10kV 电力贯通电缆线路电容电流的补偿,由于贯通线电缆线路对地存在电容,故在正常运行或单相接地时都有电容电流流过线路,又因为电缆线路相间及对地电容远大于架空线路,电缆线路的电容电流亦远大于架空线路的电容电流,可能造成相关危害,如:引起主变压器或调压器过载;单相接地时易造成电弧重燃,引起三倍以上的过电压,易损坏供电设备或发展成多相短路事故;贯通线电缆的分布电容产生的容性无功,会导致系统容性无功过剩,线路末端电压上升;因此,必须对线路电容电流进行补偿,补偿电缆电容电流较好的办法是设置专用的并联补偿电抗器,主要有如下两种方式:在配电所集中设置动态补偿电抗器 ;在区间贯通线上分散并联补偿电抗器;高铁中一般采用了方式二,在全线两回10kV 电力贯通电缆线路上每隔 10km左右分别分散设置了箱式电抗器,起到了补偿接地电容电流、补偿容性无功功率、降低线路容性电流、限制线路末端电压上升的综合作用,是一大技术创新。

电力系统研究分析第7篇

关键词:电力营销;数据分析;实时监控;月度分析

1凯里供电局营销工作概况

凯里供电局系中国南方电网公司和贵州电网公司领导下的国家大二型企业,担负供电辖区内15个县(市)及湘黔电气化铁路的电能供应、销售与服务任务,并为黔电入粤、黔电入湘的重要通道,为贵州电网公司代管县局最多(15个)的供电企业。该局年售电量40亿千瓦时,辖区内高能耗负荷企业占总负荷70%左右,该局目前营销工作面临负荷结构不合理、代管县局多的复杂管理形势。如何有效的调动代管县局主动做好辖区内的营销服务工作,培育更多优质负荷,提高企业的营销经营业绩,成为该局营销管理工作的研究重点。为此,该局通过建立电力营销数据分析系统,客观公正地评价下属业绩,导入竞争机制,不断提高该局的营销工作质量。

2 建立实时数据跟踪监控系统

凯里供电局针对需要实时控制的电量及电费回收等指标推行日报表和帐目日报表、周期性报表制度,建立起销售状况的实时监控数据分析系统。这里重点介绍电量销售日报表和电费回收进度表。

电费欠费说明:

1.凯里供电局本月应收15478万,截至8月30日下午6:00,本月实收14090万,欠费1388万,回收率为91.03%。凯里系统本期合并口径新增欠费953万,月末应收电费余额增加额为673.57万,其中城区供电分局直管客户欠费191万(凯里纸厂欠费110万,城区小客户欠费81万),直管县局终端用户欠费566万(其中施秉恒盛公司欠495万,市郊局小客户欠23万、镇远局小客户欠47万);台江局欠192万。

2.注意问题:凯里城区小客户本月欠费可能较多,要加大催费力度;同时对凯里纸厂进行跟踪催费。

销售异常势头,跟进弱势区域、弱势类别。

(2)电费回收进度表。

欠费数目越大,时间越长,追讨的可能性就越小,控制应收账款的通用原则是对赊销客户设定信用额度和信用期限。凯里供电局要求各分县局和大客户管理所在每月24日后按日上报电费回收进度表。每月最后两天在早会上通报。一方面提醒各分县局和部门注意正常欠费的关注和跟进;另一方面对异常欠款及时暴光,及时检点,及时追究,从上至下形成对应收账款追讨的巨大压力。

3 建立月度营销分析制度,做好营销数据的月度分析

对于市场营销部而言,简单地根据营销数据考核各分县局和部门工作没有任何意义,重要的在于你能引入公平的评估模式,让各分县局和部门的营销负责人心服口服。

完备科学的月销售分析应达到以下目的:

(1)分析整个地区局的当月电量、线损、欠费余额,同期增长率,教上月成长率。

(2)引导各分县局和部门营销负责人关注自己的电力销售和电费回收是否健康。

(3)引导各分县局和部门营销负责人关注当月重要客户的销售。

(4)排除市场容量不同、市场基础不同等因素的干扰,客观公正地评估各分县局和部门的销售贡献。

这里以月度下网电量分析表进行说明:

通过此表我们可以看到凯里供电局当月的售电量、累计售电量、成长率、同期增长率等,还可以看到各类别电量及所占的比例。更重要的是,我们可以看到各分县局的售电情况,排名情况,对各分县局进行点评, 还可以要求后三名说明原因,给其营销负责人相应的指导和压力。

4 小结

通过建立有效的电力营销数据分析系统,凯里供电局实现了实时的销售监控和周期性的分析反馈及控制,为提高企业经营业绩奠定了基础。

参考文献

[1]傅景伟.电力营销技术支持系统[M].中国电力出版社,2002.

电力系统研究分析第8篇

【关键词】电力系统无功优化调度

中图分类号:F407.61 文献标识码:A 文章编号:

在现今社会,实现电力系统在安全可靠的前提下经济运行,不仅对国民经济具有重大意义,对国家政治也有重要影响。因此,面对日趋复杂的系统和日益增长的用户需求,如何保证电网“安全、优质、经济”运行,一直以来都是电力系统工程技术人员和学者的研究的重要课题之一。

一、无功优化的意义

电力系统无功优化是保证系统安全、经济运行的一种有效手段,是提高电力系统电压质量的重要措施之一。实现无功功率的优化可以改善电压的分布、提高用户端的电压质量、减少电力传输(主要是线路和变压器)的电能损耗,从而降低电力成本,同时也能提高电力传输能力和稳定运行水平。

随着自动化技术的日益成熟,基于传统的安全监控和数据采集系统的高级应用软件如网络拓扑、状态估计、调度员潮流正逐步趋于实用化,在此基础上可以进行功能的再扩展,开发电网电压、无功优化控制系统。随着电力通信的飞速发展,我们可以在现有的自动化系统基础上进行无功优化计算,下达控制指令,利用电力通信信道,将这些指令传递给变电站的综合自动化系统,投切电容器、调节变压器分接头,来实现无功功率的最优控制,将线损降低到最低,使SCADA/EMS系统的效益更加直观、明显。

二、静态无功优化调度的模型与算法

1、数学模型

电力系统无功优化调度问题通常表示成含约束条件的非线性数学模型。从经济性角度出发的经典模型是将系统的有功损耗最小化作为目标函数,从系统安全性角度出发的模型是将系统运行状态(如节点电压幅值)偏离期望值之平方和最小或者电压稳定裕度最大作为目标函数,或者同时考虑这两者构成多目标模型,此外,还有以无功注入总成本最小为目标的模型。在电力市场环境下,如考虑到无功功率的发电和运行成本,则可以采用有功和无功的发电总成本最小化作为目标函数。

2、求解方法

无功优化的求解方法主要有非线性规划法(Non-Linear Programming,NLP)、线性规划法(Linear Programming,LP)等常规的无功优化方法以及人工智能搜索方法等。

(1)常规优化方法

NLP能直接处理非线性的目标函数和约束函数,应用较广泛的NLP方法主要有简化梯度法、牛顿法和二次规划法。

虽然ORPD问题属于最优潮流问题中的一个特例,目标函数和约束条件是非线性的,但应用求解经济调度的各种NLP方法来求解ORPD问题时或多或少都存在计算量大、收敛性差、稳定性不好等问题。简化梯度法对罚函数和梯度步长的选取要求严格,收敛慢,且不能有效地处理函数的不等式约束。尽管二次规划法的精确性及可靠性较好,但其计算时间随问题规模的增加而急剧增长,在求解临界可行问题时会出现不收敛。牛顿法具有快速收敛的特点,但尚不能有效处理电压无功优化控制中的大量不等式约束。

(2)专家系统和人工神经网络方法

20世纪80年代专家系统被引入到电网电压无功控制领域。有研究者提出了一种便于为实时控制建立专家系统的方法,灵敏度树,在此基础上开发了电力系统电压无功控制的专家系统,以协助操作人员监视母线电压并选择最有效的控制方法来处理电压越限情况。也有学者采用专家系统和模糊集求解ORPD问题,在一系列规则中引入启发式控制,根据隶属度函数来度量规则的适应度。虑到仅依赖于专家系统或者ANN方法进行ORPD求解难度很大,因而常将其作为常规算法的辅助和补充来发挥作用。

(3)内点法

自N.Karmarkar于1984年提出具有多项式时间可解性的线性规划内点算法以来,各种内点法相继被提出,并已被扩展应用于求解二次规划和直接非线性规划模型。它们的主要优点是计算时间对问题的规模不敏感,计算速度快,收敛性好。但如何探测和处理优化过程中的不可行解的问题是内点法的一个障碍。

(4)启发式搜索算法

近年来,启发式搜索算法在全局优化问题中得到了密切关注和广泛应用。如模拟退火算法、遗传算法、进化规划、进化策略、粒子群游算法、免疫算法、Tabu搜索算法以及这些算法的组合方法]等。而其中最引人瞩目的是遗传算法(Genetic Algorithms,GA)。

三、动态无功优化调度的模型与算法

在进行无功调度时将是在高电压环境下进行操作、切换控制设备,如这些情况出现得很频繁,就会破坏设备的绝缘强度、缩短设备的使用寿命,并形成事故隐患。此外,频繁调节控制设备还加重了运行人员的工作强度,容易产生操作错误,不利于系统的安全运行。

因此,在动态无功优化调度数学模型中引入了变压器抽头和补偿装置投切开关允许动作次数的限制。现有建模方法主要是将一天的负荷预测数据划分成若干(如24)个时段,然后以整天的能量损耗最小或者24时段内总网损最小为目标,并将控制变量的动作次数作为直接约束,从而获得全天各时段的无功调度模式,形成了十分复杂的时空耦合问题,常会受负荷预测结果精度的影响。

刘明波给出了动态无功优化问题中严格意义下的非线性混合整数数学模型,介绍了各种离散控制设备每天的最大允许动作次数相同时的优化结果,显示了动态无功优化取得的控制设备动作次数的降低是以有功网损的升高为代价的。

为简化动态无功优化问题,通常的做法是简化状态解空间以达到降维效果:任晓娟通过启发式规则确定控制设备的动作序列,采用一种稀疏矢量方法对控制变量进行一定的简化,将数学模型转化成静态优化模型,适合于求解高中压配电网的动态无功优化问题;文献Sharif S S将负荷曲线划分成若干时段,离散控制变量在每一个时段中的取值相同,在时段数较少(小于最大允许动作次数)的情况下自动满足动作次数限制,然后进一步在各个大时段(interval)中再细分出若干个周期(period),对每个周期只使用连续变量、依据实时负荷数据进行优化,以尽可能地降低网损。由于过分强调了动作次数约束而减少时段的分区,很多情况下无法调动所有设备进行无功优化。

Liang R H根据预测的24时段负荷数据,将变压器带负荷调压装置的动作次数和无功补偿投切次数作为约束,采用动态规划法求解。由于状态数量庞大,求解效率不高。

Wong Y K认为无功优化调度的目标除了通常被普遍采用的网损最小化和电压合格化之外,还应增加控制设备的操作最小化。因此目标函数中增加各个控制变量的变化量罚函数,并依据经验人为地根据各控制变量操作优先级的不同分配不同的罚因子,可惜各个罚因子没有真正的物理意义,取值缺乏科学依据。

潘哲龙则将网损和动作元件数作为两项惩罚项,加入到越限元件数最小化的目标函数中,采用一种分布式并行计算的遗传算法进行求解,不过该文也没有给出罚因子的选取方法。

倪炜提出在实时无功优化的目标函数中考虑控制变量的调节代价:以各台设备的成本与调节故障导致的损失费用之和除以寿命期内的有效调节次数。

展望

随着ORPD问题研究工作的深入,其控制次序问题和负荷模型问题将会凸现出来。控制次序的问题涉及应用层面,而目前无功优化控制的应用基本仍停留在离线的水平上,因而该问题的理论研究也不够深入,实际上,即使优化后得到一个可行解,在调节逐个设备的过程中也不一定能够保证不出现临时越限现象。负荷模型问题更是目前研究的一个盲点。实际上负荷与电压的关系相当密切,由于无功优化的结果往往导致部分状态变量逼近约束边界,负荷与电压的相互作用过程将会产生新的越限。由于负荷模型的研究本身是一个难点,通常将负荷视为恒功率,这种被普遍采用的假设值得推敲。

参考文献

[1] 周晓娟.电力系统无功优化方法分析[J].中原工学院学报.2009(01)

电力系统研究分析第9篇

【关键词】电力系统;谐波;危害;滤波器;抑制

0.引言

在电力系统用电,输电,发电等过程中,谐波已成为不可避免的问题,其已危及电力产生和输送以及用电方的安全运行。鉴此,分析谐波并最大限度地抑制谐波成为电力系统工作的重要课题。下面,就电力系统谐波及其危害进行详细分析,并提出有效的抑制谐波措施。

1.电力系统的谐波

(1)用电技术方面。在现代电力系统中,随着人们节能意识的加强以及电力电子技术的发展,众多通过电力电子开关、以非正弦电流方式高效用电的新型非线性负载得到了广泛的应用。这些以非正弦电流方式用电的新型非线性负载已经成为当今电力负载中最主要的谐波源。1992年,日本电气学会对其国内产生谐波的行业按比例进行了一个统计,其结果如表1所示。表中,除楼宇中的部分照明电源、冶金行业的电弧炉外,其他行业的谐波源大多来自电力电子装置,根据日本电气学会的统计,其比例高达90%。从表中还可以看出,来自楼宇的谐波源所占比例高达40.6%,其谐波主要由办公及家用电器等产生。可见,谐波畸变不再是工业设备所特有的现象,如今谐波现象已经蔓延到电力升降机、不间断电源、电视机、个人计算机等商业和居民用电设施中的电子设备。

(2)发电技术方面。由于当今社会对常规化石能源的需求日益增加,能源耗尽的危机日益严重,人们开始追求对清洁、无污染的新能源的开发利用。在电力生产中,许多利用清洁无污染的可再生能源发电的发电方式,如风能发电、太阳能发电、燃料电池发电等发电方式得到了越来越广泛的应用。这些新型电源大多以非正弦、非工频的方式供电,而传统公用电网是以三相电压、电流的对称正弦要求为发电与用电的品质指标。传统公用电网为了接纳非正弦、非工频的新型电源,一般通过电力电子电能转换装置将非正弦、非工频的电源转换为正弦、工频的交流电源,从而实现不同频率的电源或电网的同步运行。比如在输送风电的过程中,一般采用变频装置将风电接入电网,在此过程中,变频装置将会向电网注入一定数量的谐波,使得电网谐波来源更加复杂。

(3)输电技术方面。为了提高电压质量和系统的稳定性以及解决大容量远距离输电等问题,柔流输电技术和高压直流输电技术得到极大的发展和应用。柔流输电技术和高压直流输电技术以电力电子技术为支撑,通过电力电子装置实现对电网运行方式的灵活控制、调节,以实现对电能的安全、高效、经济输送。这些电力电子装置主要包括:用于提供无功功率补偿以改进电网电压控制和系统稳定性的静态无功补偿器(SVC);用于提高输电线路输电容量和改善线路运行情况的可控串联补偿装置(TCSC);用于电网潮流控制的统一潮流控制器(UPFC)以及用于高压直流输电技术的高压直流换流器等。上述电力电子装置大多数具有一个共同特性,就是产生谐波。因此,在使用这些装置对输电技术进行改造时,对其产生的谐波不得不进行一个详细的评估。

2.谐波的危害

谐波注入电力系统将会严重恶化电网的电气运行环境,危害电力系统的安全、稳定运行,同时,还会对电网电气设备以及用户用电设备的安全造成危害。

首先,对整个电网来说,谐波的产生与输送,将在输电网中增大网损,降低电能传输的效率;谐波电流在线路中引起畸变压降,降低了电网的电压质量;新型非线性负载的间断性用电方式降低了电源电压的工作效能;谐波电流恶化交流电能传输中的电气环境,易引发系统崩溃。

其次,对电网中的电气设备而言,因为电网中的电气设备是按工频、正弦电流工作方式设计的,谐波电流流过将会影响其最佳工作状态。例如:谐波电流会对电机、变压器等电磁设备的绕组及铁芯引起额外发热,使损耗增加,降低电磁设备的使用寿命;谐波电流会影响功率处理器、互感器的测量精度,引起电力测量的误差;谐波电流有可能造成继电保护装置、自动控制装置的工作紊乱;谐波电流的存在还可能会降低断路器、熔断器等设备的开断能力。

此外,随着工业控制技术的发展,工业生产中许多精密仪器、复杂的控制系统等对电能质量的要求也越来越高。谐波电流对其造成的影响,有可能会使工业生产造成巨大的经济损失。

3.电力系统的谐波抑制技术

如前文所述,电力系统谐波造成低劣的供电电能质量,严重危害电力系统的安全稳定运行和电网电气设备、用户用电设备的安全。在现有的技术水平下,为避免谐波的危害,保障电网及用户的利益,对电力系统的谐波抑制,已经成为电气工程学科的一个热门研究领域。目前对电力系统谐波抑制的方法主要可以分为预防性电力谐波抑制技术和补救性电力谐波抑制技术两种方法。

3.1预防性电力谐波抑制技术

预防性电力谐波抑制技术是指在设计构建系统或设备的过程中,通过选取合理的线路结构及元件参数,避免产生谐波或减少谐波。常见的预防性电力谐波抑制技术有如下几种:

(1)利用设备的电气特性。该方法主要是对电气设备采用有效的接线方法或结构形式来减少或消除接入电力系统的设备所产生的谐波。比如对于变压器来说,其绕组采用三角形的接线方式能隔断3倍频谐波电流的流通。

(2)配电网重构。对多个谐波源同时接入电网的情况,可通过对配电网重构的方法,实现降低公共连接点总的谐波限值。这种方法是通过对配电网中的负荷进行再分配,限制负荷中非线性负荷的比例,控制非线性负荷产生的谐波电流在一定的范围内,使公用母线上的谐波电流限值不超过电力部门制定的标准。该方法只是达到降低谐波限值的目的,并没有达到谐波隔离的效果,谐波电流仍会注入电网中,有可能对电网及其他用户造成损害。显然,这并不是一种合理的谐波抑制的方法。

(3)多脉波整流技术和高功率因数PWM整流技术。多脉波整流技术是将两个或更多个相同结构的整流电路按一定的规律组合,将整流电路进行移相多重联结,利用各整流负载的谐波电流相位差,使其相互叠加后可削弱或抵消电源输入端的部分谐波电流。例如12脉波整流技术可以有效削弱5次和7次谐波,24脉波整流技术可以有效消除11次和13次谐波。随着技术的发展,多脉波整流技术的脉波数可以达到一个很高的值,但同时也使系统结构更为复杂,需要对其可靠性、经济性等因素进行全面衡量。

3.2补救性电力谐波抑制技术

补救性电力谐波抑制技术是指为了解决已经存在的谐波问题而采取的技术手段,主要是在电网谐波源处加装滤波装置。常见的滤波装置有如下几种:

(1)无源滤波器。无源滤波器也称为LC调谐滤波器,是由滤波电容器、电抗器和电阻器适当组合而成的无源滤波装置。无源滤波器的基本工作原理为:由电感,电容和电阻组成的无源电路网络,通过将电容和电感调谐到对某一次谐波电流频率发生谐振,对该次谐波电流形成低阻抗支路以分流该谐波电流,从而达到在电网中滤除谐波电流的目的。无源滤波器结构简单、易于实现、设备投资较少、运行费用较低,是迄今为止应用范围最广的一种滤波手段。然而,由于无源滤波器只工作于特定频率,所以实际应用中通常用几组单调谐滤波器和一组高通滤波器相互配合组成滤波装置,以达到滤除主要的各次谐波分量的目的,但是这样容易造成各组调谐滤波器之间的相互影响,使调谐变得困难;而且无源滤波器受其电容电气特性的影响,容易和系统阻抗发生谐振,损害电容器件,严重时,甚至会使系统崩溃。

(2)有源滤波器。如图1所示,有源滤波器是通过检测补偿对象的谐波电流,然后通过控制电路注入一个与谐波电流相位相反的补偿电流,抵消谐波电流的影响,实现电源电流波形的正弦化。随着材料科学的发展以及大功率电力电子器件的开发应用,有源滤波器在耐压以及容量等问题上还有很大的发展空间。

(3)混合型有源滤波器。混合型有源滤波器是由有源滤波器和无源滤波器相结合组成的混合型滤波装置。装置的有源滤波器可以快速地补偿谐波,而无源滤波器可以同时进行谐波过滤和无功补偿,提高了滤波补偿的效率。当前混合型有源滤波器主要有串联式混合型有源滤波器和并联式混合型有源滤波器,其中并联式混合型有源滤波器的应用空间更广,已在多个直流输电工程中得到应用。

4.结语

综上所述,电力谐波给电网带来的危害是明显的,因此,我们有必要针对电力系统的谐波问题,采取科学的技术进行抑制,这不仅可以提高供电设备工作的稳定性与效率,而且能在保证供电质量的前提下降低供电的成本,对电能高效使用有着重要的指导意义。 [科]

【参考文献】