欢迎来到易发表网,发表咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

高强混凝土论文优选九篇

时间:2023-03-17 18:11:13

高强混凝土论文

高强混凝土论文第1篇

关键词:钢管混凝土叠合柱;箍筋约束;强度理论;极限承载力

中图分类号:TU312;TU398

文献标志码:A文章编号:1674-4764(2016)05-0020-07

Abstract:Based on the unified strength theory and the influences of intermediate principal stress and the material of tension and compression ratio were considered when coming down to the ultimate bearing capacity of square steel tube-reinforced high strength concrete column. Effective constraint coefficient and ineffective constraint coefficient were introduced to consider the different constraint functions of concrete derived from the stirrups, the constraint concrete outside steel tube was divided into effective constraint region and ineffective constraint region. The square section was equivalent to circular section to consider the double constraint function to concrete in steel tube derived from steel tube and outer steel reinforced concrete. Then a new method for the axial ultimate bearing capacity of square steel tube-reinforced concrete column was deduced. The results were in good agreement with the experimental results and the correctness of the theory formulae was proved. Influential effects of some parameters were analyzed and the analysis results showed that the ultimate bearing capacity of square steel tube-reinforced high strength concrete column increased with the increase of the side pressure coefficient. Influence coefficient of intermediate principal stress, the material of tension and compression ratio and the longitudinal reinforcement ratio, while it decreases with the increase of radius-thickness ratio.

Keywords:steel tube-reinforced concrete column;stirrup constraint; strength theory; ultimate bearing capacity

高强钢管混凝土叠合柱是由截面中部的高强钢管混凝土柱和钢管外的钢筋混凝土叠合而成的柱,也可以看成是在钢筋混凝土内置钢管混凝土而成的柱,内截面钢管形式有圆钢管、方钢管和矩形钢管,又可称为核心高强钢骨混凝土组合柱。高强混凝土有强度高、变形小的优点,但其延性差、脆性大,不利于抗震;将其与钢管结合,可以充分发挥二者的性能,同时也具有较好的变形能力、较大的刚度和良好的抗火性能等优点,经济效益良好[1-2]。

国内外对钢管混凝土已经进行了较多的研究。Evirgen等[3]通过钢管混凝土柱的轴压试验,分析了宽厚比、混凝土强度等因素对钢管混凝土柱极限承载力、延性和屈曲行为的影响;Wang等[4]基于18根圆形钢管混凝土柱轴压和偏压的试验结果,详细地介绍了该型构件的失效模式、承载能力等性能;吕学涛等[5]对圆钢管钢筋混凝土短柱进行明火试验,分析了升温时间和配筋率对受火后钢管钢筋混凝土短柱剩余承载力、刚度和延性的影响规律。而对钢管混凝土叠合柱的研究相对较少:幸坤涛等[6]利用数值分析方法对高强钢管混凝土核心短柱在轴心受压时的荷载变形关系曲线进行了全过程分析;聂建国等[7]考虑核心钢管混凝土和普通混凝土受压性能存在的明显差异,分析了混凝土体积配箍率等因素对柱协同工作的影响;龙跃凌等[8]在分析核心钢管混凝土组合柱受力机理的基础上,同时考虑圆形截面和方形截面对钢管外混凝土的影响,对核心钢管混凝土组合柱承载力进行了分析;郭全全等[9]进行了叠合柱短柱偏心受压试验,并基于试验采用截面极限平衡理论提出了叠合柱偏心受压短柱的正截面承载力公式;徐蕾等[10]利用有限元分析软件和试验结果对钢管混凝土叠合柱火灾下的温度特性和力学性能进行了研究。

目前,对于高强钢管混凝土叠合柱轴压承载力的计算,部分研究只考虑钢管对混凝土的约束作用而未考虑箍筋的约束作用;部分考虑钢管对混凝土的约束作用和箍筋对混凝土的约束作用,但均未考虑混凝土对钢管内混凝土的约束,即未考虑钢管内混凝土受到的双重约束。在实际工程中,叠合柱配箍量较多,在达到极限状态时,箍筋约束混凝土不会过分剥离,能和钢管内混凝同承担荷载。而尧国皇[11]的有限元结果也表明钢管核心混凝土受到钢管和钢筋混凝土的双重约束,其承载力比同样条件下普通钢管混凝土中混凝土要大。因此,考虑内部混凝土受到的双重约束作用是有必要的。本文以内配圆钢管的方形截面高强钢管混凝土柱为研究对象。构件处于较高应力状态时,箍筋约束混凝土角部受到约束强,边缘中部受到的约束弱,对箍筋约束混凝土利用Mander模型[12]进行有效约束区和非有效约束区的划分,推导出有效约束区系数和非有效约束区系数,同时,本文考虑钢管核心混凝土受到钢管和钢筋混凝土的双重约束效应,基于统一强度理论对钢管和钢管约束混凝土承载力分析,推导出方形截面高强钢管混凝土叠合柱的轴压极限承载力,与文献试验值对比验证,并分析了径厚比、中间主应力影响系数、材料拉压比、纵筋配筋率、侧压系数的影响特性。

1 双剪统一强度理论

俞茂宏以双剪单元体和双剪屈服准则为基础,考虑应力状态的所有应力分量以及它们对材料屈服和破坏的不同影响,建立了一个全新的强度理论和一系列新的典型计算准则。统一强度理论包含了无限多个计算准则,几乎可以适用于各种材料,应用十分方便。其表达式为[13]

2 极限承载力的计算

2.1 箍筋约束钢管外混凝土承载力

实际工程中,构件达到极限状态时,内部钢管的横向变形较小,故不再考虑钢管变形对箍筋约束混凝土的影响[1]。研究表明,方形截面的箍筋对混凝土约束较弱,且对混凝土的约束不均匀,仅在箍筋转角处对混凝土有较大的约束[8]。箍筋约束混凝土有效约束区和非有效约束区划分如图1所示。

基于文献[8]的假设:箍筋对其约束混凝土的约束应力均匀分布,则箍筋受力如图2所示。

2.3 钢管约束混凝土的承载力

基于文献[8]的结论,本文考虑钢管混凝土对钢管混凝土的约束作用。且箍筋对混凝土的约束作用均匀分布。而方钢管对于混凝土的约束效应,等同于间距为零的箍筋对混凝土的约束承载力的效应。方钢管轴压承载力的计算过程中,认为钢管对混凝土的约束也均匀分布[18]。箍筋约束混凝土和厚度与箍筋直径相同的钢管约束混凝土,二者不同的是侧面对于混凝土的约束:钢管是连续的,箍筋是间断的。本文在方钢管的基础上引入侧向约束系数ke2来考虑箍筋对混凝土约束的不均匀性,从而将箍筋约束混凝土转化为方形钢管约束混凝土。

按照截面面积和含钢率相等将方钢管的有效约束应力等效为圆形钢管混凝土的侧压力p,则混凝土和钢管受力如图3所示。

2.4 钢管混凝土叠合柱轴压承载力

在构件达到极限承载力之前,外侧的保护层混凝土早已被压碎[21],因此,在本文计算承载力时不再考虑混凝土保护层对极限承载力的贡献。并且在构件达到极限承载力时钢管和纵向钢筋已经屈服。方形高强钢管混凝土叠合柱的承载力由箍筋约束钢管外混凝土、纵筋、钢管、钢管约束混凝土构成。计算公式为

3 算例验证与分析

3.1 计算结果对比

由于钢材的拉压强度相近,取拉压比为α=1,取k=2.1,b=1时[16],将文献[22]和文献[23]中的部分试验数据代入式(21)中进行计算并与试验值对比,结果见表1。

3.2 影响因素分析

3.2.1 侧压系数和纵向配筋率的影响

取文献[22]中试件FZ-2和FZ-3柱为对象,取不同的侧压系数k值(1.5、2.0、2.5、3.0)以及不同的纵向钢筋配筋率(0.85%、1.15%、1.51%),得到的极限承载力的变化情况如图4、图5所示。

试件破坏时,纵筋已经屈服[8],在一定范围内,纵向配筋率的增加会贡献更多的承载力。图中也可以看出:承载力随着纵向配筋率的增大而增大;侧压系数越大,对混凝土的约束越强,故承载力越大。经分析,k值每增大1,承载力约提高917 kN。

3.2.2 钢管径厚比对极限承载力的影响

径厚比的影响主要表现在对核心混凝土的约束作用上。径厚比不同,其对混凝土的约束作用就不同,钢管径厚比越大,其对混凝土的约束作用越弱,反之,约束作用越强。以文献[22]中FZ-1柱,采用不同的径厚比,得到的承载力变化如图6所示。

由图6可知,随着径厚比的增大,极限承载力逐渐变小,并且减小的速率越来越慢。故为获得较大的承载力,钢管的径厚比不宜过大。

3.2.3 材料拉压比α与中间主应力影响系数b的影响

以文献[22]中试件FZ-2为例进行分析,取α分别为0.8、0.9、1.0,取b分别为0、0.2、0.4、0.6、0.8、1.0进行承载力的计算,如图7所示。

由图可见,在中间主应力系数b不变的情况下,承载力随着α值的增加而增加;在材料拉压比α不变的情况下,中间主应力系数b越大,承载力越高;而理论上b值越大,极限面也越大,理论与试验分析相吻合。在中间主应力增加量相同的情况下,材料拉压比越大,承载力曲线斜率越大,即承载力增加越多。综上所述,中间主应力和材料拉压比对承载力有影响,故计算时考虑二者对承载力的影响会使结果更加精确。

4 结 论

1)基于双剪统一强度理论,综合考虑了材料拉压比、中间主应力的影响,并且考虑了内部混凝土受到的双重约束作用,推导出了高强钢管混凝土叠合柱轴压承载力的计算公式。该公式能合理的考虑材料的实际性能,又能真实的反应构件各部分的受力状况。通过试验值与本文理论计算值的对比,证明本文推出的方形高强钢管混凝土叠合柱轴压极限承载力计算方法是正确的。

XU L,LIU Y B.Research on fire resistance of CFSTRC subjected to fire [J].Journal of Building Structures,2014,35(6):33-41. (in Chinese)

[11] 尧国皇.钢管混凝土叠合柱轴压工作性能研究[D].北京:清华大学,2012.

YAO G H.Research on performance of concrete-filled steel tube reinforced concrete columns [D].Beijing:Tsinghua University,2012. (in Chinese)

[12] MANDER J B,PRIESTLEY M J N,PARK R.Theoretical stress-strain in model for confined concrete [J].Journal of Structural Engineering,1988,114(8):1804-1826.

[13] 俞茂宏.混凝土强度理论及其应用[M].北京:高等教育出版社,2002.

YU M H.Concrete strength theory and its engineering application [M].Beijing:Higher Education Press,2002. (in Chinese)

[14] VARMA A H,SAUSE R,RICLES J M,et al.Development and validation of fiber model for high strength square concrete filled steel tube beam-columns [J].American Concrete Institute Structural Journal,2005,102(1):73-84.

[15] 吴鹏,赵均海,李艳.方钢管混凝土短柱轴压极限承载力研究[J].四川建筑科学研究,2013,39(3):8-13.

WU P,ZHAO J H,LI Y,et al.Study on the axial ultimate bearing capacity of square concrete-filled steel tubular,stub column [J].Sichuan Building Science,2003,39(3):8-13. (in Chinese)

[16] 赵均海.强度理论及其工程应用[M].北京:科学出版社,2003.

ZHAO J H.Strength theory and its engineering application [M].Beijing:Science Press,2003. (in Chinese)

[17] 中国土木工程学会高强与高性能混凝土委员会.高强混凝土结构设计与施工指南[M].2版.北京:中国建筑工业出版社,2001.

China Civil Engineering Society High Strength and High Performance Concrete Committee.High strength concrete structure design and construction guide [M].2 Edition.Beijing:China Building Industry Press,2001. (in Chinese)

[18] 令昀,赵均海,李艳.PBL加劲型方钢管混凝土短柱轴压承载力统一解[J].钢结构,2014,29(10):13-17.

LING Y,ZHAO J H,LI Y.Unified solution of ultimate bearing capacity for concrete-filled steel square tubular short column stiffened with PBL [J].Steel Construction,2014,29(10):13-17. (in Chinese)

[19] 王仁,熊祝华,黄文彬.塑性力学基础[M].北京:科学出版社,1982.

WANG R,XIONG Z H,HUANG W B.Foundation of plastic mecghanics [M].Beijing: Science Press,1982. (in Chinese)

[20] 过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.

GUO Z H,SHI X D.The principle and analysis of the reinforced concrete [M].Beijing:Tsinghua University Press,2003. (in Chinese)

[21] 谢晓锋.高强钢管(骨)混凝土核心柱轴压性能的试验研究[D].广州:华南理工大学,2002.

XIE X F.An experimental research on the composite column with core of high-strength concrete-filled steel tube under axial compression [D].Guangzhou:South China University of Technology,2002. (in Chinese)

[22] 蔡健,谢晓锋,杨春,等.核心高强钢管混凝土柱轴压性能的实验研究[J].华南理工大学学报(自然科学版),2002,30(6):81-85.

CAI J,XIE X F,YANG C,et al.An experimental research on the composite column with core of high-strength concrete-filled steel tube under axial compression [J].Journal of South China University of Technology(Natural Science Edition),2002,30(6):81-85. (in Chinese)

高强混凝土论文第2篇

关键词:大体积混凝土,混凝土配合比,测算内部温度

 

大体积混凝土施工的主要技术难点是防止混凝土表面裂缝的产生。造成大体积混凝土开裂的主要原因是干燥收缩和降温收缩。处于完全自由状态下的混凝土,出现再大的均匀收缩,也不会在内部产生拉应力。当混凝土处在地基等约束条件下时,内部就会产生拉应力,当拉应力超过当时混凝土的抗拉强度时,混凝土就会开裂。

混凝土中水泥水化用水大约只占水泥重量的20%,在混凝土浇筑硬化后,拌合水中的多余部分的蒸发将使混凝上体积缩小。混凝土干缩率大致在(2-10)x10-4范围内,这种干缩是由表及里的一个相当长的过程,大约需要4个月才能基本稳定下来。干缩在一定条件下又是个可逆过程,产生干缩后的混凝土再处于水饱和状态,混凝土还可有一定的膨胀回复。

大体积混凝土浇筑凝结后,温度迅速上升,通常经3d--5d达到峰值,然后开始缓慢降温。混凝土的特点是抗压强度高而抗拉强度低,而且混凝土弹性模量较低,所以升温时体积膨胀一般不会对混凝土产生有害影响。但在降温时其降温收缩与干燥收缩叠加在一起时,处于约束条件下的混凝土常常会产生裂缝,起初的细微裂缝会引起应力集中,裂缝可逐渐加宽加长,最终破坏混凝上的结构性、抗渗性和耐久性。为尽量发挥混凝土松弛对应力的抵消作用,同时避免在混凝土硬化初期骤然产生过大的应力,应该减慢降温速度。一般规定,混凝土内外温差不大于25℃。

1、混凝土配合比设计:对配合比设计的主要要求是:既要保证设计强度,又要大幅度降低水化热;既要使混凝土具有良好的和易性、可泵性,又要降低水泥和水的用量。

1)选用水化热低的42.5MPa矿渣水泥,水泥用量为340kg/m3。

2)大掺量I级粉煤灰。掺量高达100kg/m3,占水泥用量的29%,占胶凝材料总量的21%。免费论文,混凝土配合比。在大体积混凝土中掺粉煤灰是增加可泵性、节约水泥的常用方法。2、混凝土的浇筑方案选用

全面分层,采取二次振捣方案。混凝土初凝以后,不允许受到振动。混凝土尚未初凝(刚接近初凝再进行一次振捣,称二次振捣),这在技术上是允许的。二次振捣可克服一次振捣的水分、气泡上升在混凝土中所造成的微孔,亦可克服一次振捣后混凝土下沉与钢筋脱离,从而提高混凝土与钢筋的握裹力,提高混凝土的强度、密实性和抗渗性。

全面分层,二次振捣方案就是当下层混凝土接近初凝时再进行一次振捣,使混凝土又恢复和易性。这样,当下层混凝土一直浇完42m后,再浇上层,不致出现初凝现象。此方案虽然技术上可行,也有利于保证混凝土质量,但需要增加人力和振动设备,是否采用应做技术经济比较。

3、预测温度

在约束条件和补偿收缩措施确定的前提下,大体积混凝土的降温收缩应力取决于降温值和降温速率。降温值=浇筑温度+水化热温升值-环境温度。

3.1计算混凝土内最大温升

据资料介绍,有三种计算公式,其一为理论公式:

Tmax=WcxQx(1-e-nt) x£(1)

另一个为经验公式:

Tmax=Wc/10+FA/50(2)

公式(1)可计算各个龄期混凝土中心温升,从而计算每个温度区段内产生的应力,还可找出达到温升峰值的龄期,从而推定采取养护措施的时间。但在介绍该公式的资料中并没有详细说明其适用范围。

该公式似乎未能把大体积混凝土的散热条件和平面尺寸的影响因素充分考虑进去。如能根据不同情况调整m和£的取值,可能会使计算值更接近实际。

公式(2)计算较简便,在该工程中计算值较实测值偏差较小,但无法据此计算应力,也找不出升温峰值出现的时间。

3.2混凝土中心温度值

T1=T2+T(t),

因为T(t)计算值较高,夏季的浇筑温度T1应采取措施降下来。如果不采取水中加冰等降温措施,计算得:

混凝土拌合温度:

Tc=∑Ti•Wi.•Ci/∑Wi•Ci=29.1℃。

混凝土出机温度:

Tj=Tc-0.16(Tc-Td)=30.1℃。

混凝土浇筑温度:

Tj-T1+(Tq-T1)(A1+A2+…)=29.7℃。

这个温度是昼夜平均浇筑温度,如果白天最高气温是35℃,这时的浇筑温度Tj=31.4℃。为了降低Tj,采取如下措施:料场石子进仓前用凉水冲洗,水泥在筒仓内存放15d以上,晴天泵管用湿岩棉被覆盖,气温高时拌合水中加冰降温。其中,拌合水中加冰效果最好。免费论文,混凝土配合比。免费论文,混凝土配合比。

可见,每使混凝土浇筑温度下降1℃,平均要使拌合水温下降近6℃。免费论文,混凝土配合比。免费论文,混凝土配合比。要使混凝土浇筑温度下降3℃,至少每m3混凝土要加0℃冰40kg.无论如何,在工程中实际浇筑温度Tj,都不能超过32℃。免费论文,混凝土配合比。

总之,大体积混凝土是目前施工中应用较多的一项新技术,只要严格施工规范,仔细落实每一个施工环节,认真妥善地作好浇筑完的保温工作,该项技术是完全可以取得满意的效果。

参考文献:《施工手册(第四版)》

高强混凝土论文第3篇

关键词:预应力混凝土空心板,裂缝

 

预应力空心板是桥梁工程的主要受力结构,保证预应力空心板的质量首先要把好混凝土的预制质量关,才可以有效预防混凝土裂缝的发生。本人根据自己在青海青南地区某桥梁空心板施工中发生裂缝现象后,及时采取措施对梁板的预制全过程进行了调查分析,查阅有关试验资料,对施工工艺做了详细了解,找出了产生裂缝产生的原因,提出了改进措施,使预应力混凝土空心板表面裂缝得到了控制,有效防止了混凝土表面裂缝的再次发生。

一、概述

该桥地处青海青南地区,海拔4200米。下面是该桥的有关参数:

1、结构类型:跨径16m预应力混凝土空心板;

2、混凝土设计强度:50Mpa;

3、混凝土配合比:水泥:砂:碎石:水=1:1.44:2.58:0.38

4、水泥用量:P42.5级水泥450kg/m3

二、裂缝的产生

空心板在混凝土浇筑完成拆模后,沿连接筋竖向产生50—150mm,宽度为0.02—8.08mm的裂缝,顶面也出现50—100mm,宽为0.02—0.12mm的裂缝。凿开混凝土裂缝发现,裂缝深度在0—5mm之间,初步判定为收缩裂缝或温度裂缝,不影响空心板的正常使用,但考虑预应力刚绞线放张后,有使混凝土顶面抗拉强度降低,致使裂缝长度、宽度和深度增长的可能,为此,分析裂缝产生的原因和改进措施是完全必要的。混凝土裂缝在浇筑后24h内产生,这时混凝土最敏感,易产生震动裂缝、收缩裂缝和沉陷裂缝。早期裂缝一旦发生,会增加混凝土的渗透性,并使混凝土暴露于易损伤环境的表面增加,这使混凝土早期老化,裂缝的产生使混凝土渗水性增大,从而影响其耐久性和缩短其使用寿命。

三、裂缝产生的原因分析

1、水泥采用42.5级,经检验符合规范要求,水泥用量:500kg/m3。

高强混凝土由于其水泥用量大多在450—600kg/m3,是普通混凝土的1.5—2倍。这样在混凝土生成过程中由于水泥水化而引起的体积收缩即自缩就大于普通混凝土,出现收缩裂缝的几率也大于普通混凝土。

高强混凝土因采用高标号水泥且水泥用量大,这样在混凝土硬化过程中,水化放热量大,将加大混凝土的最高温升,从而使混凝土的温度收缩应力加大。再叠加其他因素的情况下,很有可能导致温度收缩裂缝。由于高强水泥混凝土中水泥含量是普通混凝土的1.5倍,在硬化早期由于水分蒸发引起的干缩也将大于普通混凝土。

碎石经检验级配符合规范要求,压碎值8.3%<12%(规范指标),含泥量0.7%,不符合规范要求。

砂采用河床中砂,含泥量4.2%>3%,不符合规范要求,级配符合规范要求。

水采用河水,属饮用水。

减水剂符合规范要求。

碎石和砂含泥量超标,对混凝土表面裂缝有一定的影响,水泥用量过大,也是混凝土表面产生裂缝的主要因素。

2、设备因素

对张拉设备进行校验,如果张拉用的千斤顶仪表不准,张拉力超过设计值,造成台座变形位移,假如浇筑完混凝土后台座发生变形,混凝土表面就会产生裂缝。经检查,设备符合要求,台座地基满足要求,没有发现台座变形、位移、下沉现象。

3、施工工艺因素

(1)、混凝土的拌制。拌和设备是500型强制式搅拌机,操作时拌和时间为1min左右,时间过短影响混凝土的均匀性,取其坍落度为3.5,判定水灰比过大,混凝土干缩量增大,产生干缩裂缝。硕士论文,预应力混凝土空心板。

(2)、混凝土浇注。工地采用插入式振动器振捣,振捣过程出现过振现象,致使混凝土表面粗细集料离析,靠近模板的混凝土表面细集料集中。

(3)、混凝土养生。现场操作往往是等混凝土脱模后才开始养生,空心板顶面裸露在大气中,加快了水分的蒸发,致使表面干缩裂缝。

4、混凝土内箍筋的影响因素

由于钢筋和混凝土膨胀率的差异,钢筋的膨胀率大于混凝土的膨胀率,混凝土表面的拉应力小于钢筋膨胀所产生的应力,从而使混凝土表面拉裂。硕士论文,预应力混凝土空心板。

5、混凝土自身应力产生的裂缝

(1)、收缩裂缝。混凝土的干燥过程是由表面逐步扩展到内部的,在混凝土内呈现含水梯度,因此产生表面收缩大,内部收缩小的不均匀收缩,致使表面混凝土承受拉力,内部混凝土承受压力,当表面混凝土所产生的拉力超过其抗拉强度时便产生收缩裂缝。

(2)、温度裂缝。混凝土由于水化热作用、阳光照射、昼夜温差大等因素影响致使其内部与表面温差过大,这时内部混凝土受压应力,表面混凝土受拉应力,由于混凝土抗压强度远大于抗拉强度,在表面拉应力达到并超过混凝土抗拉强度时产生间距大致相等的直线裂缝即温度裂缝,该结构裂缝形态正是如此。

四、裂缝的预防措施

1、严把原材料质量关。进场材料必须经严格检验后方可使用,对高标号混凝土使用高标号水泥,减少水泥用量,水泥初凝时间必须大于45分钟。细集料使用级配良好的中砂,细度模数应大于2.6,含泥量小于2%。粗骨料使用质地坚硬、级配良好的碎石,含泥量小于1%,针片状颗粒含量应小于5%。严格控制水灰比,保证水用量控制在标准之内。硕士论文,预应力混凝土空心板。

2、混凝土的拌和。硕士论文,预应力混凝土空心板。细致分析混凝土的配合比,控制其水灰比,减少坍落度,合理掺加减水剂。硕士论文,预应力混凝土空心板。混凝土拌和时间控制在2min,搅拌时间短混合料不均匀,时间过长,会破坏材料的结构。硕士论文,预应力混凝土空心板。保证混凝土的均匀性,严格控制加水量,经常检测混凝土的坍落度,以保证其具有良好的和易性。

3、混凝土的浇注。混凝土浇注应选择一天中温度较低的时候进行,采用插入式振捣器时移动间距不应超过振捣器作用半径的1.5倍,对每一振捣部位必须振动到混凝土停止下沉,不再冒出气泡,表面呈现平坦、泛浆,边振动边徐徐提出振动器,避免过振,造成混凝土离析。

4、混凝土的养生。不论是收缩裂缝还是温度裂缝,混凝土的养生最为关键。在混凝土浇注收浆结束后,尽快以草帘覆盖和洒水养生,使混凝土表面始终保持在湿润状态,不允许混凝土在高温下裸露暴晒。由于水泥在水化过程中产生很多的热量,混凝土浇注完成后必须在侧模外喷水散热,以免混凝土由于温度过高,体积膨胀过大,在冷却后体积收缩过大产生裂缝,混凝土养生时间不少于两周。

5、芯模。充气芯模在使用前应经过检查,不得漏气,有些混凝土空心板顶面裂缝就是由于混凝土在未达到2.5Zpa时芯模漏气,致使顶面混凝土开裂。

五、结论

通过以上改进措施,混凝土表面裂缝逐渐消失。预应力混凝土空心板是桥梁的承重结构,因此,在预制前,必须要制定出施工工艺流程,对所有参与施工的人员进行技术交底,掌握关键工序的施工技术要点,严格按规范要求检测各项指标,发现异常及时找出问题产生的原因,采取合理的处理措施加以解决,确保混凝土空心板的施工质量。

高强混凝土论文第4篇

关键词:统一强度理论;碳纤维增强复合材料;方钢管混凝土;轴压短柱;极限承载力

中图分类号:TU375.3 文献标志码:A

0 引 言

钢管混凝土因具有三向受压混凝土抗压强度高的优点而越来越广泛地被应用于工业厂房、桥梁结构和超高层建筑结构中,取得了很好的力学及经济效果,虽然方钢管混凝土较截面面积和含钢率相同的圆钢管混凝土承载力有所降低[1],但因其具有节点构造简单,便于梁柱连接,施工方便等优点[2],在实际工程中得到了广泛的应用。混凝土的存在可以消除钢管的内凹,却不能避免其外凸,而且实际工程中还会遇到方钢管混凝土轻微受损或需要增加新功能的情况,这些都涉及到采取某种措施对方钢管混凝土进行约束、加固或修复的问题。近年来,碳纤维增强复合材料(CFRP)外包结构构件加固技术在各国已进行了大量的研究[3-4],其优良的加固效果和便捷的施工工艺越来越多地受到人们的重视。由此出现的CFRP-圆钢管混凝土已经成为一个研究热点[5-6],参照CFRP-圆钢管混凝土,笔者在方形钢管混凝土的外壁包裹CFRP以进一步改善其受力性能。利用CFRP约束钢管混凝土不仅提高了钢管混凝土的承载力、有效延缓了钢管的局部屈曲,且弥补了CFRP约束钢筋混凝土的延性不足[2],考虑到CFRP直接粘贴在方柱(未经任何倒角)上的约束效果不理想[7],因此本文研究对象为带倒圆角截面形式的CFRP-方钢管混凝土柱。目前关于CFRP-方钢管混凝土的研究相对较少,且主要为试验研究和数值模拟,王庆利等[2]对CFRP-方钢管混凝土轴压短柱进行了试验研究和有限元模拟,并提出了受约束混凝土的应力-应变表达式,刘洋[8]对CFRP-方钢管混凝土柱的压弯性能进行了试验研究,并分析了CFRP厚度、长细比和偏心率的大小等因素对承载力的影响,Choi等[9]提出一个简化模型分析不同参数下外贴CFRP对钢管混凝土的加强,Sundarraja等[10]研究了用条状CFRP加固方钢管混凝土轴压短柱的力学性能,并用钢管和混凝土各自承载力进行简单的叠加,不能真实反映钢管和混凝土的受力特性。本文充分考虑中间主应力的影响,根据统一强度理论与CFRP-方钢管混凝土的材料特点,引入了考虑厚度比ζ(ζ=tf/ts,tf为CFRP层厚度,对于采用CFRP条间隔粘贴加固的情况tf取其满铺时的平均厚度,ts为方钢管壁厚)影响的等效应力系数ξ,将方CFRP筒对内部钢管混凝土的约束等效为圆CFRP筒对钢管混凝土的约束。同时引入混凝土强度折减系数[11]和等效约束折减系数[12],将内部方钢管混凝土轴压短柱等效为圆钢管混凝土轴压短柱,进而推导出CFRP-方钢管混凝土轴压短柱的极限承载力公式,与文献试验数据进行比较验证,并得出各参数对极限承载力的影响特性。

1 统一强度理论

统一强度理论是俞茂宏在双剪强度理论的基础上建立的一种考虑了中间主应力影响的计算准则,该理论采用一个统一的力学模型,可以十分灵活地适用于各种不同特性的材料,其表达式为[13]

F=σ1-α1+b(bσ2+σ3)=σs σ2≤σ1+ασ31+α

F′=11+b(σ1+bσ2)-ασ3=σs σ2≥σ1+ασ31+α

α=σsσc,b=(1+α)τs-σsσs-τs

(1)

式中:F,F′均为主应力强度理论函数;σ1,σ2,σ3为最大主应力、中间主应力和最小主应力;σs,σc,τs分别为材料的拉伸、压缩、剪切屈服强度;α为材料的拉压比,对于韧性金属材料一般为0.77~1.0,对于脆性金属材料为0.33~0.77,对于岩土类材料一般小于0.5;b为反映中间剪应力以及相应面上的正应力对材料破坏影响程度的参数,0≤b≤1。2 极限承载力分析

2.1 CFRP受力分析

CFRP-方钢管混凝土柱在轴向压力作用下,钢管混凝土的横向膨胀使CFRP布的水平段产生水平弯曲,并对方钢管混凝土提供约束力。另外,在方形截面的角部,CFRP布受到2个相互垂直方向的拉力作用,其合力形成对方钢管混凝土对角线方向的强约束,故方钢管混凝土承受的约束力是沿对角线的集中挤压力和沿边长分布均匀的横向力[14]。本文引入考虑厚度比ζ影响的等效应力系数ξ,将方CFRP筒对内部钢管混凝土的约束等效为圆CFRP筒对钢管混凝土的约束,并采用等效约束力frf来简化计算,计算简图如图1所示,其中B为方钢管的外边长,σr为混凝土所受的侧向压力,ff为CFRP应力,其原理是使简化后的均匀约束分布与原来的非均匀约束具有相同的约束效果。对文献[10]中的试验数据进行拟合(图2),得等效应力系数ξ与厚度比ζ的表达式为

对于采用CFRP条间隔粘贴加固的情况,由于CFRP粘贴的不均匀,可采用安全系数Fs=1.2对ξ进行折减[10]。

等效约束力frf的计算公式如下

frf=ξr

(3)

式中:r为平均约束应力,r=2tfff/B。

2.2 方钢管受力分析

CFRP-方钢管混凝土向CFRP-圆钢管混凝土面积相等转换时,由于方钢管对混凝土约束的不均匀,使得这种等代有困难。本文引入等效约束折减系数β [12]将方钢管对混凝土的约束转换为圆钢管对混凝土的约束,其值为

β=66.474 1v2-0.991 9v+0.416 18

(4)

式中:v为钢管的厚边比,v=ts/B。

方钢管对核心混凝土的等效均匀径向压力P可表示为

P=βPI

(5)

式中:PI为等效外圆钢管在径向压力作用下的塑性极限荷载。

根据统一强度理论,PI值为[15]

PI=σs1-α[(rcrc+ts)2(1+b)(α-1)2+2b-bα-1]=

σs1-α[(1+μ/2)2(1+b)(1-α)2+2b-bα-1]

(6)

式中:μ为含钢率;rc为等效圆钢管的内壁半径,rc=(B-2ts)/π。

由塑性力学的厚壁圆筒理论得[16]等效外圆钢管的纵向抗压强度σzp为

σzp=4(P+frf)r2c-frf(rc+ts)2(rc+ts)2-r2c=

4PIβ4μ+μ2-frf

(7)

2.3 核心混凝土的轴压强度

CFRP-方钢管混合筒对核心混凝土的约束分布很不均匀,角部混凝土受到的约束较强,边部中间管壁受到的约束作用较弱。根据Varma等[17]的研究,核心混凝土所受的约束可分为有效约束区和非有效约束区,分界线为抛物线,其约束模型见图3,其中,re为等效圆钢管的外壁半径,re=B/π。有效约束区混凝土2个方向的约束力相近,其应力状态与CFRP-圆钢管混凝土中的核心混凝土相似,而非有效约束区,垂直于表面的约束较小。

核心混凝土处于三向受压状态,0>σ1=σ2>σ3,满足式(1),代入得

σ1-ασ3=ft

(8)

式中:ft为混凝土抗拉强度,ft=2ccos(φ)1+sin(φ),φ为混凝土的内摩擦角,c为混凝土的内聚力。

令k=1+sin(φ)1-sin(φ),并按习惯一般取压为正、拉为负,得

σ3=fc+kσ1

(9)

式中:σ1=P+frf;fc为核心混凝土的单轴抗压强度,fc=2ccos(φ)1-sin(φ)。

鉴于CFRP-方钢管混合筒对核心混凝土的约束存在一定的困难,现有CFRP-方钢管混凝土的研究多是建立在试验基础上的。本文对核心混凝土不做有效约束区和非有效约束区的划分,而采用混凝土强度折减系数[11]γu=1.67D-0.112c来考虑非有效约束区侧向约束减弱的影响,其中Dc为等效圆钢管的内径。核心混凝土的纵向抗压强度fcc为

fcc=fc+γuk(P+frf)

(10)

2.4 极限承载力计算

由于CFRP布只能承受拉力而不能承受压力,所以CFRP-方钢管混凝土的极限承载力Nu为钢管和核心混凝土的纵向承载力之和,即

Nu=Asσzp+Acfcc

(11)

As=4ts(B-ts)

(12)

Ac=(B-2ts)2

(13)

式中:As,Ac分别为方钢管和核心混凝土的截面面积。

将式(3),(5),(7),(10),(12),(13)代入式(11)可得

Nu=4ts(B-ts)(4PIβ4μ+μ2-ξr)+

(B-2ts)2[fc+γuk(PIβ+ξr)]

(14)

当没有CFRP管,即r=0时,式(14)退化为方钢管混凝土轴压短柱承载力公式,即

Nu=4ts(B-ts)4PIβ4μ+μ2+

(B-2ts)2(fc+γukPIβ)

(15)

当ξ=β=γu=1时,对钢管和混凝土截面面积As,Ac和r分别做简单数学变换,则式(14)退化为CFRP-圆钢管混凝土轴压短柱承载力公式, 即

Nu=As(4PI4μ+μ2-r)+

Ac[fc+k(PI+r)]

(16)

在式(16)的基础上,令r=0,则式(14)退化为圆钢管混凝土轴压短柱承载力公式,即

Nu=As4PI4μ+μ2+Ac(fc+kPI)

(17)3 极限承载力的验证和影响因素分析

3.1 计算结果对比

大多数的钢材是有明显屈服点的,并且各向同性,因此在应用统一强度理论时取α=1,则统一强度理论就变为统一屈服准则,这时不同的b值就对应不同已知的屈服准则或还没有定义的新屈服准则。将α=1代入式(6)并求极限得

PI=limα1σs1-α[(1+μ/2)2(1+b)(1-α)2+2b-bα-1]=

2σs1+b2+bln(1+μ2)

(18)

将文献[2],[15],[18],[19]中部分试验数据代入本文公式进行计算,并与其试验结果进行比较,结果见表1。

从表1可以看出,本文理论计算结果与试验结果吻合良好,验证了该理论公式的正确性,并且极限承载力Nu随着b的增加而增大,说明考虑参数b即中间剪应力以及相应面上的正应力对材料破坏的影响,可以更充分地发挥材料的强度潜能。当b=1时,统一强度理论退化为双剪应力屈服准则,这时本文计算值与试验值比值的平均值为0.981,方差为0.001,表明本文公式计算结果具有较高的精度。

3.2 影响因素分析

对于高强钢材,材料拉压比α将不再等于1。图4给出了试件B-1的极限承载力Nu随α,b的变化情况。从图4可以看出:当α一定时,Nu随着b的增加而增大;当b一定时,Nu随着α的增加而增大,说明当外钢管为高强度钢时考虑α的影响是有必要的。

对文献[2]中的数据进行分析,得出极限承载力Nu与CFRP粘贴层数、fc之间的关系,如图5所示。从图5可以看出,极限承载力Nu随着fc的增加而增加,且承载力的提高幅度取决于CFRP的厚度。粘贴1层时极限承载力平均提高63 kN,粘贴2层时极限承载力平均提高87 kN,粘贴3层时极限承载力平均提高105 kN,说明CFRP的约束效率随其厚度的增加而减

fc钢管厚边比v反映的是钢管的厚度和外边长的比值,厚边比不同会影响钢管对内部核心混凝土的约束,图6给出了文献[2]中试件A-1和B-1在其余条件均不变的情况下极限承载力Nu随厚边比v的变化情况。从图6可以看出,极限承载力Nu随着厚边比v的增大而显著增大,说明在构件外边长、CFRP和内部混凝土不变的情况下增大钢管的壁厚能显著提高构件的承载力。

4 结 语

(1)本文在统一强度理论的基础上推导出了CFRP-方钢管混凝土轴压短柱极限承载力的计算公式,并将理论计算结果与相关文献的试验结果做比较,验证了该公式的正确性,同时也说明了将CFRP-方钢管混凝土转化为CFRP-圆钢管混凝土的思路是可行的。

(2)CFRP-方钢管混凝土轴压短柱的极限承载力Nu随着α和b的增加而增大,说明考虑材料的拉压比α和参数b的影响是有必要的。由于CFRP筒的约束作用,方钢管混凝土柱的承载力得到较大幅度提高,承载力提高的幅值直接取决于CFRP的厚度。当钢管边长、CFRP和混凝土一定时,增大钢管的壁厚能显著提高构件的承载力。

(3)本文公式是考虑了各种影响因素的统一解,改变公式中参数就对应了不同的边界情况,CFRP-圆钢管混凝土轴压短柱承载力、圆形和方形截面钢管混凝土轴压短柱承载力都是本文结果的特例。

参考文献:

References:

[1] 吴 鹏,赵均海,李 艳,等.方钢管混凝土短柱轴压极限承载力研究[J].四川建筑科学研究,2013,39(3):8-13.

WU Peng,ZHAO Jun-hai,LI Yan,et al.Study on the Axial Ultimate Bearing Capacity of Square Concrete-filled Steel Tubular Stub Columns[J].Sichuan Building Science,2013,39(3):8-13.

[2]王庆利,薛 阳,邵永波,等.CFRP约束方钢管混凝土轴压短柱的静力性能研究[J].土木工程学报,2011,44(3):24-31.

WANG Qing-li,XUE Yang,SHAO Yong-bo,et al.Study of Static Performance of Axially Compressed Concrete Filled Square Steel Tubular Stub Columns Confined by CFRP[J].China Civil Engineering Journal,2011,44(3):24-31.

[3]MEIER U.Carbon Fiber Reinforced Polymer:Modern Materials in Bridge Engineering[J].Structural Engineering International,1982(2):7-12.

[4] SHANMUGANATHAN S.Fiber Reinforced Polymer Composite Material for Civil and Building Structural Review of the State-of-art[J].The Structural Engineering,2003(7):26-33.

[5]张常光,赵均海,冯红波.CFRP-钢管混凝土轴压短柱的力学性能[J].建筑结构,2008,38(3):34-37.

ZHANG Chang-guang,ZHAO Jun-hai,FENG Hong-bo.Mechanics Behavior of Concrete Filled CFRP-steel Tube Stub Columns Under Axial Compression[J].Building Structure,2008,38(3):34-37.

[6]王庆利,叶 茂,周 琳.圆CFRP-钢管混凝土构件受弯性能研究[J].土木工程学报,2008,41(10):30-38.

WANG Qing-li,YE Mao,ZHOU Lin.Study on the Flexural Behavior of Concrete Filled Circular CFRP-steel Tubular Members[J].China Civil Engineering Journal,2008,41(10):30-38.

[7]潘景龙,王雨光,来文汇.混凝土柱截面形状对纤维包裹加固效果的影响[J].工业建筑,2001,31(6):17-19.

PAN Jing-long,WANG Yu-guang,LAI Wen-hui.Effect of Sectional Shape of Concrete Column on the Bearing Capacity of Short Columns Wrapped with FRP[J].Industrial Construction,2001,31(6):17-19.

[8]刘 洋.CFRP增强方钢管混凝土压弯构件静力性能研究[D].沈阳:沈阳建筑大学,2011.

LIU Yang.Static Performance Study on the Strengthened of Concrete Filled Square Steel Tubular Beam-columns by CFRP[D].Shenyang:Shenyang Jianzhu University,2011.

[9]CHOI K K,XIAO Y.Analytical Model of Circular CFRP Confined Concrete-filled Steel Tubular Columns Under Axial Compression[J].Journal of Composites for Construction,2010,14(1):125-133.

[10]SUNDARRAJA M C,GANESH P G.Experimental Study on CFST Members Strengthened by CFRP Composites Under Compression[J].Journal of Constructional Steel Research,2012,72:75-83.

[11] KENIJ S,HIROYUKI N,SHOSUKE M,et al.Behavior of Centrally Loaded Concrete-filled Steel-tube Short Columns[J].Journal of Structural Engineering,2004,130(2):180-188.

[12]李小伟,赵均海,朱铁栋,等.方钢管混凝土轴压短柱的力学性能[J].中国公路学报,2006,19(4):77-81.

LI Xiao-wei,ZHAO Jun-hai,ZHU Tie-dong,et al.Mechanics Behavior of Axially Loaded Short Columns with Concrete-filled Square Steel Tube[J].China Journal of Highway and Transport,2006,19(4):77-81.

[13]俞茂宏.混凝土强度理论及其应用[M].北京:高等教育出版社,2002.

YU Mao-hong.Concrete Strength Theory and Application[M].Beijing:Higher Education Press,2002.

[14]卢亦焱,史健勇,赵国藩.碳纤维布约束轴心受压混凝土方形柱承载力计算公式[J].工程力学,2004,21(4):22-27.

LU Yi-yan,SHI Jian-yong,ZHAO Guo-fan.Study of Axial Bearing Capacity of Square Concrete Columns Confined with Carbon Fiber Reinforced Plastic[J].Engineering Mechanics,2004,21(4):22-27.

[15]赵均海.强度理论及其工程应用[M].北京:科学出版社,2003.

ZHAO Jun-hai.Unified Strength Theory and Its Engineering Application[M].Beijing:Science Press,2003.

[16]王 仁,熊祝华,黄文彬.塑性力学基础[M].北京:科学出版社,1982.

WANG Ren,XIONG Zhu-hua,HUANG Wen-bin.Foundation of Plastic Mechanics[M].Beijing:Science Press,1982.

[17]VARMA A H,SAUSE R,RICLES J M,et al. Development and Validation of Fiber Model for High Strength Square Concrete Filled Steel Tube Beam-columns[J].ACI Structural Journal,2005,102(1):73-84.

[18]韩林海,陶 忠.方钢管混凝土轴压力学性能的理论分析与试验研究[J].土木工程学报,2001,34(2):17-25.

HAN Lin-hai,TAO Zhong.Study on Behavior of Concrete Filled Square Steel Tubes Under Axial Load[J].China Civil Engineering Journal,2001,34(2):17-25.

高强混凝土论文第5篇

关键词:轻骨料混凝土,历史,性质

 

一、轻骨料混凝土的历史

轻骨料混凝土( 又名轻集料混凝土,Light weight AggregateConcrete) 是指轻粗骨料、轻细骨料(或普通砂)、水泥和水, 必要时加入化学外加剂的矿物合料配制而成, 并且在标准养护条件下,28d 龄期的干表观密度小于1950kg/m的混凝土。发表论文。

人造轻骨料最早使用在1920年左右。SJ海德是最初运用回转窑烧制膨胀黏土轻骨料,1928年,美国开始把这种方法用于商业生产。西欧在二战后才开始有了轻骨料的生产,美国和前苏联因缺少天然的普通骨料,大量生产和使用了人造轻骨料,使轻骨料混凝土在这两个国家得到飞速发展,但轻骨料混凝土长期一直被当作非结构材料使用,应用范围受到很大限制。自20世60年代中期,美国采用轻骨料混凝土取代普通混凝土,修建了休斯敦贝壳广场大厦并取得了显著的技术经济效益。如今,国外发达国家高性能轻骨料混凝土的应用已取得丰富经验。CL50一CL6O轻骨料混凝土己在工程中大量使用,结构轻骨料混凝土的抗压强度最高为80MPa,其表观密度1800~2000kg/m之间。

20世纪90年代初期, 挪威、日本等国研究了高性能轻骨料混凝土的配方、生产工艺、高性能轻骨料等,重点在于改善混凝土的工作性和耐久性,并取得了一定的成果。如英国采用高强轻骨料混凝土建造了北海石油平台;挪威应用CL60级轻骨料混凝土建造了世界上跨度最大的悬臂桥;日本则成立了一个由18家公司组成的高强轻骨料混凝土研究委员会,专门研究粉煤灰轻骨料混凝土。挪威自1987年以来,已应用高性能轻骨料混凝土建了11座桥梁。

二、轻骨料混凝土的优良特性

轻骨料混凝土的强度等级用CL表示。强度等级达到CL30及以上者称为高强轻骨料混凝土一般来说,高强轻骨料混凝土有如下优点:

(1)轻质高强:顾名思义,轻骨料混凝土采用轻骨料代替普通沙石材料,可以使得混凝土构件在承载力相同的条件下,减轻自重达20 %~40 %。这样的优势,为设计施工提供了很大的方便。

(2)抗震性能好:由于地震力和上部结构的自重成正比,因此,当结构采用轻骨料混凝土后,自重会明显的下降,也就降低了地震力,减少了地震对结构的作用,提升了结构的抗震性能。同时,由于轻骨料混凝土的弹性模量比同等级的普通混凝土低,结构的自振周期将变长,对冲击能量的吸收快,变形能力增强,不容易遭受外力的破坏。

(3)抗裂性好:由于轻骨料混凝土相比普通混凝土有较小的热膨胀系数和弹性模量,导致冷缩和干缩作用引起的拉应力小与普通混凝土材料,这样的表现就导致了轻骨料混凝土构件的抗裂性能优于普通混凝土,这对改善结构的耐久性,延长结构的使用寿命是非常有利的,并有助于降低结构在使用期间的维护费用。

(4)耐久性好:使用轻骨料能有效避免混凝土的碱集料反应问题,延长结构的使用寿命。同时由于轻骨料混凝土的骨料—基材界面粘结牢固,具有一定的自养护功能和水泥砂浆品相的质量相对较好等因素,轻骨料混凝土抗有害介质侵入的能力也相对较强。

(5)耐火性好:由于轻骨料混凝土采用的是粉煤灰,煤矸石等骨料,而这些骨料都经历高温历练,有良好的耐火性能,使得轻骨料混凝土热工性能好,用以建造的建筑和结构的耐火性能好。一般建筑物发生火灾时,普通混凝土耐火1h,而轻骨料混凝土可耐火4h.

(6)综合技术经济效益好:轻骨料混凝土的骨料通通常来自工业废渣、煤矿的煤矸石、火力发电站的粉煤灰等,可降低混凝土的生产成本,并变废为用,减少占用农田,减轻环境污染,具有良好的社会效益、经济效益和环境效益。

三、轻骨料混凝土的缺点和发展前景

(1)轻骨料性能的完善:如今的亲故料混凝土虽然具有上述轻质、高强、耐久性好等优点。但研究表明,高性能轻骨料混凝土的拉压比要小于相同强度等级的普通混凝土,且随着强度的提高,其脆性相应增大,脆性问题使得高强材料的优越性得不到充分发挥、限制了其在工程中的应用。因此,如何提高高性能轻骨料混凝土的韧性、提高其拉压比,同时又能保持其轻质高强的特点,成为当前高性能轻骨料混凝土研究和应用中迫切需要解决的问题之一。

(2)轻骨料生产工艺和设备的更新:目前轻骨料混凝土配制过程中存在如下问题: ①为降低轻骨料的吸水率 ,改善新拌轻骨料混凝土的工作性 ,普遍在其表面涂蜡、 聚苯乙烯乳液等防水材料或施工前预湿轻骨料。 这些做法降低轻骨料混凝土的力学性能或降低其抗冻耐久性 ,并使生产制作变得复杂; ②在大的初始坍落度时 ,轻骨料易上浮离析 ,采用振捣施工时尤为突出 ,使硬化后混凝土的均质性差 ,耐久性下降 ,并降低其力学性能; ③提高水泥掺量 ,虽能改善新拌混凝土的工作性 ,但增大了轻骨料混凝土的收缩裂缝和温度裂缝引起的危害 ,降低混凝土的耐久性 ,同时又增加工程造价。 因此 ,工程结构迫切需要制作简单、 工作性好、 能免振捣自密实施工、 硬化后质量好、 体积稳定性好、 高耐久、 经济的高性能轻骨料混凝土。发表论文。

(3)已有发展:①轻骨料品种的结构组成有较大变化:如今以粉煤灰、尾矿粉和河川污泥为主要原料的绿色轻骨料正在大量推广应用。②轻骨料混凝土及其应用技术的迅速发展: CL40以上的高强性能陶粒混凝土的广泛应用以及轻骨料混凝土泵送施工的普及。③轻骨料生产工艺设备的更新:原材料的微米磨细技术和无胶结料陶粒成球技术得到推广应用,破碎型粒的破碎新技术的广泛应用以及利用化学工业废料加工成的节能燃料的成功开发。

四、总结

轻骨料混凝土的开发和利用,为混凝土的发展和变革添了重要的一笔。发表论文。相比普通混凝土,轻骨料混凝土的优异性能使得混凝土的应用领域更为广阔。但轻骨料混凝土也存在着一些缺陷,对于这些缺陷,目前人们的主要解决办法在于添加相应的纤维材料和高聚物等,以提高韧性和其他性能。但是这些还是没有很好的解决轻骨料混凝土存在的问题,还有待于研究。

参考文献

【1】李强.浅析轻骨料混凝土的发展(论文),内蒙古电力堪测设计院,2009.

【2】 郑立,姚道稳.新型墙体材料技术读本.北京:化学工业出版社,2005.

【3】 胡署光,王发洲.轻集料混凝土.北京:化学工业出版社,2006.

【4】王发洲.高性能轻骨料混凝土研究与应用:(博士学位论文).武汉理工大学,2003.

【5】龚洛书,柳春圃.轻集料混凝土[M].北京:中国铁道出版社。1996.

高强混凝土论文第6篇

关键词:钢纤维混凝土,研究,应用

 

1.钢纤维混凝土性能

钢纤维混凝土是在普通混凝土中掺入乱向分布的短钢纤维所形成的一种新型的多相复合材料。这些乱向分布的钢纤维能够有效地阻碍混凝土内部微裂缝的扩展及宏观裂缝的形成,显著地改善了混凝土的抗拉、抗弯、抗冲击及抗疲劳性能,具有较好的延性

1.1新拌钢纤维混凝土性能

钢纤维有一个像砂皮般粗糙的表面,使它与水泥浆体的黏结较为牢固,可减少塌边现象。论文大全。一般情况下,钢纤维混凝土坍落度值比相应的普通混凝土小20 mm,经摊铺机振动,即表现出与普通混凝土一样的黏聚性。

1.2硬化后钢纤维混凝土性能

(1)有研究表明[3],钢纤维掺量为30~50 kg/m3时,钢纤维混凝土的弯拉强度比普通混凝土提高约15%~35%,且与钢纤维的掺量成正比。(2)抗冲击性冲击强度反映混凝土在冲击荷载作用下的抗裂性能。将重8 kg的钢球从25 cm高度自由落下冲击经标准养护28 d的标准试件,当试件裂缝大于0.3mm时,记录的冲击次数即为冲击强度。文献表明[3],钢纤维混凝土抗冲击性能随钢纤维掺量增加而提高。钢纤维掺量为30~50 kg/m3时,与普通混凝土相比,其抗冲击性能可提高3~5倍。(3)抗干缩开裂性能试验在工地上进行,在养护28 d水泥稳定碎石基层上浇筑普通混凝土板和钢纤维掺量为50 kg/m3的混凝土板,用碘弧灯强光和风扇强风来加快试板失水,随时观察裂缝产生的时间。与普通混凝土相比[3],钢纤维混凝土裂缝产生时间迟,裂缝产生数量少。这表明钢纤维混凝土用于路面可以延长混凝土面板缩缝间距。(4)耐磨性耐磨性试验采用TNS-04水泥胶砂耐磨试验机。试验前将尺寸为15 cm×15 cm×7 cm的试件在60℃烘箱中烘至恒重,然后在水泥胶砂试验机上磨削50转,磨损面积为0.012 5 m2。计算试件单位面积磨损量,以此作为标准来描述混凝土耐磨性。在混凝土中掺钢纤维可显著提

高其耐磨性能。与普通混凝土相比,钢纤维混凝土耐磨性能提高了24.2%[3]。

2.钢纤维混凝土的应用

钢纤维混凝土在工程中的实际应用始于上世纪70年代,由美国Battele公司开发的熔抽钢纤维技术为钢纤维混凝土的应用提供了条件。此后在加拿大、英国、瑞典、日本等国家也迅速进行这方面的应用研究。我国是从上世纪70年代着手对钢纤维混凝土进行材料力学性能的实验研究,1989年颁布《钢纤维混凝土试验方法》(CECS13: 89),1992年颁布《钢纤维混凝土结构设计与施工规程》(CECS38:92), 2004年颁布《纤维混凝土结构技术规程》(CECS38: 2004)。目前纤维混凝土在结构工程、铺面工程、地下结构及其他特种结构工程等领域得到了比较广泛的应用。

在结构工程方面,那些对抗拉、抗剪、抗弯拉强度和抗裂、抗冲击、抗疲劳、抗震、抗爆等性能要求较高的工程部位,若采用钢纤维混凝土会得到较高的抗拉强度、断裂韧性和抗疲劳等性能。例如在梁柱节点中,已有实验证明钢纤维混凝土梁柱节点与普通混凝土梁柱节点相比,在强度、刚度、耗能能力和梁钢筋粘结锚固方面有较大的改善,采用钢纤维混凝土梁柱节点的框架与普通钢筋混凝土框架相比,结构的延性提高57%,耗能能力提高130%,循环次数提高15%,在框架梁柱节点采用钢纤维混凝土可替代部分箍筋,既改善了节点区的抗震性能,又解决了节点区钢筋过密、施工困难等问题。论文大全。

铺面工程包括公路路面、机场道面、桥面、工业地面及屋面等。因钢纤维混凝土有着优良的抗拉,抗弯、抗裂、抗疲劳、抗冲击、抗收缩、韧性好等一系列物理力学性能,因此,在铺面工程领域中得到较广泛应用。论文大全。文献[4]过恩施州318国道某路段的路面设计对比,采用素混凝土路面,路面板厚度为25cm;采用层布式混杂纤维混凝土路面,路面板厚度为仅为16 cm。

地下结构所用的钢纤维混凝土一般为钢纤维增强喷射混凝土,它具有诸多特点,强度高(抗拉、抗弯、抗剪);抵抗冲击、爆炸和震动的性能高;韧性好;抗冻、耐热与耐疲劳性能好;抗裂性能强;即使构件已产生微小裂缝,也会因钢纤维继续抗拔而使韧性大为提高。

3.总结

钢纤维混凝土具有优异的特性,使其广泛应用于各个工程领域,但其本身存在的问题,也抑制了它的应用。(1)钢纤维造价普遍较高,国产的性能相对较低,难以大规模使用;(2)钢纤维混凝土的增强机理至今也还不是很清楚,现行的几种分析理论,如复合理论和纤维间距理论都并不完善。复合理论忽略了纤维复合带来的耦合效应,纤维间距理论忽略了纤维自身的耦合作用,都有应用局限性,需待进一步的研究和探讨。(3)目前对钢纤维混凝土的研究多集中在物理性能方面,对于化学性能方面(比如耐久性)的研究相对较少。(4) 钢纤维混凝土与普通混凝土相比,在相对较低的水泥用量情况下,钢纤维混凝土具有较高的抗折强度和耐磨性能、良好的抗冲击性能和抗裂性能,非常适合在重载交通路面工程和对耐久性要求严格的工程中应用。

参考文献

[1]时宗滨,齐巧男. 浅谈纤维混凝土的应用[J]. 黑龙江交通科技,2008(6).

[2]蒋应军,刘海鹏等.钢纤维混凝土性能与施工工艺研究.[J].混凝土,2008(8).

[3]焦楚杰,孙伟等.中含量钢纤维高强混凝土施工工艺优选[J].建筑技术,2004(1).

[4] 海庆,朱继东等.层布式混杂纤维对混凝土抗弯性能的改善及其在路面设计中的应用[J].混凝土与水泥制品, 2003(4): 41-43.

高强混凝土论文第7篇

关键词:建筑施工,大体积混凝土,裂缝控制

 

引言

大体积混凝土的特点除体积较大外,更主要是由于混凝土的水泥水化热不易散发,在外界环境或混凝土内力的约束下,极易产生温度收缩裂缝。因此仅用混凝土的几何尺寸大小来定义大体积混凝土,就容易忽视温度收缩裂缝及为防止裂缝而应采取的施工要求。目前建筑工程中经常使用的高强、高性能混凝土,由于单方水泥用量大,即使最小边尺寸很小,水化热也不能忽视,也应按大体积混凝土对待,必须采取温度控制措施。

1 合理布置分布钢筋间距

混凝土是以水泥为主要胶结材料,拌合一定比例的粗、细骨料和水,一般还加入少量的各种添加剂,经过搅拌、注模、振捣、养护等工序,逐渐凝固硬化而成的人工混合材料。各种组成材料的成分、性质和相互比例,以及设备和硬化过程中的各种条件和环境因素,都会对混凝土的力学性能产生不同程度的影响。如进行适当的配筋,虽然适当的配筋不能有效的阻止裂缝的产生,但适当的配筋可以约束混凝土的塑性变形,从而分担混凝土的内应力,加强结构的整体性和减小温度裂缝的宽度,同时也提高了混凝土的极限拉伸。在实际大体积混凝土的工程中,配置钢筋并非越多效果越好。混凝土配置钢筋不仅能够提高混凝土的极限拉伸,同时还增加了混凝土的自约束应力。当混凝土发生收缩时,钢筋不收缩,因而必然产生收缩应力,但在配筋率比较低的条件下,收缩应力是微小的,一般可以忽略不计。但是当配筋率比较高的情况下,产生的收缩应力就可以导致混凝土开裂。发表论文。变形钢筋与混凝土之间产生的粘结力要远大于光圆钢筋和混凝土之间产生的粘结力,更能有效的约束混凝土的塑性变形,控制温度裂缝的宽度。所以,在大体积混凝土的配筋过程中,要根据情况尽可能的选用变形钢筋。

2 避免采用高强混凝土

高强混凝土的划分范围,国内外没有一个确定的标准。从我国现今的结构设计和施工技术水平出发,也考虑到混凝土材性的变化,采用高强混凝土虽然可以提高混凝土的抗压强度,但是混凝土的抗拉强度随着抗压强度增长增长缓慢,而且高强混凝土的明显呈现出“脆性”,极限应变变小,更容易产生裂缝。采用高强混凝土必然要提高水泥的标号、减小水灰比或者使用各种聚合物作为胶结材料来代替水泥,这不仅使施工过程和施工质量难以保证,并且提高了工程造价。所以,基础混凝土宜选用中低强度混凝土,强度等级宜在 C20~C35的范围内选用,利用后期强度R60。

3 水泥的选择

大体积混凝土产生裂缝的最主要的原因是因为水泥水化时释放出大量的热量在混凝土内部产生温度应力而产生裂缝。为此,在施工中应合理的选用选用低热和中热水泥以及尽量减少单位水泥用量,从根本上控制因水泥的水化热引起的温升。一般来说水泥用量每增减10kg,度亦相应升降1℃。日前,在工程中常用的水泥,主要有硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥。在一些特殊工程中,还使用专用水泥和特性水泥,如铝酸盐水泥、膨胀水泥、快硬水泥、低热水泥和抗硫酸盐水泥等。

为了降低因水泥水化产生的热量引起的温升,在保证基础有足够的强度满足使用要求的前提下,可以利用混凝土60天或90天的后期强度,这样既可以避免混凝土在前期就释放出大量的水化热而使混凝土产生较大的温差,也可以减少混凝土中水泥的用量,以降低混凝土浇筑块体的温升。

4 骨料的选择

在混凝土中,砂、石等粗细骨料的体积占混凝土体积的70%以上,起到骨架的作用。在选用骨料的时候应优先选用热学性能好的骨料。因骨料占混凝土组成比例的绝大部分,因此混凝土的热学性能在很大程度上取决于骨料的矿物性质,优先选用热学性能好的骨料是混凝土温度控制的基本措施之一。目前,我国各地工程所需的骨料是就地取材的天然骨料,对于天然骨料应该按规范要求进行物理力学性能试验。

5 掺入其他材料

在混凝土中掺入聚丙烯网状纤维是利用“抗”的方法来阻止裂缝的出现和裂缝的开展。其原理主要在于,混凝土中水泥作为胶凝材料来握裹聚丙烯网状纤维,这些聚丙烯网状纤维起到微细配筋作用,利用水泥和聚丙烯网状纤维之间的握裹力来消耗混凝土变形开裂能量、调高混凝土的韧性、掌托骨料和减少混凝土离析泌水,从而控制水泥基体内部微细裂缝的生成和扩展,提高混凝土的抗裂性能。

另外,在混凝土中掺用粉煤灰作为混合料,在我国已经广泛使用。通过实验,在混凝上中掺入适量的粉煤灰后,不但可以节约水泥,降低工程造价,而且混凝土的许多性能都可获得改善。发表论文。在混凝土中掺入适量的粉煤灰,使水泥的用量减少,水泥中放热量大、放热速度快的铝酸三钙和硅酸三钙的含量减少,造成了掺入了粉煤灰的混凝土放热速度慢,放热量少。

6 大体积混凝土的处理

用木抹子进行表面提浆找平处理,以闭合水裂缝,初步标高用长刮杆刮平,再用木抹子收压两遍,这样既能排除混凝土因泌水在粗骨料、水平钢筋下部生成的水分和空隙,提高混凝土与钢筋的握裹力,又能防止因混凝土沉落而出现裂缝,减少内部微裂,增加混凝土密实度,提高混凝土抗裂性能。在混凝土二次收面时立即覆盖一层彩条布,并浇水养护。及时调节运输车辆,防止压车,断车而造成坍落度损失,影响泵送和基础浇筑质量。

保温养护过程中,应保持混凝上表面湿润。保温可以提高混凝土的表面抗裂能力。有资料表明,潮湿养护时,混凝土极限拉伸值比干燥养护时要大20-50%。在常温季节,混凝土终凝后也可采取蓄水养护的办法,替代前两种保湿保温养护办法。发表论文。根据混凝土内外温差数据,及时调整蓄水高度,也能收到预期效果。

结语

为了防止大体积混凝土的变形开裂,仅仅控制温度是不够的,还需要采取其它一定的技术措施来防止混凝土的开裂。比如优化混凝土的配合比、选择合适水泥的品种来提高混凝土的抗裂能力;改善混凝土结构的约束条件、改善混凝土的养护条件、严格控制混凝土的施工质量来防止混凝土的开裂等等。这些措施不是孤立的,而是相互联系、相互制约的、在实施的过程中必须结合结构的要求、现场的情况来全面考虑,合理采用。

参考文献

[1]孙春海.大体积混凝土施工技术研究[J].科技资讯,2010,(02).

[2]田弘.试论大体积混凝土温度控制施工技术[J].中华建设,2010,(02).

[3]杨晓松.大体积混凝土质量控制要点[J].科协论坛(下半月),2010,(01).

[4]尹洪龙.试析大体积混凝土施工技术[J].科技资讯,2010,(02).

高强混凝土论文第8篇

关键词:再生混凝土;钢管再生混凝土结构;钢管混凝土结构;

0 引言

随着全球可持续发展战略的提出,各国都在研究和开发可再生能源,以达到保护环境、节约天然资源等目的。废弃混凝土块经破碎、清洗和分级后,按一定的比例与级配混和形成再生骨料,部分或全部代替天然砂子或石子等配置而成的新混凝土称之为再生骨料混凝土(简称再生混凝土)[1]。再生混凝土是一种绿色混凝土,符合可持续发展战略。因此,对废弃混凝土再生利用的研究已成为许多国家的前沿课题。国内研究人员也已经对再生混凝土骨料和再生混凝土的力学特性进行了深入的研究[2]。钢管再生混凝土结构可促进再生混凝土在土木建筑结构中的应用和发展,为废弃混凝土资源化提供一条有效的途径。并研究提高再生混凝土的工作性能,使其满足在实际工程中推广应用的相关要求,以及对钢管再生混凝土短柱的轴心受压力学性能进行分析比较,力求对以后钢管再生混凝土规范的推出提出一些数据参考

1、钢管再生混凝土的发展状况

再生混凝土在我国的发展时间的限制,钢管再生混凝土的研究发展在目前来看极其的有限。杨有福等[3]在《钢管再生混凝土轴压短柱力学性能初探》采用直焊缝圆钢管再生混凝土进行了研究。结论表明:1)钢管再生混凝土与钢管混凝土轴压短柱的荷载一变形关系曲线相类似,纤维模型法同样适用于钢管再生混凝土。2)钢管再生混凝土的强度承载力低于钢管混凝土的强度承载力,并且随着骨料取代率的增加而有降低的趋势,这主要是因为随着骨料取代率的增加,再生混凝土的强度逐渐低于普通混凝土。本文主要对无缝钢管再生混凝土轴压短柱的力学性能进行了进一步的研究。

福州大学的杨有福[4]在确定钢材与核心再生混凝土本构关系模型的基础上,采用数值方法对钢管再生混凝土轴心受压、纯弯曲和压弯构件的荷载-变形全过程关系曲线进行模拟,对此类构件的力学性能进行研究,理论分析结果与试验结果非常吻合。最后在参数分析结果的基础上,提出钢管再生混凝土压弯构件承载力的简化计算公式。为了考察钢管再生混凝土构件在一次加载下的静力性能,课题组完成了56个试件的试验研究,同时进行了钢管普通混凝土试件的对比试验。研究结果表明,钢管再生混凝土试件与相应钢管普通混凝土试件的荷载-变形关系曲线类似;但钢管再生混凝土试件的承载力和刚度均低于相应钢管普通混凝土试件。这主要是因为再生混凝土的强度和弹性模量均低于相同配合比的普通混凝土。

本课题组的试验结果表明,将再生混凝土灌入钢管,可有效改善再生混凝土的力学性能,同时由于钢管和再生混凝土之间的组合作用,使得钢管再生混凝土构件的下降段趋于平缓,延性和耗能能力有较大的提高,但是随着再生粗骨料取代率的提高,仍存在弹性模量逐渐降低,峰值应变增大的特点。在确定钢材和核心再生混凝土的应力-应变关系模型的基础上,采用纤维模型法和有限元法对钢管再生混凝土轴压短柱、纯弯构件和压弯构件的荷载-变形关系曲线进行了计算分析。总体上,两种数值方法的计算结果均与试验结果吻合较好。采用纤维模型法对钢管再生混凝土压弯构件的力学指标进行了大规模的参数分析,并提出了钢管再生混凝土轴压短柱、纯弯构件和压弯构件承载力的简化计算公式,公式的计算结果与试验结果均吻合较好,且总体偏于安全。本文的研究成果可为有关工程实践提供参考。

2、钢管混凝土及钢管再生混凝土的基本概念

钢管混凝土即为将混凝土灌注入钢管,形成的具有再生混凝土三向受力结构。钢管混凝土除了具有一般套箍混凝土的强度高、质量轻、塑性好、耐疲劳、耐冲击等优越的力学性能外,还具有以下一些在施工工艺方面的独特优点:

1.钢管本身就是侧压模板,因而浇混凝土时,可省去支模板;

2.钢管本身就是钢筋,兼有纵向钢筋和横向钢筋的功能;

3.钢管本身又是劲性承重骨架,在施工阶段它可起劲性钢骨架的作用。

钢管混凝土也是在高层建筑和大跨度桥梁中应用高强混凝土的一种最有效和最经济的结构形式。其原因有以下几个方面:

1.钢管对核心混凝土的套箍作用,能有效的克服高强混凝土的脆性;

2.钢管内无钢筋骨架,便于浇灌高强混凝土,而且因有钢管分隔,与管外楼盖梁板结构的普通混凝土互不干扰,无交错浇灌的麻烦;

3.钢管外面无混凝土保护层,能充分发挥高强混凝土的承载能力。

钢管再生混凝土即为将再生混凝土灌注入钢管,形成的具有再生混凝土三向受力的钢管混凝土[5]。钢管混凝土利用钢管和混凝土两种材料在受力过程中的相互作用,即钢管对混凝土的约束作用使混凝土处于复杂应力状态之下,从而使混凝土的强度得以提高,塑性和韧性性能大为改善。同时,由于混凝土的存在可以避免或延缓钢管发生局部屈曲,保证其材料性能的充分发挥。

3、钢管混凝土柱的特性

钢管混凝土柱是将混凝土注入封闭的薄壁钢管内形成的钢-混凝土组合构件。钢管混凝土柱可以充分发挥钢管与混凝土两种材料的优势,对混凝土来讲,混凝土受到钢管横向约束而处于三向受压状态,从而使管内混凝土有更高的抗压强度和变形能力。对钢管来讲,由于钢管壁较薄,在受压状态下容易局部或整体失稳而不能充分发挥其强度,填入混凝土后,大大增强了钢管壁的稳定性,使其强度潜力可得到充分利用。因此钢管混凝土柱具有强度高、重量轻、塑性好、耐疲劳、耐冲击等优点[6]。由于钢管能对混凝土提供连续的约束,且钢管具有很大的抗剪和抗扭能力,故可以有效地克服高强混凝土脆性大、延性差的弱点,使高强混凝土的工程应用得以实现,经济效果得以充分发挥。

4、结论:

(1)钢管再生混凝土构件的力学性能和钢管混凝土构件的力学性能有很多相似之处。

(2)再生混凝土在钢管中的应用弥补了再生混凝土结构性能上的不足,使二者都能充分的发挥潜力。同时又有利于环保,在生态方面也有很大的意义。

(3)为再生混凝土在结构上的应用提供了广阔的空间。再生钢管混凝土短柱的研究很有必要,还有许多工作需要进一步展开。

参考文献:

[1] 刘数华,冷发光.再生混凝土技术[M].北京:中国建材工业出版社, 2007

[2] 肖建庄,李佳彬,兰阳.再生混凝土技术研究最新进展与评述.混凝土, 2003(10): 17-20

[3] 吴凤英,杨有福 钢管再生混凝土轴压短柱力学性能初探 福州大学学报(自然科学版),Vol.33 Supp.Oct.2005

[4] 杨有福. 钢管再生混凝土构件荷载-变形关系的理论分析[J].工业建筑,2007,37(12):1-6.

高强混凝土论文第9篇

关键词:混凝土,影响因素,强度,材料,季节

 

混凝土是一种由砂石骨料、水泥、水及其他外加材料混合而形成的非均质的多项复合脆性材料。在现代工程建设中混凝土占有重要地位。混凝土原材料丰富、可模性好、用途广泛、经久耐用,维护费用少,现场施工方便灵活。博士论文,材料。混凝土质量的好坏,对建筑物的安全及造价有很大影响,因此在施工中我们必须对混凝土施工质量的影响因素有足够的重视。

混凝土质量的影响因素:

(1)混凝土质量的主要指标之一是抗压强度,影响混凝土抗压强度的主要因素是水泥强度和水灰比

当水灰比相等时,高标号水泥比低标号水泥配制出的混凝土抗压强度高许多。当水灰比不变时,企图用增加水泥用量来提高温凝土强度是错误的,此时只能增大混凝土和易性,增大混凝土的收缩和变形。因此,我们要:a、设计合理的混凝土配合比。合理的混凝土配合比由实验室通过实验确定,除满足耐久性要求和节约原材料外,还应该具有施工要求的和易性。因此要实验室设计合理的配比,必须提供合格的水泥、砂、石。水泥控制强度,砂控制细度、含水率、含泥量等,石控制含水率及含泥量等。只有材料达到合格要求,才能做出合理的混凝土配合比,才能使施工得以正常合理的进行,达到设计和验收标准。b、严格控制原材料计量。如果不能按照配合比设计、试配和调整过程中得出的施工配合比投料,所生产出的砼就可能达不到设计强度,将危及结构安全,或者在和易性等方面给施工带来不便,也可能造成材料的不必要浪费。混凝土配料应按施工配合比施工,首先要及时测定砂、石含水率,将设计配合比换算为施工配合比。要用重量比,不要用体积比,要严格计量。其允许偏差不得超过下列规定:水泥、矿物掺合物料±2%;砂、石±3%;水、外加剂溶液±2%。博士论文,材料。最后,要及时检查原材料是否与设计用原材料相符。c、加强原材料管理,混凝土材料的变异将影响混凝土强度。水泥进场必须附有水泥厂的出厂合格证或进场试验报告,并应对其品种、强度等级、包装或散装仓号、出厂日期等进行查验。现场入库水泥应按品种、强度等级和出厂日期分别堆放并做好标志。为防止水泥受潮,现场仓库应尽量密闭,屋顶与外墙不得渗漏水。水泥如果受潮结块或过期,在使用前应将块状物筛除,再进行试验鉴定,按实验达到的标号使用。因此收料人员应严把质量关,不允许不合格品进场,另外与原材料不符及时汇报,采取相应措施,以保证混凝土质量。d、进行混凝土强度的测定,我们以28天强度为准,为施工简便和质量保证,我们一般做7天试块,以对混凝土强度根据其龄期测定其发展,以明确确定其质量。

粗骨料对混凝土强度也有一定影响,粗骨料分卵石和碎石两种,碎石大多由天然岩石经破碎、筛分而成,也可将大块卵石轧碎、筛分而成,在相同条件下,碎石表面比卵石表面粗糙,它与水泥砂浆的粘结性比卵石强,在配合比相同时,两种材料配制的混凝土,碎石的混凝土强度比卵石混凝土强度高。细骨料品种砂对混凝土强度也有一定的影响但比比粗骨料小。博士论文,材料。博士论文,材料。因此,砂、石质量必须符合混凝土各标号用砂、石质量标准的要求。

(2)夏、冬季节混凝土的施工

a、在夏季混凝土施工时由于气温过高干燥与大风等这些因素会使混凝土坍落度减小,凝结速度加快、水分迅速蒸发,导致产生塑性收缩裂纹与干缩裂纹、新老混凝土接槎不良、运输困难,最终造成混凝土质量下降、抗渗与耐久性变差。须采取以下措施:采用水化热低的水泥,对砂石拌合水采取降温措施,使用减水缓凝剂。合理组织运输设备与距离,将搅拌至浇筑时间控制在1小时以内,使用手推车、翻斗车运输时,白天要覆盖遮阳,防止曝晒。浇筑时模板、钢筋、旧混凝土基层要洒水湿润、降温;在浇筑过程中要合理分段分层,使新老混凝土间隔时间缩短;避免在阳光直射下浇筑,风大时要设风障挡风。尽量安排在早晚与夜间浇筑;浇筑、振捣混凝土过程尽量迅速紧凑。混凝土浇筑后应立即覆盖塑料薄膜或覆盖草帘子反复洒水保湿;要避免曝晒,风吹或暴雨浇淋,停止养护时要逐渐干燥,以防止裂缝产生。b、冬季施工的混凝土由于外界气温较低,若在温度低于4℃时,混凝土中游离水的体积开始膨胀,而此时新浇混凝土的强度很低,就会在混凝土内部留下孔隙,影响混凝土的最终强度。当温度降至少-4℃以下时,混凝土内部的水结冰,水化反应趋于停止,面水结冰体积膨胀又可能使混凝土胀裂。博士论文,材料。所以应从混凝土原材料、配合比、搅拌、运输、浇筑和养护等环节上采取措施:一般选用水泥水化热大的水泥品种,水泥强度等级不宜低于42.5 Mpa,混凝土用量不宜少于300kg/m3,水灰比不应大于0.6,并应加入早强剂以提高早期强度,加入减水剂以减少用水量;拌制混凝土采用的集料必须清洁,不得含有冰碴雪块以及其他易冻裂物质;添加防冻剂;混凝土搅拌场地应尽量靠近施工地点,以减少材料运输过程中的热量损失,同时也应正确选择运输用的容器;混凝土浇筑前,应清除模板和钢筋上,特别是新老混凝土(如梁,柱交接处)交接处的冰雪及垃圾;养护时采用草袋、麻袋来进行保温,且保持干燥;在模板外部保温时,除基础可随浇筑随保温外,其它结构必须在设置保温材料后方可浇筑混凝土.钢模表面可先挂草帘,麻袋等保温材料并扎牢,然后再浇筑混凝土. 保温材料不宜直接覆盖在刚浇筑完毕的混凝土层上,可先覆盖塑料薄膜,上部再覆草袋,麻袋等保温材料;拆模后的混凝土也应及时覆盖保温材料,以防混凝土表面温度的骤降而产生裂缝。博士论文,材料。

综上所述,为了保证混凝土的质量,施工中必须严格遵守相关的材料检验与施工操作规范规程,我们应从各个方面控制混凝土质量,以确保整个工程质量,以保证企业信誉和发展。

相关文章
友情链接