时间:2023-03-25 11:25:38
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇建筑高级论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
建筑物底面对建筑物空间形态的水平方向和垂直方向的稳定性都是十分重要的,由于建筑物是钢筋水泥等重物的砌筑而成,因此结构荷载必须能将其重量向下作用于地面,而建筑设计的一个基本要求就是要检测地基是否能承载所选择的结构体系中向下的作用力(如图1)。因此,在建筑设计最初阶段就需要对主要的承重墙和承重柱的分布和位置作出总体考量。竖向和水平向结构体系设计在低层、多层和高层建筑中设计基本原理都是一致的。竖向结构体系成为设计的控制因素有两个:①较大的垂直荷载要求有较大的墙、柱或井筒;②侧向力所产生的倾覆力矩和剪切变形要大得多。侧向荷载与竖向的荷载相比,其对建筑物的效应不是线性增加的,而随建筑物的增高迅速增大。例如,在所有条件相同时,在风荷载作用下,建筑物基底的倾覆力矩近似与建筑物高度的平方成正比,而其顶部的侧向位移与高度的四次方成正比。在高层建筑中,不仅是抗剪,而更重要的是抵抗变形和整体抗弯,可见,高层建筑在结构受力性能方面比低层建筑更加复杂。图1高层建筑结构受侧向荷载和竖向荷载示意(a)受风荷载示意(+压力,-吸力)(b)在风荷载和重力荷载组合作用下结构受力示意
2高层建筑设计中存在的问题
高层建筑在进行设计时为了更好地满足对大客流量和开阔的视野空间的要求,通常在楼梯设计时是以宽大的敞开楼梯来作为主要的客流通道,同时,为了更好的满足建筑防火方面的要求,高层建筑在进行设计的时候要采用封闭的楼梯间或者是防烟楼梯间,如图2。因此,在进行高层建筑设计的时候,设计人员通常采用防火卷帘来作为封闭方式,这样能够更好的达到防火方面的要求。在进行设计的时候为了更好的满足相关规范要求,同时确保楼梯的数量和形式满足使用方面的要求,但是,这种设计方案是一种不可取的方式,在出现火灾的时候,人员在疏散方面存在着一定的安全隐患。在进行高层建筑设计的时候还是存在着一个非常明显问题,就是地上层和地下层共用楼梯的问题,在防火方面,为了避免在出现火灾的情况下建筑内的人员由地上层进入到地下层,不应该出现共用楼梯的情况。但是在实际设计时,由于在结构设计方面要考虑的问题非常多,因此,在楼梯设计时经常会出现地上和地下贯通的情况,这样能够在结构上面更加便利,但是也是会导致出现一定的安全隐患。在很多的高层建筑设计中,设计人员对楼梯的设计方案并没有得到很多施工人员的注意,同时,在进行设计的时候对疏散通道的宽度也存在着一定问题,疏散通道的宽度在进行设计的时候通常是会受到疏散门的影响,因此,在进行设计的时候,要对防火审核非常重视。
3高层建筑中建筑设计的措施
3.1高层建筑整体设计探析
(1)主体设计。当代高层建筑设计中的一个全新的要求就是实现建筑本身的生态节能,这就要求对建筑本身主体的裙房部分加强设计,裙房的设计对高层建筑周围街道的人性化空间的创造等有很大影响。对裙房的设计不仅要注重人性化,更要注重形式的多样性。(2)处理手法上的巧妙运用。高层建筑的实际建筑设计阶段,高层建筑的塔楼设计并不能有很大的变化空间,但是可以从底层部分入手运用一些巧妙地处理进行空间上的拓展,通常都是采用入口缩进和底层架空等手段进行设计。
3.2高层建筑中的分类建筑设计探析
(1)底层入口设计。底层入口相对来说很重要,在北方地区,高层建筑的底层入口在设计上首先应该避开地域内的冬季迎面风,保证冬季的底层温度。而在我国的南方地区,一定要保证底层入口设计的通风散热,因为南方的夏季较为炎热,可采用局部或全部架空的方式避免对通风的阻碍。
(2)建筑围护设计。一般来说大部分人在高处都会有一定的恐惧心理,尤其在高层建筑上。在高层建筑的设计中一定要注重防护栏的设计,良好而合理的设计可以在使用性上给人以安全感。
(3)服务设施设计。高层建筑在设计初期要充分考虑到建筑的服务设施,这对高层建筑的整体感觉非常重要。首先在底层入口处要设置值班室,方便对出入人员的管理,其中要配置先进的夜间电梯紧急呼叫装置以及公用电话等,还要有特定的停车处和分户信箱。
3.3高层建筑设计中的安全问题探析
(1)高层建筑的防火问题。防火问题对于大多数建筑尤其是高层建筑来说异常重要,建筑设计师要对防火问题的设计进行加强。
(2)电气的问题。高层建筑的电气问题主要分为三个方面,一是消防电源与配电问题,要求供电电源来自不同发电厂或不同的区域变电站,以保证突发事件时供电及时解决。二是应急照明问题,高层建筑发生火灾或者其他突发状况时事故照明要正常。三是高层建筑的电梯安装问题,电梯的位置设置要合理,电梯运行过程中噪音不应太大,且最大荷载量应符合高层建筑的需要,方便快捷。
(3)防雷击问题。防雷击问题也是高层建筑设计的重点,应本着“整体防御、综合治理、多重保护、突出重点”的原则,从结构设计上做好防雷工作。高层建筑的顶端是防雷设计的重点,可以安装避雷针、避雷网或者避雷带等。同时要利用建筑中的钢筋作接地装置,建筑周围也要做避雷带,内部金属物体也要接地。
4结束语
我国当前主要通过常微分方程求解器对高层建筑结构力学进行分析。高层建筑结构力学常微分方程求解器功能强大,自适应求解效果非常好,可以有效满足对用户进行预先解答,提高解答的精度,降低解答指定的误差限。当前我国在高层建筑结构分析通过对常微分方程求解器的应用,有效实现了对高层建筑结构楼板变形时的动力计算、稳定计算和静力计算,实现对数据的整体分析和处理。建筑人员通过使用常微分方程求解器的分析,有效降低了在进行高层建筑结构分析时的处理量,降低了高层建筑结构分析中的方程组数,有效提高运算效果,从本质上实现了对建筑结构的优化。
在对高层建筑结构常微分方程求解器进行深入研究的过程中,清华大学教授包世华和袁驷有效提高了常微分方程求解器的应用,实现了对常微分方程求解器的深化研究。袁驷教授利用有限元技术,对偏微分方程的半离散化进行控制,有效实现了对常微分方程组的求解,提高了对结构线性函数的应用。通过常微分方程求解器的直接求解,对有限元线进行实际应用,有效对一般力学问题进行计算,在很大程度上提高了一般力学问题的计算效果。而包世华教授对半解析-微分方程求解器方法进行分析深化,有效将半解析-微分方程求解器方法应用到高层建筑结构结构静力、动力、稳定性的分析验证中,提高了对高层建筑结构力学分析的效果。
2高层建筑结构弹塑性动力分析方法
高层建筑结构弹塑性动力分析方法在高层建筑结构力学分析中又被称为时程法。高层建筑结构弹塑性动力分析方法主要是对地震波直接输入结构,完成结构的弹塑性性能分析。这种方法要求结构力学分析人员建立专门结构弹塑性恢复性动力方程,通过逐步积分法实现对地震过程中速度、加速度、位移等的时程变化,完成对建筑结构的描述。高层建筑结构弹塑性动力分析方法对建筑结构在强震的作用下弹性及非弹性阶段的内力变化进行深入研究,有效对高层建筑构件可能出现的损坏、开裂、屈服、倒塌进行分析,提高建筑结构力学的分析效果。当前在国内的高层建筑结构弹塑性动力分析方法主要输入地震波为随机人工地震波,结构模型的计算多采取层模型。除此之外,高层建筑结构弹塑性动力分析方法还加大了对楼板结构变形的分析,使用并列多质点计算模型进行计算,对高层建筑结构的基础转动和评议进行研究,有效提高了对土体、基础及上部结构耦合振动的模拟效果。
近年来我国还高层建筑结构弹塑性动力分析方法中对扭转振动进行分析,取得显著进展。高层建筑结构弹塑性动力分析方法能够有效对高层建筑结构中存在的薄弱环节进行分析,提高对结构延展性、变形的实际分析效果。高层建筑结构弹塑性动力分析方法预计的破坏形态与实际地震的破坏效果非常接近,有效对地震危害进行防护处理,提高了高层建筑结构的防震效果。但是当前对高层建筑结构弹塑性动力分析方法的整体看法不一。部分人员认为采取大型高速计算机对典型地震波进行分析;但是部分人员认为典型地震波本身不一定能代表真正的地震,因此在进行研究的过程中要对研究算法进行简化,对近似方法进行研究。随着高层建筑结构弹塑性动力分析方法的逐渐发展,越来越多国家在进行高层建筑结构力学分析的过程中开始对地震波根据实际情况进行选取,模拟效果大幅提高。
3基于最优化理论的结构分析方法
基于最优化理论的结构分析方法主要是通过数学上的最优化理论及计算机技术实现对高层建筑结构设计的一种新方法。基于最优化理论的结构分析方法有效实现了对结构设计的被动分析道主动设计的转变,提高了高层建筑结构设计的灵活性,对设计具有非常好的促进效果。基于最优化理论的结构分析方法对空间的要求较为严格,设计过程中要保证以最小的质量产生最大的刚度。因此,设计人员要对框架剪力墙结构中的剪力墙进行充分分析,实现墙体的优化布置和数量选取,提高基于最优化理论的结构分力学析效果。基于最优化理论的结构分析方法中要求保证适度的刚度,对刚度要进行严格控制。尤其是在分析剪力墙与地震作用的时,要对剪力墙刚度进行优化设计,确保建立正确的最优化刚度模型,提高基于最优化理论的结构分析方法的模型实际应用效果。目前我国的基于最优化理论的结构分析方法发展还不全面,在进行单位建筑面积上剪力墙惯性矩度量指标设计的过程中还存在较多问题。我国的基于最优化理论的结构分析方法仍处於研究和发展阶段。高层建筑结构力学分析人员要对基于最优化理论的结构分析方法中的数学模型进行深入研究,对剪力墙最优刚度进行有效分析,从本质上提高数据分析处理效果,拓宽基于最优化理论的结构分析方法的应用前景。
4基于分区广义变分原理与分区混合有限元的分析方法
在进行分区的过程中,高层建筑结构力学分析人员要对有限元进行全面分型。有限元中杂交元和非协调元的发展在很大程度上促进了分区广义变分原理的发展,为分区广义变分原理奠定了坚实的理论基础。清华大学龙驭球教授对分区广义变分原理进行研究,实现了对分区广义变分原理的深化。龙驭球教授的分区混合有限元法将分区广义变分原理进行拓展,实现了继位移法、杂交元法之后的改革和完善。分区混合有限元法对弹性体分类,对势能区使用位移单元能量分析,将结点位移作为基本未知量。而余能区使用应力单元,将结构应力函数作为基本未知量,实现对能量项的交界面附加。分区混合有限元法在满足位移和力的基础上保证了位移的连续和收敛性,有效对总能量泛函驻值分区混合进行方程选取。分区混合有限元法适应性非常强,分区较为灵活,在很大程度上保证了函数的收敛性,对高层建筑结构力学的分析具有非常好的促进效果。
关键词:绿色建筑设计;高层;民用
1引言
随着社会的发展与进步,人们对于生活居住条件的要求越来越高,这就要求建筑设计者转变传统的建筑设计理念,将绿色建筑理念融入到建筑设计中,大力发展绿色建筑生态节能设计,而这也是新时期经济环境建设的的发展方向。因此,应通过相关手段和措施,使绿色建筑生态节能设计更加完善,推进绿色建筑生态意识的发展,真正地促进绿色建筑生态节能设计水准的提高。那么如何更好地实现绿色建筑的生态节能设计是工作者重点思考的问题。
2绿色建筑生态节能设计原则
2.1实现与自然相和谐的绿色生态原则
绿色建筑生态节能设计的宗旨是实现建筑与自然的和谐共处,真正实现在建筑过程中的生态化、绿色化和可持续性。与自然相和谐的绿色生态原则是绿色建筑最基本的因素,对有限的生态资源进行合理运用,并且实现经济有效增长与自然规律相统一,实现建筑结构合理化。此外,在将自然生态的绿色植被融入到建筑过程中,真正实现了建筑与自然相和谐,为人们创造和谐的居住环境,体现绿色建筑真正存在的价值,促进建筑行业有序健康发展,进而为社会和人们带来更多的经济效益。
2.2体现经济适度、高效健康原则
现代绿色建筑是一种新型的建筑模式,除了充分实现与自然相和谐的生态原则,保证绿色建筑的生态化、绿色化和环境可持续性的基础上,还应该坚持绿色建筑的经济适用性、高效健康性的原则。在建筑实施过程中,考虑人们在建筑的外观设计以及性能上的实际需求,以此来满足消费者日益增长的消费意识和审美观意识的转变。这就要求建筑设计者在设计建筑过程中不仅仅要考虑建筑的生态节能性,还要重视人们对建筑外观设计和审美的实际需求,实现绿色建筑的经济适度原则和高效健康原则,不断优化建筑设计过程,节约资源和降低成本,更好地促进绿色建筑生态节能设计工作的发展,从而实现社会的长远发展。
3绿色建筑设计在高层民用建筑设计中的应用
3.1高层民用建筑设计规划
常规情况是,开发商首先固定了建筑项目的场地,所以建筑的设计者只能尽可能多的利用当地的地理环境,开发可利用的自然资源,考虑施工的难易程度等一系列因素来确定建筑物的规模,格局和朝向,合理地安排并组织建筑与其它领域相关因素之间的关系,使其与环境之间成为一个有机组合体的构筑物。
3.2合理利用自然环境
①对高层建筑的地下空间进行充分利用,通过对地下空间结构的合理利用可以削弱地上建筑设计中存在的不利因素的负面影响,从而为工程整体设计方案的优化垫底基础。在居住区域内进行绿色建筑施工时,会存在噪音等,噪音的来源主要为中水处理站以及泵房。所以在设计过程中可将设备放置于地下,有效控制噪音源。在设计居住区的相关建筑时,需通过通风、消防以及防渗防水优化设计方法实现地下室的最大化利用。在设计过程中,相邻建筑之间存在一些空间,可以利用这些空间设计半地下车库,并配置相应的绿化带,节约土地资源,改善整体绿化效果。②设计透水地面。在建筑区域设计过程中,主干道以及人行道等采用的材料有所差异,应采用差异化设计方法。例如,对于主干道可以使用沥青混凝土材料,但是人行道位置需选用透水性能较为突出的材料,对于地面的停车场可以使用植草砖进行铺设,用于地面积水消纳。③设计科学合理的道路系统。需对道路景观各要素进行综合考量,满足人们的生活及安全要求。在居住区域内,需要区分车道以及园路,按照功能的不同进行合理配置,保证交通顺畅,也避免安全隐患。这样可形成有规律的环形结构,保证交通的快捷通畅,同时可以使消防隐患大大减少。在设计车行道的时候,在保证消防使用的基础上,使各条道路的宽度满足正常的需要。对于园路而言,宽度以1.5~2.5m为宜。
4实例分析高层民用绿色设计
某项目总建筑面积313063m2,建筑高度达200m,属超高层建筑。项目地上层数45层,地下层数3层,建筑面积90895.9m2,地下建筑面积10832.30m2。4.1室外风环境本项目建筑群统筹布局,采用连廊架空设计,改善了导风性能。通过对该建筑所处地区各主导风向下的室外风环境进行计算机模拟,项目建筑周围室外全年风速均小于5m/s,满足规范要求;部分区域存在少量风影区;总体室外风环境较为理想。①当主导风北风时,气流可通过住宅区内架空层流入中心广场地带,项目内各建筑周围室外气流组织较均匀,流场形态简单,且在行人高度大部分区域风速在1.7~3.0m/s之间。部分住宅楼的北风面有较长的风影区,该区域风速小于0.6m/s。②当主导风向为东风时,项目东侧小区建筑并未对来流风速产生明显不利影响,反而起到了对来流的“导风作用”,气流透过项目内各建筑之间的开阔地带进入项目中心广场地带,并有一部分气流穿过架空层向北流走。该工况下,大部分区域风速在1.1~1.9m/s之间,风速较为舒适。③当主导风向为东南风时,和东风工况相似,只是该工况下,项目西北侧有面积较大的风影区,该区域内风速在0.6m/s以下,但其他大部分区域风速在1.7~3.0m/s的适宜区间内。4.2围护结构设计项目在围护结构节能方面尤其注重幕墙的遮阳性能。采用单元式和框架式的幕墙系统,幕墙玻璃主要采用TP8(Low-E)+12A+TP6mm中空钢化玻璃和TP8(Low-E)+12A+TP6+1.52PVB+TP6mm中空钢化夹胶玻璃,玻璃自遮阳系数≤0.30,可见光透射比≥0.40,较好地兼顾了采光与节能的需求;幕墙竖向挑出300mm铝合金装饰条,具有一定的固定外遮阳效果,但效果较不明显;同时,主要功能房间内设有窗帘;综合上述自、外、内遮阳措施,项目整体提高了幕墙的遮阳效果,有效减少夏季空调能耗,改善室内热舒适性。4.3室内质量环境在室内自然通风方面,项目幕墙设有大量上悬式可开启扇,开启扇执手高度适宜,方便室内人员自由调节开启。此外,各层人员密度较高且随时间变化较大的区域,如地下一层超市等区域的空调系统采用了CO2监控系统,地下车库采用CO监控,实时监测室内CO2/CO浓度并与通风空调系统联动,在保证室内的新风需求的同时按需调节送风工况,兼顾健康与节能。项目住宅楼造型方正,部门商业功能区域室内布局主要围绕核心筒采用大开间,办公室和会议室主要沿外区布置,房间进深均在9m以内。隔断内区功能以资料室、储物室等辅助功能房间为主,避免内区压抑空间对室内人员的影响。通过对部分标准层的自然采光模拟分析,主要功能房间采光系数均可满足要求,模拟结果见表1。同时,为了改善地下空间采光效果,在项目用地东北角设计下沉式广场,大大加强了该区域的自然通风、采光环境。并且首层地面绿化带设置了12根导光管,使负一层部分地下空间也可享受到室外自然光。
5结束语
绿色建筑是一个非常复杂且宏观的概念,要考虑的因素非常多且范围大,包括循环利用建筑材料和自然资源,包括开发利用新能源,应放眼大局,不能只停留在独立的建筑上,应将其与整个城市的规划相结合进行设计。要实现这一目标,需要建筑师同其它方面的工程师相互协作,相互配合,运用科学的设计方法和手段,不仅仅依靠政府机构,还需调动全社会的积极性,共同参与到构建绿色建筑的过程里,促进绿色建筑在我国建筑领域的应用。
作者:胡 娟 单位:成都基准方中建筑设计有限公司重庆分公司
参考文献
[1].绿色建筑设计在高层民用建筑设计的应用[J].四川水泥,2014,13(11):239.
[2]李锐.解析高层民用建筑设计中绿色建筑设计的应用[J].江西建材,2015,5(2):23.
关键词:超高层建筑
THEDEVELOPMENTOFCONSTRUCTINGTECHNOLOGY
OFSUPER-TALLBUILDINGS
自1968年日本外交部大厦(地上36层,高度147m)建成以来,日本的超高层建筑的发展已有30年的历史了。随着强震记录的收集技术和计算机技术不断发展,动力设计方法的不断完善以及建筑用钢材的发展,日本正迎接钢结构超高层建筑时代的到来。
1超高层建筑的现状
高度超过60m的建筑物,需受到日本建筑高层评委的评审,并通过建设大臣的认定后,方可允许建造。从日本《建筑通讯》上刊载的这些建筑物的有关数据资料,可以看出,除塔状构筑物及烟囱等以外,高度超过60m的建筑物,日本现在(1998年1月)有1000栋以上,其结构类型:纯钢结构(S结构)为60.6%;下部为钢-钢筋混凝土结构(SRC结构)、上部为S结构(S+SRC结构)为3.8%;SRC结构为21.3%(如图1),以RC(钢筋混凝土结构)高层住宅为主的建筑数量不断增加,且比率达13.9%。高度超过150m以上的建筑物,已有65栋,其中S结构占84.6%;下部为SRC结构、上部为S结构占6.2%;SRC结构占7.7%,从而可以看出超高层建筑以S结构为主的变化状况(如图2)。
图1受高层评委评审的全部建筑物
(1072栋)的结构类型
图2高度为150m以上的建筑
(65栋)的结构类型
把日本的超高层建筑按高度顺序由大到小进行20位的排列(排列表略),第20位的建筑最高高度为200m。如果看一下这些建筑物的结构特性,其主要的结构材料,全部是S结构。并在S结构中,配置了支撑系统及钢板抗震墙、带缝墙等,以减小强震或强风时的侧移变形。此外还增设了抗震装置。
2新材料的利用
在抗震设计中,一直以保证骨架结构的强度为重点。通过分析强震记录,发现强震时,仅是强度抵抗,并没有给予建筑物以充分的塑性变形能力。而塑性变形却可以吸收能量,减轻震害,这在抗震设计中,显得十分重要。因此,对钢材性能的要求也发生了变化,研制和开发出了适用于超高层建筑的高性能钢材,同时,还开发出了新的高层结构体系。
2.1高性能钢
80年代后期,超高层建筑,大跨结构迅速发展,对钢材性能的要求也越多。主要包括有高强度,低屈强比,窄屈服幅等的耐震性能;可焊性,形状尺寸加工精度的施工方面的性能以及耐久性等。
2.1.1高张力钢
建筑用钢材的应力-应变曲线如图3所示。其屈服点在100~780N/mm2的范围,其中屈服点为400N/mm2的钢材,占一半以上。
图3钢材应力-应变曲线
1-780N钢;2-建筑结构用780N钢;
3-建筑结构用高性能590N钢;4-SN490;
5-SS400;6-极低屈服点钢
钢材屈服点的提高,在设计方面就需要保证结构的刚度要求,防止局部屈曲;在施工方面就要保证结构的可焊性。另一方面,在多震国,地震时确保结构建筑物的安全性是一个最大的课题。因此,高张力钢不仅要有很高的屈服点及抗拉强度,还要具备充分的塑性变形能力。从这些观点出发,1988~1992年间,日本开发研制了屈服点为590N/mm2的高张力钢,广泛用于超高层建筑中。近些年来,又开发研制了屈服点为780N/mm2的高张力钢,已开始部分应用于超高层建筑中。
2.1.2低屈服点钢
另一方面,还开发研制了利用钢材的低屈服点和屈服特性的技术,耐震设计中的隔震和抗震构造技术得到了迅速发展,地震对建筑物输入的能量,通过建筑物特殊的部位吸收,从而确保整个结构的安全,防止结构构件(梁,柱)的破坏和损伤,低屈服点钢主要用于这些特殊部位,作为吸收地震能的材料。低屈服点钢,其化学成分主要是纯铁。如屈服点为100N/mm2的钢材(为普通钢材屈服点的一半左右),具有很大的塑性变形能力。
2.1.3TMCP钢
建筑物的高层化、大跨化等,要求使用的钢材高强度化,大断面化,极厚化。以往的冶炼方法,若保证钢材的高强度,就需加入相应的碳元素,钢材含碳量的增加会导致可焊性的降低。为了解决这个问题,开发研制了490N/mm2级的建筑结构用TMCP钢。建筑结构用TMCP钢,是通过TMCP(热处理)处理后得到的。已广泛用于超高层建筑中,如东京都新(厅)舍大厦(地上48层,檐口高241.9m)中的柱子全部采用此种钢。TMCP钢的特点是:①改善了可焊性,②保证了极厚部位的强度,③降低了屈强比。
2.1.4SN钢
根据超高层建筑的抗震要求,钢材应具有足够的弹塑性性能和较好的机械性能,可焊性能,具有吸收地震能的能力,日本JIS制定了“建筑结构用钢材”(SN钢)标准。广泛用于超高层建筑。SN钢要求:①保证可焊性,②保证塑性变形能力,③保证板厚方向的性能,④保证经济性和加工方便,⑤保证与国际规格接轨。SN钢的规格有A、B、C三种,其板厚都是在6~100mm,分400N/mm2和490N/mm2两个等级。
2.2新RC结构(钢筋混凝土)
在钢结构钢材的强度不断提高的同时,钢筋混凝土结构中的钢筋和混凝土强度也在迅速地提高。1988年以来,进行了强度为58.8~117.6MPa的混凝土及强度为686~1176.7MPa的钢筋的开发,并已用于超高层住宅中,如礼新城北高层住宅(地上45层,高度160m),所用混凝土强度为58.8MPa,主筋强度为686MPa,断面加强筋强度为784MPa,是以前高层RC结构所用材料强度的两倍。现在超高层建筑已开始使用78.4MPa,98MPa的混凝土。
2.3CFT结构(钢管混凝土)
由于高强度钢的使用,可以使构件截面做得小而薄,然而这必带来局部屈曲和刚度降低的问题,解决这个问题的途径之一就是采用CFT柱。
继S结构、SRC结构、RC结构之后,它形成了第四种结构体系。CFT结构体系,就是用圆形或多边形钢管内填充混凝土的柱子和S结构,钢-混凝土结构的梁连接起来而形成的结构体系,具有刚度大,耐久力大,变形能力强,防火性好等方面的优良结构性能。因此,超高层建筑,大跨结构等开始广泛采用此种结构体系。
CFT柱的优点是,混凝土填充在钢管中,在受压和受弯共同作用下(如图4所示),混凝土向横向扩散,然而却受到钢管的横向约束(称为钢箍效应)。所以,混凝土的强度和变形能力提高。另一方面,由于混凝土的填充,钢管的局部屈曲受到了有效的抑制,如图5。这样,CFT柱可以最充分利用高张力钢的强度。随着高强混凝土及其组合的研究不断发展,将来高度为1000m级的超高层建筑的构想实现,期待着CFT柱将起主要作用。
3隔震,抗震结构构造
1995年1月的阪神大地震以来,隔震结构急剧增加。从地震加速度反应谱曲线上可知,为了减小建筑物上的地震力,需要延长建筑物的固有周期,使其获得大的衰减。隔震结构是指,在建筑物基础上,安装夹层橡胶等水平方向柔软的减震支承,使水平变形集中在减震层上,把整体结构的固有周期延长2~3S的同时,再利用某种衰减装置(阻尼器),使作用在建筑物上部的反应加速度、位移得到大幅度衰减的结构体系。有许多种实用的减震支承和衰减装置,现将有代表性的列于表1中。
表1减震装置的性能和种类
装置
分类
性能种类
支承*支承荷载
*延长固有周期
*降低反应加速度
*降低上下水平振动夹层橡胶
高衰减夹层橡胶
铅芯夹层橡胶
滚动支承
水平
衰减
装置*限制水平地震反应位移
*降低水平地震加速度
*限制共振反应弹塑性阻尼器,高粘
性阻尼器,油性阻尼
器,摩擦阻尼器,高
衰减夹层橡胶,铅
芯夹层橡胶,滑动支
承
这种隔震结构的上部结构常是较刚性的。超高层建筑的固有周期都比较长,所以它自身已包含了减震效应。但是如果把衰减装置安装其上,则对于抗震更是一个有效的方法。
图6蜂窝式阻尼器的循环过程
用于超高层建筑(高层建筑)上的衰减装置,有对应于建筑物上下层的水平位移差(层间位移)而运动的钢制弹塑性阻尼器;高衰减的油性阻尼器;粘性抗震墙;粘弹性阻尼器等。其中,钢制弹塑性阻尼器,是利用钢材塑性荷载-变形关系曲线描述大的循环过程,并把振动能用循环面积消耗掉的一种装置。蜂窝式阻尼器就是一例。它是利用200N/mm2级的低屈服钢,利用它有限的塑性变形特性,提高吸收地震能的能力的装置。图6表示蜂窝式阻尼器的循环过程。
把这些衰减装置设置在超高层建筑上,多数情况下,可使设计地震力减小约30%左右。
4结论
超高层建筑不仅在日本、美国等发达国家较为普遍,就是在发展中的中国,它仍然是今后我国建筑事业发展的方向。为此,随着我国国力的不断增强,不断借鉴外国先进的建筑技术,并结合我国的具体实际,必将能走出一条具有中国特色的超高层建筑之路。
参考文献
该地基土层由于处在一滨海相水体冲击地区,其孔隙较大、土质水量吸收相对较高,包括土质高压缩性明显,则可断定为软弱土层结构。而中部土体结构环境则以溺谷相地质性质为主,并且土层间的土质呈现多以粉细砂、亚粘土的交替组织形态为主,厚度则为8-10m左右。至于下部土体环境可归结为浅海相沉降类型,且厚度约为18-20m左右。不过由于下部砂类所处环境也是项目长桩应用的持力层,如若采用基本自然地基土层进行处理则很难满足项目自重承载及规则沉降量的设计要求,故结合项目实际采用桩基处理方式。
2桩基础施工技术工艺处理措施研究
2.1开挖方法及控制要点
2.1.1打桩后再开挖在结合该工程实际处所地基地质环境及其当时现有的工艺条件下,包括吸收了国外同类题材项目的施工经验及建模理论的基础上,确立了“打桩后再挖土”的打桩作业原则。这是因为本项目如若采用先开挖在打桩的作业方式,不仅要考虑造价因素,同时还要评估施工难易程度。具体原因则是:本工程项目所处地质形态环境下,土质结构相对松散、含水量大,且高度压缩性非常明显,渗透性表现不灵敏,属于软塑、流塑组织状态,荷载性能不足。此外就开挖作业量而言,开挖规模较大,很难准确评估坑底标高。同时基坑长期在外投入的人工降水造价费也很高。特别是该地气象条件下降雨量丰富,但凡基坑被泡则会加剧塌方隐患,所以打桩机很难到坑底地带完成作业。若非所处作业条件受限,正常基坑打桩则需要利用路基箱,碎石块等物资设施加以辅助。基于此,本项目实行的“打桩后再开挖”打桩作业法则充分切合实际利用了地表硬壳层,从而使得打桩工作开展可采用地面行进方式完成作业,不仅使得作业效率显著提升而后又控制了造价成本投入,并巧妙控制了基坑开挖的桩柱变形及顶部位移。2.1.2质量控制要点虽然结合本项目实际特点采取了“打桩后再开挖”作业施工法具备显著优势,但是短板之处也同样值得重视,需要予以重点质量控制,即预先打入桩的弯曲变形组织形态下的水平位移需要严格控制。基于此,为控制变形加剧并产生控制良效,则需采取针对性控制手段:第一,应能结合施工流程,妥善控制挖土次序,并保持对称挖土以避免基坑长期在外;第二,当基坑面积较大时,则可以使用分段挖土作业原则完成该时期工序作业,即每挖一段就随后完工一段,并处理好每挖一段的回填,然后交替循环进行开挖。第三,基坑开挖后存在的土料应随挖随运,杜绝在边坡周围堆放开挖土,从而达到控制桩基变形及顶部位移的主要目的。
2.2锤击沉桩施工法
2.2.1沉桩锤选用标准本项目采用的打桩法主要以锤击沉桩法应用为主。值得指出的是,柴油锤、落锤、或者蒸汽锤的选择应能结合项目实际进行评估并应予以采用。一般而言,柴油锤特别适用于坚硬土层性质的地基土,这是因为柴油锤连续作业性能良好,锤芯夯击起跳高,且沉桩成效佳;而蒸汽锤一般比较受用于软粘土层进行沉桩;至于落锤,严格意义上可将其视为作业机具,应用于沉桩规模作业较小的短桩结构。因此,对于沉桩锤的选用确认,应能结合桩基础的规格型号、基本长度、以及其重量级、直径等参数进行评估并予以采用。2.2.2质量控制要点沉桩落锤的捶打原则应坚持以“重锤低打”执行原则为主,并要考虑桩基础本身极限强度允值的承受情况,即处在其捶打承受荷载允值内,尽量采用大桩锤,以避免捶打时桩头损坏。因此,结合上述沉桩锤落锤的捶打依据,本项目对于400x400mmx30m的钢筋混凝土方桩和钢管桩的沉桩施工,可优先选用3.5t级柴油锤;当调配确有困难时,亦可选用4.5t级柴油锤,但应限制锤跳高度,不应超过2m;φ550x100mmx40—45m的预应力钢筋混凝土管桩和钢管桩的施工,宜选4.5t级柴油锤。
2.3停打标准处理控制要点
2.3.1桩基础基本停打标准确认高层项目桩基础打桩的停打控制标准有关责任施工单位应能高度予以重视。这是因为桩基础的停打处理标准决定着该高层项目基础所承载的极限允值,从而决定是沉降量是否规则,以保障项目基础结构上方的建筑结构安全性能得以保持。此外,如若确保桩基础的停打控制标准合乎质量控制标准,则直接有效、合理控制施工进度,并确保打桩机具的油耗得到有效控制,且使得其桩锤使用周期寿命得以延长。因此,确认桩基础的桩锤停打标准,则需要客观考量该项目的所处地质环境,以及现有的桩基础规格种类、桩的长度,包括现场各项组织控制要素等进行综合评估并予以采用。基于此,结合受力形态存在的力学差异,则需切合项目实际来确认桩基础停打标准。2.3.2持力层确认贯入度虽然沿海一带土层所固有的基本性质属于软粘土,并且分布相对稳定。但是如何判断桩基础的沉桩锤击受力是否进入到持力层就成为了停桩标准控制关键。因此,此时可以凭借贯入度去进行客观评估。也就是说,待桩端已经深入到持力层,则可结合设计要求继续打至3—5D。不过,有时会遇到突发状况,即遇到结实、坚硬的持力层,这是打至3-5D无疑非常困难,(贯入度S<1.0mm)并且如若强行进行锤打则会使得桩基础损毁的同时又白白毁掉了桩锤。因此,对于该情况的技术交流则需要和设计单位进行反映与沟通,当经得对方同意时则能够以贯入度参数指标作为桩锤停打的主要考量依据。2.3.3基本效益本项目采用“重锤低打”大桩锤(柴油锤)的作业方式对400x400mmx30m及φ550x100mmx40—45m砼方桩及钢管桩完成了其沉桩作业。实际施工中,采用4.5t柴油锤的φ550x100mmx40—45m较大型号桩也都达到了基本预定深度,并且经过静载荷试验表明,桩身强度基本满足设计承载力需求,施工组织设计方案更为合理、可行和经济,远远超过缩短工期所获得的效益。
3结语
1.1高层建筑结构受力特征
高层建筑结构在模型上一般可以假想为一个从地基出发并不断上升的悬臂构件。高层建筑主要承受水平作用效应和竖向作用效应,水平作用效应一般指风荷载,在抗震设防地区还包括水平地震作用。竖向作用效应则一般由结构自重荷载产生,在抗震设防烈度为8、9度时的大跨度和长悬臂结构及9度时的高层建筑,还应考虑竖向地震作用。在这些作用效应下,结构整体及主体构件均需具有足够的承载能力、刚度和延性,整体的设计注重概念,应符合相关规定中对于建筑形体的规则性要求,包括平面布置的规则性及竖向布置的规则性。结构在抵抗弯曲方面来说,结构体系务必满足:不能使建筑物产生倾覆;在承受荷载时,它的支撑体系的某些部位不应被压屈、压碎或者直接被拉伸破坏;同时弯曲侧移不能超出弹性极限的范围。而结构在抵抗剪力方面来说,结构体系务必满足:建筑物不至于发生剪切破坏;同时结构的整体剪切侧移不能超过弹性极限的范围。最后对于结构的地基和基础来说,由于高层建筑一般是高次不静定结构,所以结构体系在支承点处应避免较大的不均匀变形,从而可以防止出现较大的二次内力。
1.2高层建筑结构的传力路线
高层建筑的竖向平面结构和水平平面结构都必须有明确的传力路线。以某个作用在楼面上的重力荷载为例,它要通过楼盖构件的弯曲传递给竖向结构的某个构件,直到建筑物的基础和地基。传力路线的模式根据结构的类别和布置而异。高层建筑的底层往往只允许有少量的立柱,以便有足够的空间可以设置宽敞的入口、前厅或广场。这时,有较密柱间距的上层结构的重力荷载,就要通过另一种结构体系传给底层立柱以及底层立柱基础。当高层建筑的楼层平面有突变时(如楼层有收进,或由矩形平面变成其他形状的平面时),或结构体系有变化时,它们的传力路线也会发生改变,这时往往既要有竖向的转换结构,也要有水平方向的转换结构。在高层建筑结构传力路线中还有一个区别于底层建筑结构的特殊问题,那就是高层建筑的每个立柱都承受着上层传来的重力荷载,要考虑它们各自在施工和使用过程中竖向压缩量的差异。这既要在设计中加以考虑,也要在施工过程中及时加以调整,以保证各层楼面的水平度,减小因不同柱的压缩量有过大差异而引起的结构内力。
2概念设计
2.1抗关于侧力构件合理布置规定
对于一个单独的结构单元,在设计上的通常做法是,一般会尽力避免设计出应力集中的缩颈和凹角部位;而且尽量不要在这些部位设置楼、电梯间。整个结构外形也要避免外挑,尺寸内收也不宜过急,避免在结构上形成薄弱部位。最大限度地防止因局部结构或构件破坏,而出现全部结构失去承载力的情况。
2.2关于高宽比的规定
高宽比的规定是对结构整体刚度、整体稳定、抗倾覆能力、承载能力以及经济合理性的综合考虑,是长期工程经验的总结,根据当前的实际工程来看,这一限值是比较经济合理与实用。但随着目前高层建筑的快速发展,设计师们发现其实高宽比并不是必须要满足的。实际工程已有一些超过高宽比限制的例子(如深圳京基100大厦高441.8m,共100层,高宽比为9.5,天津117大厦,高597m,共117层,高宽比为9.7),当然高宽比超过限值时,应对结构进行更加准确的受力分析,并施加可靠的构造措施。
2.3短肢剪力墙的设置问题
在新的规范中,将墙肢截面高度与厚度比为5-8的剪力墙定义为短肢剪力墙,且根据试验数据和实际经验,对短肢剪力墙在高层建筑中的应用增加了相当多的限制。比如在剪力墙设计等级为四级,短肢剪力墙的配筋率要求是1%以上,而普通剪力墙则为0.2%。高厚比较小的构件的脆性破坏较大,不利于抗震。所以,在具体的高层结构设计里,设计师们应该充分利用其它现有构造形式来代替短肢剪力墙,减少不必要的麻烦。
2.4嵌固端的设置问题
在结构计算模型的选择上,如何准确地确定嵌固端位置是一个十分关键的问题,这直接关系到实际的受力状态与选择的计算模型是否符合以及内力等相应计算结果是否无误。因为现在高层结构通常会设有一层或者是二层的地下室(可以当作人防工程来使用),而嵌固端的选择,可以结合各层的刚度变化,再根据它的实际布置状况,可以选择在一层顶板的位置,也可以是二层顶板的位置,同时在地下室其他楼层等部位也是有很大可能的。但是在这个问题上,结构设计师们往往会忽略了一系列需要注意的问题,例如嵌固端的设置和刚度比的限制等问题,忽视这些问题将会对工程的质量和后期数据的分析造成很大的隐患。
3地基与基础结构设计
在基础的具体设计中,应根据地基复杂程度、建筑物规模和功能特征以及由于地基问题可能造成建筑破坏或影响正常使用的程度来确定基础设计等级。首先,地基计算应满足承载力计算的有关规定;其次,由于高层建筑的基础设计等级均为甲级或乙级,因此均应按地基变形设计;若地下室存在上浮问题时,还应进行抗浮验算。下面就高层建筑中不同的基础类型分别阐述在设计计算中应注意的事项:在对箱基和筏基的梁板进行配筋计算时,务必相应地扣除底板上直接作用的梁板荷载和自重,当出现箱筏的四边区格和地基反力过大的情况,这时要对梁板进行加强配筋;而在进行箱基结构设计时,要考虑洞口上下的连梁的影响,验算其截面面积,若洞口的位置或者大小有变动,要复核连梁的抗剪强度和抗弯强度;若是进行整体箱基和筏基的设计,必须考虑桩土的因素,其共同工作会对结构造成一定程度的影响。
4结构计算与分析
4.1结构整体计算的软件选择
当前比较常用的计算软件一般包括:建科院PKPM其中的SAT-WE,MIDAS,ANYSYS,ETABS,SAP等。由于各个软件使用的计算模型有一定区别,所以在各个软件计算结果上就会有或大或小的差异。实际工程中,务必考虑结构类型和计算模型的具体特点,在进行整体分析时选择最恰当的软件,并使用不同软件进行对比分析计算,从不同软件计算的相差较大的结果中,选择最接近工程实际情况的数据。若不能选择合适的计算软件,不但会消耗大量的时间和精力,更重要的是会对结构埋下安全隐患,造成日后的工程问题。所以为了保险起见,通常在布置复杂的高层设计中,宜使用不少于两种不同的模型来进行内力分析和计算。
4.2剪力墙底部加强部位墙厚的确定
在进行抗震设计时,剪力墙的底部加强部位一般采取增加边缘构件箍筋和墙体的布筋来防止地震荷载的影响,预防结构出现脆性破坏,从而能够比较有效的改善结构的抗震性能,在现行的规范中,明确指出剪力墙结构底部加强部位的高度可以参考墙肢的1/8和底部两层二者中的较大值;而部分框支剪力墙结构底部的取值,可考虑以上两层的高度及墙肢总高度1/8中的较大值。一般情况下,高层建筑结构底部加强部位的剪力墙截面厚度bw的取法按照以下规定,按照一、二级级抗震标准的情况,bw宜选择剪力墙无支长度的1/16或层高;按照三、四级抗震标准的情况,bw宜选择剪力墙无支长度的1/20或层高。但在墙底受力较小且结构层高相对较高的情况下,其厚度还按上述要求取值,就显得很不经济。所以,根据具体的工程实践,厚度可以适当减小,而且必须按照下面的公式计算稳定性。
5结束语
关键词:高层建筑;电气设计;问题分析
工程设计是基本建设的龙头,设计文件是工程建设的主要依据,设计质量是决定工程质量的首要环节。我国工程质量事故统计资料显示,由设计原因导致的工程质量事故占40.1%;工程施工原因引起的占29.3%;其它原因(如设备材料质量问题等)引起的占30.6%。可见对工程质量实施三控的关键在于设计质量控制。电气工程也不例外。合格的建筑设计应满足七个质量特性规定的要求,即功能性、安全性、经济性、可信性、可实施性、适应性及时间性。设计单位本应将通过了设计评审的合格的设计文件交付施工。而实际上不少交付施工的设计文件都存在缺少或偏离质量特性要求的缺陷。对电气工程质量造成影响的设计问题又主要表现在安全性、可信性(包括可用性、可靠性、维修性等)及可实施性的缺失或偏离。
1高层建筑电气设计过程中应注意的问题
1.1高层建筑由于照明及空调负荷多,电梯等运输设备多,给排水设备多,所以用电量特别大,且供电的可靠性要求很高。
1.2在高层建筑中,照明与动力基本上不共用干线。动力负荷多采用放射式供电,照明负荷则多采用母线槽配电,与动力分开。
1.3由于在结构上多数采用大柱距,形成大空间,使墙面安装的设备增多,必然使地面管道增多。
1.4由于建筑构件的预制装配化及干法施工;缩短了施工周期,而且顶棚一般采用标准化、系统化的吊顶。
1.5电气设备的管线应采取防火措施。
1.6空调设备等主要用电设备分散,多数要求集中管理,即要求采用电脑管理和监控系统。
1.7采取防震措施。如配电屏、灯具等电气设备的防震;管线的层间贯通和建筑伸缩缝与沉降缝的耐震处理等。
1.8消防要求高。因为高层建筑高度高,体量大,人员密集,设备多,装饰豪华,建筑本身火灾隐患多,故对消防要求很高。
1.9节省能源是我国经济建设中的一项重大政策,节约用电又是节省能源工作中的一个重要方面,它直接关系到企业的经济效益和人们的日常生活。在高层建筑的电气设计中,要把电能消耗指标作为全面技术经济分析的重要组成部分。节电的设计方案,应根据技术先进、安全适用、经济合理、节约能源和保护环境的原则确定。采用合理的配电方式,采用高效率变压器、电动机和照明光源、无功功率补偿装置和设备监控电脑系统等措施,减少电能损耗,节约用电。采用壁灯时需将容量提高一级或增加盏数。
2照明要求
2.1混合照明
它是由一般照明和局部照明共同组成的照明方式。混合照明中一般照明的照度应不低于混合照明总照度的5-10%,并且其最低照度不低于201x。否则,过低的一般照明和过高的局部照明所形成的照度对比度过大,亮度分布不适当而产生不应有的眩光。
2.2事故照明
当工作照明因故障全部熄灭后,供暂时继续工作或供人员疏散用的照明称为事故照明.
2.2.1应设置事故照明场所
a,在正常工作照明熄灭后,由于工作中断或误操作,将引起爆炸、火灾等严重危险的厂房或场所;
b.在无照明的情况下,由于设备继续运转或人员的通行,将造成设备、人身事故的场所;
c.高层建筑中的疏散楼梯间(包括防烟楼梯前室)、疏散走道、消防电梯室、消防控制中心、消防水泵间;公共建筑中的旅馆、礼堂、影剧院、展览厅、百货商店、体育馆等人员出入的走廊、楼梯、太平门等处。
2.2.2事故照明应采用能瞬时点燃的照明光源,一般采用白炽灯或卤钨灯。当事故照明作为工作照明的一部分而经常点燃时,又在发生故障不得切换电源的条件下,也可采用其它照明光源。
2.2.3事故照明的灯具应布置在可能引起事故的设备、材料周围和主要通道、危险地段、出入口等处,还应在事故照明灯具上明显位置涂以红色标记,以资区别。疏散指示标志可设在疏散走道距地面高度1m以内的墙面上,以及楼梯口和太平门的顶部,并要安装在非燃烧结构或装修上。
2.2.4事故照明的照度要求
用于暂时继续工作的事故照明其工作面上的照度不应低于工作照明总照度的10%。但标准较高的宾馆等建筑,其事故照明所占工作照明的比例应当为:出口指示灯为100%;楼梯照明为50%;公共场所照明为20%;客房走道照明为50%;一般走道照明为20%;总服务台、收款出纳、外币兑换等照明为100%。用于人员疏散的事故照明,其照度不应低于0.51x。
2.3警卫值班照明
在重要的车间和场所或有重要关键设备的厂房、重要的仓库等处设置作为值班时一般观察用的照明称为值班照明。值班照明宜利用工作照明中能单独控制的一部分,或者利用事故照明中的一部分或全部。
警卫照明是用于警卫地区周界附近的照明。是否设置警卫照明,应根据单位的重要性和当地保卫部门的要求来决定。警卫照明应尽量与室内或厂区的照明结合。
2.4障碍照明
装设在高层建筑物尖顶上作为飞行障碍标志用的或者有船舶通行的两侧建筑物上作为障碍标志的照明称为障碍照明。障碍照明应按民航和交通部门有关规定装设。障碍照明应采用能透雾的红光灯具。装设障碍灯时,应符合下列要求:一般高层建筑物只在顶端装设。水平面较大的高层建筑物或群集高层建筑物,除在其最高顶端装设障碍灯外,还应在其外侧转角的顶端装设障碍灯。烟囱的高度在100m以上者,除在顶端装设障碍灯外还应在其三分之一和二分之一的高度处装设障碍灯。为了减少烟囱顶端的障碍灯污染程度,可在低于烟囱口4-5m处装设。为了保证障碍灯有一盏损坏时仍能从前进方向看到灯光,应装设排成等边三角形的三盏障碍灯。
2.5高层住宅室内照明要求
厕所及厨房应采用瓷质灯头或其它防水灯头;有条件时居室灯等可采用节电开关或节电灯头;楼梯间、电梯厅、公用走廊、配电室、消防控制室、消防泵房电梯机房等应设置供继续工作和疏散的事故照明。十九层及以上的高层住宅的疏散走廊、楼梯和出口应设置供疏散使用的标志灯,其安装距离为10.20m及各转角处;供电继续时间:作和疏散的事故照明兼作正常照明。如采用蓄电池作为事故照明或疏散标志灯的电源时,其连续供电时间不少于20分钟,事故照明的最低照度不应低0.51x,但配电室、消防控制室和消防泵房必须仍保持正常的照度水平;事故照明及疏散标志一般采用白炽灯,应具有玻璃或金属灯罩,并安装在非燃烧体结构上;大居室宜设置插座两组(其中一组为-个单相二极插座及一个单相带地三极插座;另一组为一个单相二极插座)。小居室、大厅宜设置插座-组(一个单相工极插座及一个单相带地三极插座)。厨房、卫生间根据需要设置-个单相带地三极插座;二极插座需采用扁、圆插孔两用型;有条件时宜采用二极加三极的连体式插座;供洗衣机的单相二极带地插座,宜带电源开关;插座的高度一般为距地0.3-0.5m(暗装安全型)或1.4-1.8m(明、暗装普通型);楼梯及公用廊道宜采用自动熄灯开关,但需在火警时能保持长明。每层的电梯前室灯应采用一般开关。
参考文献
[1]《民用建筑电气设计规范》JGJ16-2008年版
[2]《供配电系统设计规范》GB50052-95年版
[3]《高层民用建筑设计防火规范》GB50045-952005年版
摘要:从中国作为人口大国、城市土地资源紧缺的国情出发,探究垂直景观在高层建筑中的应用,为目前亟需扩展城市绿地提供一个可操作的方法。通过对垂直景观成熟经验的学习与分析,了解如何将垂直景观设计应用到中国的高层建筑中去。建筑期刊
关键词:高层建筑;垂直景观;营造
一、研究背景与意义
基于全球城市化进程的日益加剧,人口的膨胀、城市建筑密度的不断攀升,人们开始意识到环境与建筑能耗的污染以及生态系统的危机。为了遏制这种趋势,绿色建筑应运而生。绿色建筑的定义是在建筑的全寿周期内,最大限度地节约(节能、节地、节水、节材)、保护环境和减少污染,为人们提供健康、适用和高效的使用空间,与自然和谐共生的建筑。而实现绿色建筑的重要途径之一就是———垂直景观,它在城市生态景观方面的补偿作用不可估量。我国作为人口大国,城市土地资源紧缺,同时还有大量人口不断涌入城市,导致北、上、广等大城市越来越拥挤。这些寸土寸金的大城市中心集商业、娱乐、文化于一体,高层建筑林立,公共绿地严重短缺。有人提出建设更多的绿地广场和公园来解决这一棘手的问题。这个初衷是好的,可是实际的国情却很难实施。据预测,2020年,中国将有300万农村人口转移到城市。大量的农村人口正在以惊人的速度涌入城市,城市土地可容纳量积聚饱和,我们正面临着建筑土地和绿化面积如何平衡的极其严峻的问题。而另一方面,物质文化水平的提高,使得都市人对于生活品质的追求也在不断提高。他们渴望亲近自然,享受绿色的需求正在与日俱增。据统计,上海在2010年的GDP已达到一万美元,随着经济消费能力的提升,高品质的生活标准、环境与质量标准成为城市居民越来越关注的话题。对公共绿地环境的投入,使得生活与工作环境更加舒适宜人成为人们的一种共识与追求。因此,在横向绿化的可扩展面积基本为零的情况下,寻求高层建筑纵向上的绿化可利用性定会成为一种趋势。高层建筑的表皮绿化不仅能短期实现绿植覆盖率,而且与建筑节能、减少能耗的绿色建筑目标相一致,是一举多得的方法。同时,垂直景观对于改善都市的生态效应也具有重要意义,高层建筑的垂直景观功能定位于生态学,具有吸附与阻滞空气中的尘埃、减少灰尘颗粒物,清洁净化空气、降低噪音辐射,调节室温、节约建筑能耗,美化环境、令人身心愉悦等不可估量的社会和经济效益。
二、国内外研究现状
城市垂直景观设计早在古代巴比伦时期的经典空中花园已经出现了萌芽,当然早期垂直立体绿化的呈现更多的是自然植物无意识的攀爬,品种较单一,更没有系统理论的形成。直到20世纪90年代,西方发达国家才开始了对垂直绿化的系统研究,它也逐步成为在景观设计领域中对未来城市生态景观发展的前沿课题。一些发达国家的垂直景观在改善新兴城市的生态环境方面,得到政府政策上的支持和推进,给城市居民带来生态、经济和健康上的利益,也在一定程度上消除了“城市热岛效应”,推进了生态园林建设的科学性。这其中,马来西亚建筑师杨经文可以说是真正实现“空中花园”的先驱,他的建筑设计以与有机的、富有生命力的植被化相结合而闻名。他倡导建筑与植物生态系统的有机共生。在他的生态建筑实践中,始终坚持生物气候学设计原则,创造了众多令人惊艳的垂直景观生态建筑。其著名作品之一是新加坡EDITT?TOWER,1998年获得了热带生态建筑设计大奖。整座建筑远远望去犹如一颗屹立于高楼大厦中的参天大树,大楼的四周都被绿色植物所包裹,植物与建筑的和谐共存既达到了美学的高度,又起到了隔热的作用。该建筑所设置的绿色空间与居住面积比例达到了1:2。
大楼还设有雨水回收、光伏发电、污水净化等多套绿色节能系统。杨经文的生态建筑,实现了绿色植物与建筑的和谐共生,也展现了通过精心配置的植物可能形成的丰富多姿的空间形态,将建筑与自然完美地结合。正如杨经文所说:“建筑物常常可以看作大量的无生命物质的堆积,植被化的目标就是将有机的、富有生命力的物质与无机的、无生命的物质融为一体。”除此以外,在日本、法国等都相继出现了垂直景观生态建筑。例如日本福冈的ACROS楼,整个建筑除去1/4的地下空间,地上建筑设计成台阶状,屋顶部分全部由绿色植被所覆盖。竣工数年,郁郁葱葱的植被已经与南侧公园的绿化融为一体,仿佛在城市中央形成了一座绿岛,在收获优美的视觉景观的同时,使整栋建筑的温度更加舒适,创造了良好的生态效应。目前,在北京、上海、深圳、重庆等大城市中,城市垂直绿化的研究和探讨已经形成一定的共识,一些城市建筑外立面也出现了绿化表皮的实践案例,但是这些实践在某种程度上只能称为垂直绿化,跟垂直景观还有一定的距离,可以说我国高层建筑垂直景观设计尚处于起步阶段,还有许多经验要学习。
三、垂直景观在高层建筑中的营造手法
需要明确的是垂直景观与垂直绿化是不同的两个概念,垂直景观是以充分利用建筑纵向空间、实现植物(包括乔木)与高层建筑共生的景观设计,而垂直绿化究其本质是建筑垂直面的攀缘绿化,是攀缘植物翻转90°的平面绿化。但两者也存在着一些共同的特点,诸如占地少、都是利用纵向立体进行的绿化设计等。垂直景观的设计,将植物作为建筑造景的主要手法,通过不同的植物造景组合,形成建筑高层的平面布局与纵向建筑结构设计独特的空间构建,形成如画的美丽景观,并且丰富高层建筑室内空间的功能要求。对于这些营造手法的探析需要更多的实践操作的可能性,而目前我们更多的是只具备理论整理的经验论。根据杨经文在高层建筑运用生物气候学来组织空间的经验,我们可以学习的设计方法如下:
(一)空间组织
分析其平面布局,杨经文的高层建筑轮廓多设置为不规则形,利用不同凹度的开敞空间进行绿化。纵向楼层的悬挑式空间错落有致,既可以使不同户型享受到更多的阳光,同时错位排序的植物也可以得到足够的光照和生长空间,尤其是乔木植物。大量绿色植物的嵌入种植不仅有效地减少了建筑本身的热岛效应,还能生成氧气,吸收二氧化碳与一氧化碳,并且丰富了建筑单一的表皮,也不影响阴影区开窗的可能性。再分析其竖向空间,高层建筑的垂直景观的结构本身是植物搭配建筑的自然美与人工美结合的产物,应当考虑好植物的预留生长空间,重视其弹性空间的设计安排。各类设施的设置力求便捷,满足时空发展的需求。因此,消防、疏散等设施设计应上升到美学层面去考量。可以充分利用超高层建筑防火规范所要求设置的建筑避难层,着重利用垂直景观绿化、营造生机盎然的建筑外立面,以提升整栋建筑的美感。
(二)植物配置
绿色植物作为垂直景观生态建筑的重要要素,它直观地展现着一座建筑的生态效应和视觉感受。出色的垂直景观生态建筑肯定是植物与建筑美学的高度融合,因此,植物的搭配尤为重要。垂直景观的营造也绝不是简单地给建筑物附着上一层攀缘绿植,它关注的是植物丰富种类的搭配、色彩季相的变化、姿态柔和的线条,营造出具有丰富的时空变化的生命力的建筑。在设计过程中,悬挑式的种植槽中作为独立的植物单元,要充分配置好植物群落,丰富品种,形成自然分层的绿色景观,例如可以在不同凹度的错层开敞空间中,采取地被植物铺底、乔木来遮阴、具有观赏价值的灌木草花镶嵌点缀的方式。同时,选用下垂式植物、藤蔓植物进行垂吊式美化,弥补建筑外壁的一些生硬的结构线条,营造出与建筑相映成趣、丛植错落、四季皆有景的自然植物群落景观。
(三)节能循环
正如杨经文认为许多后现代主义建筑,在建筑立面处理中过多地增添了许多无意义的造型,造成了许多建筑材料的浪费。这些不理性的设计怪像,忽视了能源的合理使用和能耗的约束。面对日益严峻的世界能源消耗问题,建筑师毫无疑问要加强节能意识,特别是高层建筑的节能问题。站在生物气候学的高度去探索建筑节能的可能性与方法论,最终提升人的精神享受以及减少建筑能耗。高层建筑的垂直景观应当统筹优化生态层面的规划设计,在设计伊始,就该重视整体人工生态系统的循环回收,使绿色环境的原料与废料尽可能多地循环利用,消化分解本身产生的能耗,降低损耗。设计要面临的挑战在于最大程度地去利用资源和能源,减少浮尘,吸附噪音,调节室温,以最小的投入,获得最大的收益,从而体现出垂直景观生态建筑的节能、节水、节材等环保低碳理念。
(四)人性关怀
根据英国和日本的研究调查发现,工作或生活于高层建筑中的人群,有四成以上渴望与自然亲近接触,比如打开窗户能看到绿色或走到户外去活动,而垂直景观正是把这种愿望付诸实践的较好途径。垂直景观除了美化外部建筑环境,同时也为室内空间引入了自然美景。不仅在高层建筑的室内休憩空间真正实现了景为人用,更在阳台空间中构造了一个个梦幻的空中绿植花园。在阳台空间茂密的树荫下,层次分明的植物景观,让人感受到以植物景观律动为框、蓝天为画的奇妙体验。高层建筑的垂直景观设计目标不是为了模拟自然,更多的是可以弥合生态学和建筑设计之间生硬的裂缝,形成持久稳固的联系,营造合宜的自然,创建合理的人工生态系统。因此,垂直景观在高层建筑设计中,必须关注人的舒适度,从微观层面上满足人体工学的要求,关注人的健康,在强调采光、通风、保温等基础条件上,还必须重视人的使用安全问题。
四、结语
1.1教学目标的制定较低
在建筑CAD教学中,教师应该着重训练学生CAD软件绘图能力,促使学生能够熟练掌握建筑平面图、立面图以及剖面图的绘制,使其能够熟练绘图过程中需要应用到的各项指令,在此基础上培养学生创造性思维,让学生能够将自己心中想法通过CAD软件表现出来。传统CAD教学方式注重教师的理论讲解以及一些操作指令的学习,要求学生掌握基本的绘图命令,但这种教学方式导致学生欠缺解决实际问题的能力,所以,在进行建筑CAD教学的时候,教师不能够局限于基本操作指令的学习。
1.2教学内容滞后
在建筑CAD中,主要的教学内容就是AutoCAD。这种单一的学习方式致使大多数学生在学习过程中以为CAD与AutoCAD的学习内容是一致的。事实上,国内大多数建筑设计单位都逐渐开始应用草图大师、天正建筑等一些新型建筑设计技术。这些软件的应用促使CAD软件的滞后性更加突出。
1.3缺乏争取的教学方式
在传统建筑CAD教学过程中,并不能够突出CAD教学的专业特点,并且教学方式大多都是由绘制简单建筑框架开始的,学生在学习过程中会因为枯燥的门窗绘制消耗掉对建筑CAD的学习兴趣。另外,这种学习方式促使CAD内容的学习较为零散,学生不能够系统有效掌握相应的知识内容。
2高职高专建筑CAD教学模式的改革
2.1理论与实际相结合的课程学习方式
在建筑CAD学习过程中,理论知识的学习是掌握绘图操作的基础内容。所以,学生在学习的时候一定要注重理论知识的学习,不然学生在实际操作过程中会显得十分吃力。例如学生在操作过程中仅知道某一快捷指令,但不知道使用这一快捷指令的工具在哪里,不能够完成绘图。主要是因为学生在学习过程中没有掌握“人机对话”基本应用方式,没有理解CAD软件操作命令的提示。CAD实际上是一种实践性较强的课程内容,教师在教学过程中一定要将理论讲解与实际操作环节相结合,将理论知识学习与学生动手操作结合起来,实行边讲边练的教学方式,在计算机房完成CAD教学内容。并且,学生在操作过程中遇到问题也能够及时反映给教师,提升CAD教学效率。
2.2以就业为导向实施教学定位
建筑CAD具有较强的实践性与应用型,使用的是现代信息软件技术AutoCAD,就是将计算机辅助绘图设计与土建专业内容有效结合起来,这样就能够实现由传统手绘方式向计算机绘图形式转变。现阶段,建筑行业发展中,建筑设计师、监理人员、预算人员、施工人员以及造价人员都会使用CAD绘制相应的建筑图形。并且CAD软件的应用十分广泛,广告、机械、环境艺术等均有应用。在高职高专中建筑CAD教学应该注重学生实际能力的培养,使用较多练习案例促使学生能够熟练掌握土建工程制图技巧,使学生能够有效绘制相应的土建工程图样,提升学生的市场竞争实力,有效拉近学校学习与实际就业之间的距离。
3结束语