欢迎来到易发表网,发表咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

纳米医学论文优选九篇

时间:2023-03-16 16:36:52

纳米医学论文

纳米医学论文第1篇

1.1药物载体

许多药物都有细胞毒性,在杀死病毒细胞的同时,也会对正常细胞造成损伤。因而,理想的药物载体不仅应有较好的生物相容性、较高的载药率,还应具有靶向性,即到达目标病灶部位才释放药物分子。无机纳米材料的大小和表面的电荷等理化性质决定了纳米材料的性能,研究这些可控特性可应用在生物医学领域中。例如,用多孔硅作为药物载体递送柔红霉素,治疗视网膜疾病持续时间从几天延长到3个月。通过调控将纳米粒子孔径从15nm变为95nm,使柔红霉素的释放率增大了63倍,从而调控药物的释放。用介孔二氧化硅纳米粒子运载化疗药物、探针分子向肿瘤细胞进行递送,可用于癌症等疾病的靶向性治疗和早期诊断。介孔二氧化硅在药物传输、靶向给药、基因转染、组织工程、细胞示踪、蛋白质固定与分离等方面有广泛的应用。碳纳米管及其衍生材料可开发用于电敏感的透皮药物释放,又可作药物载体进行持续性释放。比如,用超支化聚合物修饰碳纳米管,可以从复合物的羟基末端聚集活性基团,从而增强溶解性能,作为抗癌的药物载体,也可以用作药物缓释载体。用聚乙烯亚胺修饰多壁碳纳米管,分散性好,能降低对细胞的毒性,进一步结合在壳聚糖/甘油磷酸盐上,能增加凝胶的机械强度。同时,改变溶液的pH值、温度等来构建具有双缓释功能的温敏性凝胶,能减少凝胶的突释现象。纳米钻石(dND)装载化疗药物具有较低的毒性和较高的生物兼容性。将叶酸等靶向分子修饰纳米钻石表面,用于装载抗癌药物,以H2N-PEG-NH2作为桥梁分子,形成纳米靶向载药系统,对C6细胞具有靶向作用,为研制肿瘤靶向治疗提供了参考依据。为了避免被单核细胞、巨噬细胞系统等非特异性吸收,并让药物优先进入肿瘤细胞,用超支化缩水甘油(PG)修饰纳米钻石得到dND-PG,有较好的生物相容性,能避免被正常细胞的巨噬细胞非特异性摄取。加载抗癌药物阿霉素显示出对肿瘤细胞具有选择性的毒性作用,可作为肿瘤药物载体,对肿瘤细胞进行选择性给药。将药物分子插入LDHs的层间形成药物-LDHs的纳米杂化物,药物与LDHs层间的相互作用以及空间位阻效应能有效地控制药物释放,减少药物发生酶解作用。LDHs表面存在大量的羟基,便于进行表面功能化修饰,增强靶向性,避免被巨噬细胞吞噬而从人体内清除,提高药物的输送效率。LDHs适合装载不同类型的药物,将药物插入到LDHs的层间结构,药物以阴离子形式装载并被控释。通过共沉淀法在LDHs层间成功地嵌入维生素C,维生素C的阴离子垂直插于LDHs层间,热稳定性显著增强。通过离子交换反应来释放维生素C,延长释放时间。

1.2蛋白质载体

纳米材料在诊断、药物输送、生物功能材料、生物传感器等方面得到了迅猛的发展,出现了疾病治疗、诊断、造影成像等多种功能的组合。无机纳米材料在生物大分子药物的载体,包括运载蛋白质、多肽、DNA和siRNA等方面的研究较多。纳米多孔硅有较好的生物相容性、生物可降解性和可调控的纳米粒径,可作为药物输送系统。壳聚糖修饰多孔硅后可用于运载口服给药的胰岛素,改善胰岛素的跨细胞渗透,增加与肠道细胞黏液层的表面接触,提高细胞的摄入,可用于口服递送蛋白质和多肽。纳米羟基磷灰石与蛋白质分子有高亲和性,可用作蛋白质药物缓释载体,能提供钙离子,造成肿瘤细胞过度摄入,从而抑制肿瘤细胞活性,诱导肿瘤细胞凋亡。

1.3基因载体

基因治疗是遗传性疾病的临床治疗策略,主要依赖于发展多样性的载体。无机纳米材料用于基因疗法是利用无机粒子和可生物降解的多聚阳离子合成新型的纳米药物载体,如介孔二氧化硅作为基因载体可用于肿瘤治疗,促进体外siRNA的递送。乙醛修饰的胱氨酸具有自身荧光的特点,可对pH值和谷胱甘肽进行响应。通过荧光标记类树状大分子的二氧化硅纳米载体具有分级的孔隙,不仅毒性低、基因装载率高,转染率也较高。引发谷胱甘肽二硫键裂解,可促进质粒DNA(pDNA)释放,并能使用自发荧光来实时示踪。又如,通过π-π共轭、静电作用等非共价键作用力结合,能将DNA、RNA等生物大分子和化学药物固定在氧化石墨烯上。

1.4骨移植

临床上可用自体骨移植来治疗创伤、感染、肿瘤等造成的骨缺损,由于骨移植的来源有限,且手术时间长,易导致失血过多和供骨区并发症等,应用受到限制。将异体骨用作骨移植,则存在免疫排斥反应,且易被感染。而人工骨同自体骨有相近的疗效,人工骨材料可采用钛、生物陶瓷、纳米骨、3D模拟人工骨髓等纳米材料。例如,纳米二氧化硅可替代骨组织,促进人工植入材料与肌肉组织融合。纳米羟基磷灰石与人体内的无机成分相似,其粒子有小尺寸效应、量子效应及表面效应等,可用作牙种植体或作为骨骼材料,能避免产生排斥反应,促进血液循环,促进人体骨组织的修复、整合和骨缺损后的治愈。

1.5临床诊断和治疗

磁性氧化铁纳米粒子可作为造影剂用于肿瘤诊断中,对肿瘤分子产生磁共振分子影像或多模态肿瘤分子影像,也可用于循环肿瘤细胞的分离、富集。免疫磁分离法基于磁性杂化材料可导电,在外部磁场下积累,可用于临床热疗。磁热疗以磁流体形式进入肿瘤组织,利用肿瘤细胞与正常细胞之间不同的热敏感度,将外部磁场产生的磁能转化成热能从而杀死肿瘤细胞。磁性纳米粒子还可用于生物传感器中,利用磁现象和纳米粒子从液相中分离并捕获生物分子。用绿色荧光蛋白标记,形成温敏的磁性纳米固相生物传感器,用磁性材料制成固相生物传感器的支架,在磁场作用下,响应更快,表面易于更新,可用于免疫诊断。磁性纳米氧化铁作为临床应用的磁性纳米材料,受到人们的广泛关注。Fe3O4和γ-Fe2O3的特殊磁性质使其在靶向肿瘤药物载体、磁疗、热疗、核磁共振成像、生物分离等生物医学领域中得以应用。用无机纳米材料制作激发荧光探针进行临床诊断,如用介孔二氧化硅制成的细胞荧光成像探针利用量子点良好的光稳定性、较长的荧光寿命和较高的生物相容性,结合介孔二氧化硅可特异性地识别Ramos细胞的特点,并用激光共聚焦显微镜对Ramos细胞进行荧光成像,实现了对肿瘤细胞的早期诊断、检测成像。富勒烯特殊的结构和性质使其可以广泛地应用于光热治疗、辐射化疗、癌症治疗等医学领域,也可作为核磁共振成像的造影剂用于临床诊断。但富勒烯不溶于水,对生物体存在潜在的毒性,限制了其在临床的应用。富勒烯结合含羟基的亲水性分子可改善其溶解性,羟基化富勒烯无明显毒性,可作为抗氧化剂。聚羟基富勒烯利用近红外光激活体内的纳米材料,用光热对肿瘤细胞定位,避免了金纳米粒子、碳纳米管等在体内造成聚积,利用免疫刺激作用来抑制肿瘤细胞的转移、生长,从而减小肿瘤的尺寸,最终造成肿瘤细胞凋亡。因此,改造碳纳米结构,在成像、吸附、药物装载与靶向运输等生物医学工程方面有潜在的应用价值。银纳米粒子杀菌活性远高于银离子,在杀菌抑菌方面得到广泛的应用,可用于外科手术中的伤口愈合、药学、生命科学等生物和临床医学领域。金纳米粒子有较好的生物相容性,功能化的金纳米粒子可用于生物分析、药物检测、临床诊断等生物医药领域,可作为纳米探针检测重金属离子、三聚氰胺等小分子,也可检测DNA、蛋白质等生物大分子,还可以用于对细胞表面和细胞内部的多糖、核酸、多肽等的精确定位。镍纳米粒子固定在海藻酸水凝胶中,通过热敏感粒子与镍磁纳米粒子交联形成囊状结构,组成热磁双敏感的磁性纳米粒子。在交变磁场下缓慢释放水凝胶中的镍纳米粒子,通过远程调控来激发水凝胶中成纤维细胞的凋亡。无机纳米材料的类别不同,在尺寸、形貌上有很大的变动范围,因其核心材料的量子特性,已日益成为涉及临床诊断、成像和治疗的手段,为纳米材料在生物医学上的应用提供更多的可能。

2展望

纳米技术作为新时代的疾病治疗模式,为未来的临床用药提供了新的可能,在生物医学的应用上有很大的前景。目前,癌症治疗主要包括手术、放疗和化疗等手段,而药物剂量增多会造成副作用。纳米粒子可以作为靶向药物载体、成像造影剂、化疗、热疗、磁疗系统,可通过血脑屏障,在治疗神经系统疾病中有很大的潜力,有望成为攻克癌症的新手段。无机纳米材料在药物载体、临床诊断和治疗等方面有广阔的应用前景,但目前的研究大多处于实验阶段。无机纳米材料在生物医学应用中有待解决的问题包括:

(1)提高疾病治疗的针对性、靶向性和可调控性;

(2)使无机纳米材料相对固定在肿瘤细胞表面,不至于扩散到正常组织,从而提高肿瘤部位的有效浓度,减少毒副作用;

(3)纳米材料有潜在的毒性,可降低纳米材料的毒副作用以达到临床应用的标准;

(4)寻找优质材料,优化结构,提高材料的生物相容性、生物安全性,并针对不同的药物溶解性设计特定的载体和功能材料骨架,增加细胞的摄取和利用;

(5)生物合成方法与其他合成方法相结合,无机与有机材料组合成复合材料,组装成集检测与治疗于一体、多靶点的功能材料;

纳米医学论文第2篇

      碳纳米材料是近年来的研究热点,随着人们对碳纳米材料研究的深入,其在生物医学领域的应用也在拓展,本书综述了在碳纳米材料在生物医学中的应用前景、研究进展以及面临的主要挑战。 

第1部分 介绍了碳纳米材料在生物医学中的应用,含第1-11章:1.碳纳米材料在生物医药中的应用前景,基于纳米柱、纳米金刚石以及纳米炸弹的物理化学性质,2.作为药物载体的碳纳米材料;3.功能性碳纳米材料在光热疗法、细胞毒性以及药物传递中的应用;4.具有特殊结构的碳纳米管在生物医药中的应用;5.水溶性的阳离子型富勒烯衍生物的光动力治疗;6.基于碳纳米管场发射X射线的微焦点计算机断层扫描技术在医学成像中的应用;7.义齿基托材料:纳米管/聚合丙烯酸甲酯复合树脂;8.石墨烯在生物医学中的应用;9.仿生石墨烯纳米传感器;10.功能性碳纳米点在生物医学中的应用;11.纳米金刚石材料在生物医学中的应用。第2部分 介绍了纳米科技在生物医药方面的应用:从碳纳米材料到仿生体系,含第12-18章:12.三维碳纳米結构的仿生工程;13.Janus纳米结构在生物医药中的应用;14.蛋白质纳米图案构筑;15.水溶胶粘合剂的仿生设计:从化学到应用,16.利用仿生膜测量脂质双分子层的渗透率;17.用于药物检测的荧光纳米传感器;18.仿生表面细胞工程。 

本书的第一作者Mei Zhang是美国Case Western Reserve University的研究人员,主要从事碳纳米材料方面的研究,在Science等国际顶级期刊发表过多篇论文。本书可作为生物医药工程以及材料科学与工程等相关专业研究人员的参考书。 

王兆刚,博士研究生 

(中国科学院半导体研究所)

纳米医学论文第3篇

关键词:纳米医学;生命伦理

纳米医学具有不可比拟的优越性,但在应用中却会带来诸多问题,只有对这些问题进行具体客观认识,才能使其更好发展。

1、纳米医药给人类健康带来新问题

近年来,随着纳米科技的迅猛发展,各种人造纳米材料已经在医药、化妆品和电子等产品中广泛使用[1]。纳米颗粒的生物安全性现在还是未知数,它对健康的影响也还没有成熟的分析方法,虽然现在人们还不知道纳米粒子进入人体并堆积起来会产生何种影响,但是纳米物质应用的安全性早就被那些对纳米研究持谨慎态度的学者所重视。

1.1纳米颗粒的毒性问题

纳米级别的材料与细胞相比是极微小的,它们具有特殊性能,当小颗粒尺寸进入纳米量级时,其本身和由它构成的纳米固体主要具有4个方面的效应,即小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效应,这些效应可导致异常的吸附能力、化学反应能力、分散与团聚能力等,其特性与大块的材料有明显区别,一些原本无毒或者有毒的颗粒材料粒径达到纳米级时毒性明显增强 [2]。

纳米材料主要通过呼吸系统、皮肤接触、食用和注射及在生产、使用、处置过程中向环境释放等途径向生物体和环境暴露而产生威胁[3]。纳米颗粒通过呼吸系统被生物体吸收。近来多项研究发现,纳米材料可以在动物的呼吸道各段和肺泡内沉积,并且可以致明显的肺泡巨噬细胞(AM)损伤。

1.2纳米医药的不可靠性

伴随纳米科学和纳米技术的发展,作为纳米医学重要组成部分的纳米医药已经开始从实验室走向市场。众所周知,食用和注射难溶性药物的消化道吸收率和药效与药物的粒径呈负相关关系。然而,科学家们发现药物制剂的粒径变小而其毒副作用却得到不同程度的增大。常规药物被纳米颗粒物装载后,急性毒性、骨髓毒性、细胞毒性、心脏毒性和肾毒性明显增强[4]。

纳米药物随着比表面积的增大,药物有效性的增强,随之而来在定点的局部药物释放的同时,毒性也在增强。其次,纳米药物对人健康的风险表现为一种致癌性。实验证明碳的纳米管装载药物会累积在人身体的肺部而引起肿瘤。第三,纳米药物的风险是潜在的、未知的甚至是迟延的,具有“残余风险”。在纳米药物应用过程中,目前科研人员并不清楚其排泄通道,纳米材料在人体中是降解还是沉积也未知。

纳米材料的安全性评估是全球关注的问题,由于纳米医药研究涉及多学科的交叉和贯通,对其安全性的考察需要多个学科综合考察评估,而且不是短时间内能够得出确切论断的。

2 纳米医疗器械的风险

2.1纳米诊疗器件侵犯隐私权

随着纳米器件的微型化,纳米技术在医学、社会治安和国防方面具有广泛的作用,但同时也构成对个人隐私的威胁。“隐私权是自然人有的对其个人的/与公共利益无关的个人信息、私人活动和私有领域进行支配的一种人格权。”[5]通过将纳米设备嵌入对象物(身体或者物件)中,可以监视和跟踪目标,搜集个人信息和行为习惯。而可以储存一个人的全部基因和疾病信息的纳米芯片有可能成为被利用的工具,使个人隐私荡然无存。

纳米医学信息技术会引发关于个人权利的争论,特别是由于纳米材料的微小,肉眼的不可见,可能引发的侵犯个人“隐私权”问题会变得更加突出和新型化。专家预测,未来可能会有多种纳米传感器集成在一起被植入人体,以用来早期检测各种疾病。以纳米遥感器为例,会在主体未知的情况下泄露个人健康数据,挑战人的自。在原子尺度上制作的纳米传感器与传统的传感器相比,尺寸减小、精度更高,应用的领域十分广阔。据资料报道,美国科学家已经利用纳米传感器在实验室环境下实现了对前列腺癌、直肠癌等多种癌症的早期诊断[6]。

保护个人“隐私”与合理地使用个人信息数据密切相关。其反映的实质问题是纳米医学信息技术超越性和利益共同性的表现。这些健康数据会涉及如何使用,谁可以使用,和以什么样的目的使用等一系列相关“隐私”保护的伦理问题。

2.2 纳米智能器官消解人的自我意识

纳米材料具有极强的使能性,能使制作的器件外观更加小巧,性能更加优越,并能减少人体与人工器官的排异性。随着纳米医学的发展,纳米智能器官在临床方面越来越有优势。

在现实中,人对于他人的独立性的承认是有限度的。一个人存在的状态是“这个人”而不是“那个人”,是由外在的相貌和内在的精神气质共同组成的。

一般来说,自我意识是稳定的,尽管可能发生变化,但这种变化是缓慢的,连续渐进的,因而不会导致自我认同的混乱。但是,纳米技术则有可能通过剧烈的方式改变人的身体和意识。置换成纳米人工心脏或者纳米人工大脑的人,他的意识是人的还是机器的?他是人工人还是现实人?没有人类心脏的人,是人还是机器?人和机器的分界线在哪里?到达何种程度变成机器,保持何种程度仍旧是人?这是值得深思的问题。

3 纳米医学带来的生命伦理问题

3.1基因修改和基因优生带来的伦理反思

基因治疗可以分为体细胞基因治疗、生殖细胞基因治疗和增强细胞基因治疗。纳米医学给基因治疗开辟了更为宽广的道路。从伦理角度,纳米医学对基因进行修改,用于治疗目的、治病救人,尚可看作是一种新的医疗方法,不至引起太大争议,但与意识有关的治疗尤其是精神疾病和智力疾病的治疗常常会引发伦理上的争议。治疗后的人与治疗前的人天壤之别,与之相处的周边的人会下意识的感到,过去的那个人死了,而是诞生了一个新的人,那么人们将如何接受这一事实?

基因修改的动机源于基因决定论,基因决定论忽略了人的社会文化特质和精神情感的差异,无论“基因是人”还是“人是基因”都是荒谬的,它使人的整体意义被解构,人被物化再次反应了工具理性和价值理性的决裂。

3.2 延长寿命带来的伦理反思

法国16世纪的思想家蒙田曾经说过“我对随时告别人生,毫不惋惜。这倒不是因为生之艰辛与苦恼所致,而是由于生之本质在于死。”因为有死亡的存在,生的意义才凸显出来。死亡凝视生命的另一种角度,中国古人的“未知死,焉知生”,也是对生死问题的诠释。

纳米医学能够在细胞老化时克隆制造出新细胞,把人的寿命“无限”延长。人类寿命无限眼延长将带来诸多问题:生存空间变得更加拥挤,资源紧张、环境恶化,造成代际不公正,使人类后代平等降生的权利受到侵害等。

3.3人类复制带来的伦理反思

纳米技术不仅可以复制人,而且可以对人进行设计与修改,甚至按人们的意愿设计后代。纳米技术对人进行复制,它不同于克隆技术的基因复制,如果说克隆技术仅仅对生命基因进行复制,那么纳米技术复制人更为彻底,它能够复制原体身上的每一个细胞。那么复制人与原形人是否具有一样的思想和意识?这对人的意识发展、传统伦理道德、社会意识的进一步发展都提出各种疑问。纳米技术能够填平了生物和非生物之间的鸿沟,那人的个性特征、性格品质、社会感情、文化沉淀的社会塑性和复杂的社会关系能够填平吗?纳米复制人与原形人也绝不会具有一样的思想和意识,这种复制人的出现也会受到社会伦理道德的根本制约[7]。就像爱因斯坦说的“用以保证我们科学思想的成果会造福人类,而不致成为祸害,你们埋头于图表和方程时千万不要忘记这一点。”[8]

生命的本来意义,就是其自我生成、自我成长的意义。生命都是“生”出来的,并不是被什么东西“造”出来的。生命是自生、自成、自在的,它不是按照某种外在的目的“被制造”的,更不是被某种外在目的操纵着生存的。这是生命的自然本性。从这个意义上说,生命应是一个广义的“主体”,它的生存由是自己的自然本性决定的。这种“自我决定论”决定人类不应该像制造、操纵无机物那样来制造和操纵生命。生命的这种自然本性,决定生命具有一种神圣的意义。

参考文献

[1] Ermie Hood. Nanotechnology: Think before we leap [J].Environ Health Perspect,2004,112:A740

[2] Zhang Q. Kusaka Y. Zhu X. etal. Comparative toxicity of standard nickel and ultrafine nickel in lung after intratracheal instillation [J].J Occup Health,2003, 45: 23- 30.

[3] 白茹.王雯.金星龙.等.纳米材料生物安全性研究进展[J].环境与健康杂志,2007,24(1):59

[4] 赵春芳.纳米材料的环境风险[J].化学教学,2005(5):42

[5] 杨立新.人身权法论[ M] .2 版.北京:人民法院出版社, 2006 :684 .

[6] 刘 凯.邹德福.廉五洲.等 .纳米遥感器的研究现状与应用[J] .仪表技术与传感器,2008(1):10 -12

纳米医学论文第4篇

1纳米医药发展前景分析

纳米医药是最近才出现的一个多学科交叉的领域。虽然目前已经进入市场的纳米医药产品不多,而且这一高风险高回报的领域还并没有充分确立,但是,利用纳米技术的药释系统、诊断方法和药物研发方法正在使药物的版图发生革命性变化,尤其是靶向特异性药释系统很有可能解决许多医学问题。尽管人们对纳米医药的预测是十分鼓舞人心的,但是纳米医药研发也面临着巨大的挑战,主要包括:①成本高。②在没有相关的安全指南出台前,很难得到公众的信任。③能得到的风险投资相对较少。④人们对纳米材料与活细胞之间关系(如生物相容性问题和纳米材料的毒性)了解较少。⑤大型制药公司不愿意向纳米医药投资。⑥生产缺少质量控制,重复性差等。⑦专利局(如美国专利与商标局)和药物审批部门(如FDA)管理措施混乱和滞后。⑧媒体对纳米材料尤其是纳米医药负面影响(尤其是环境、健康和安全性)的关注。为了在政策上适应并促进纳米医药的发展,各国政府也采取了各种措施,希望解决上述问题。各国专利局都在不断改进对纳米医药相关专利的审查,各国政府管理部门也正在制定纳米药物的相关安全指南,以便适应纳米医药产品的发展需求。下面将对美国纳米医药审查体系进行详细介绍和分析。

2纳米医药专利发展现状

在过去十年中纳米医药领域的研究文献和专利申请都迅速增长。欧洲专利局的一项调查显示,向欧洲专利局提交的纳米医药专利已经由1993年的220件上升到了2903年的2000件。根据欧洲专利局的统计结果,在纳米医药专利申请方面,美国一直处于全球领先的地位,从1993—2003年间,其专利申请约占全球总申请量的54%,随后依次是德国占12%,日本占5%,法国和英国均占3%。我国目前只有清华大学材料系研究的纳米人工骨在美国获得了专利。从全球纳米医药专利申请所涉及的领域来看,药释放系统专利最多,约占全球纳米医药专利申请总数的59%,接下来依次是体外诊断方法、成像技术和生物材料专利,分别占14%,13%,8%,药物、治疗和活性移植物方面的专利相对较少,各占3%左右。无论是研究人员、生意人还是专利从业者都意识到纳米医药专利的重要性,都在努力获得尽可能广泛的纳米高分子材料的专利保护。市场上的纳米医药产品相对缺乏也推动了纳米医药专利工作的发展。制药公司认为获得专利是证明自己实力、吸引风险投资的最佳途径。有一些公司认为如果他们不去抢先申请尽可能多的专利,就很可能会因为被别人抢先申请而使自己处于被动地位。同样,研究人员为了提高学术地位也感到申请专利的必要。大多数发明者发现在纳米医药专利出现的早期,PTO对纳米医药专利的管理是比较混乱的,但这正是对有价值的上游技术获得广泛专利保护的绝佳时期。在今后的几十年中,纳米医药将会不断的走向成熟并获得突破性的成果,专利将会给公司带来大量的实施许可费并成为公司交易和合并的杠杆。

3纳米药释系统专利的申请

3.1纳米药释系统专利开发的优势和方法

纳米医药对药释系统已经产生了重大影响,制药公司目前已经意识到药释系统的研究是他们研发过程中必不可少的一部分。根据来自《NanoMar-kets))的一份市场报告的测算,到2012年,纳米技术将使药释系统产生48亿美元的收入。该报告还指出,到2009年全球药释产品和服务市场的收入将超过670亿美元。另外一份来自《NanotechnologyLawBusiness))的市场报告也指出纳米技术能使药释系统市场的销售额从2005年的12.5亿美元增至2010生国堑堑苤查!!塑生塑!!鲞箜!!塑年的52.5亿美元,2015年会增至140亿美元。固体纳米微粒是尺度在1—1000nm的颗粒,能用于药释系统。由于它具有能将各种药物基团运送到身体不同位点,并延长药物作用的性质,因此在药释系统研究中具有重要作用。纳米颗粒的大小和表面性质决定了它在体内的活性。纳米颗粒的物理性质也决定了它在体内能够达到大颗粒所不能达到的地方。另外,粒子大小也影响药物在体内各部位的分布。粒子变小,它的表面积就会呈指数增加,溶解速率和饱和度都大大增加,从而改变在体内的性质。在某些情况下,纳米颗粒药物还能够帮助降低血浆药物浓度峰值,也能防止血浆药物浓度降低至有效治疗浓度之下。目前美国的专利法允许对老药的新剂型申请专利,纳米技术就能够为已经存在的化合物提供新的剂型。这些新剂型能够获得FDA和PTO的批准。只要老药的纳米剂型能够满足专利性的要求,就能申请专利。在美国,创新性的药释系统本身也可以申请专利。创新性的药释系统能够帮助制药公司对已经专利过期或即将过期的化合物设计出新剂型。这种策略能够拖延或打击非专利药对过期专利药的冲击,尤其是当改进剂型的药物优于原专利药时。实际上,这种策略也延长了原专利药物的生命周期,通常也被称为“常绿化”策略。

3.2纳米药释系统专利的审批和申请

3.2.1纳米药释系统新药的审批应当指出的是,把已有药物改造为纳米药物通常会导致产生创新性的新化学实体(NCE),因为纳米药物与原药物的药代动力学数据是完全不同,换句话说,就是不具有生物等效性,因此纳米制药公司并不能通过缩短的新药申请(ANDA)来通过FDA的审批。

3.2.2纳米药释系统专利的专利性审查标准我们现在还很难判断,纳米颗粒专利是否也将会面临电子商务和生物技术曾经面临的专利障碍。电子商务与生物技术专利最初是被认为不具有专利性的。无论如何,基于纳米颗粒的药物剂型和其他纳米发明一样,只要满足专利性的要求就可以申请专利。在美国,大小本身并不是专利性的标准,某个装置或方法如果只在大小上发生了改变,并不能使其具有专利性。事实上,法条中已经明确规定:如果仅对某种物质、装置的大小加以限定并不足以使其与现有技术相区别而具有专利性。美国联邦巡回法院(CAFC)也认为:如果权利要求中描述的发明仅大小上与现有技术相区别,而在作用上与现有技术没区别,那么,这项发明就不具有新颖性。也就是说,具有纳米级量纲的物质也必须具有新的功能才具有专利性。此外,产品发明者还必须能够证明他们的发明对于本领域普通技术人员来说,不是显而易见的。

3.2.3纳米药释系统专利申请中的困难——证明具有非显而易见性嵋。对已有药物的新剂型申请专利,最大的困难就是证明该项发明的非显而易见性。FrO常认为,新的药物剂型不过是药物的优化,因此,并不具有可专利性。如果剂型中改变的只不过是成分,并且新增的成分曾经被用在其他的剂型中,产生能够预期的作用,这种观点当然是很有道理的。专利申请者要想说服审查员所申请的剂型不具有显而易见性,就必须证明该剂型具有意想不到的优点或改进。例如,降低毒性、增加生物利用度或改变生物利用度、改变药物稳定性、溶解度或活性。这就需要在专利申请中递交相关的试验数据,其中还包括与申请的剂型最接近的现有技术中的剂型的试验数据。这样,专利申请者就能够证明自己的发明具有创新性。由于纳米微粒药物的现有技术还不是很成熟,纳米微粒的性质也常常是很难预测的,因此证明纳米药物与传统药物相比具有意想不到的优点,从而获得专利授权是相对容易的。然而,随着纳米药物现有技术的不断增加,这种专利申请的趋势终将会改变,也将会有越来越多的有关纳米技术的专利、法律问题显现出来。

4美国纳米医药专利体系存在的问题

4.1纳米技术的定义不准确纳米技术面临的一个问题是专家们对纳米技术的定义见仁见智。纳米技术是个概括性用语,它被用于定义产品、过程和特征,并覆盖了物理、化学和生命科学。美国国家纳米技术计划(NNI)中采用的纳米技术的定义是被引用最广泛的一种定义:“1~100nm尺寸问的物体,其中能有重大应用的独特现象的了解与操纵。”然而,一些专家反对给纳米技术限定如此严格的定义,他们认为应该强调数值范围的连续性而不是纳米到微米的界限。很显然,NNI的定义排除许多微米级的方法和材料,而许多纳米科学家都把微米量纲也纳入了纳米技术的范畴。实际上,许多政府机构都面临如何选用纳米技术的定义的问题。例如,FDA、PTO都采用了小于100nm的定义,也就是NNI的定义。这种定义就带来了许多麻烦,这不仅给纳米专利统计工作带来了困难,同时也给正确评估纳米技术的科学、法律、环生垦堑垫盘查!!塑生笙!!鲞篁!!塑境、管理和伦理学问题带来了麻烦。由于纳米技术需要许多技术的集合,每项技术又都有不同的特征和应用。小于100nm的大小可能对于纳米成像公司来说非常重要,因为量子效应直接依赖于粒子的大小。但是,这种大小的界限对于制药公司可能并不十分重要,因为从成分、剂型和有效性的角度来说,大于100nm的尺度也许才能获得某些理想的性质(如提高生物利用度、降低毒性、减少剂量、增强溶解度等)。有些专家指出,纳米技术并不是什么新的概念,因为许多生物分子都与纳米物质具有相似的大小。例如,肽分子的大小与量子相当(<10nm),一些病毒与用于药释系统的纳米微粒的大小类似(<100nrfl)。因此,大多数分子药物和生物技术都可以纳入到纳米技术的分类中。因此,一些研究者建议纳米技术的定义中对纳米微粒的定义不应仅仅局限于大小本身。欧洲科学基金会对医药领域的纳米技术作出了如下的定义:“采用分子手段和知识用于诊断、预防和治疗疾病,改善人们健康的科学和技术。”这种定义没有局限于分子的大小,而是强调了对纳米材料的可控性操作是否能够带来医疗效果的改进。对于这个问题,也有学者提出,在纳米医药领域,不应该采用NNI的有关大小的限制,而应该把纳米技术应被称为“微型技术”更加合适,这样才能把纳米技术和显微技术都包括在内。

4.2纳米技术的定义不准确导致专利分类产生偏差2004年11月,PTO公布了一个纳米技术的初步分类(被称为第977类),并且还正在不断补充977类下面的小类。2006年,12月,PTO把大约4500项专利申请纳入了第977类中。然而,这个数字实际上只是很粗略的估算,低于实际的纳米技术专利申请数量。这主要是因为FrO借用了NNI的非常狭窄的定义用于专利分类,就导致了专利分类系统产生偏差,尤其是对纳米医药和生物纳米技术有关的发明进行分类时,偏差就更加明显。另外,这种分类标准既不能很好地体现纳米医药发明特有的特征,也很难体现出纳米医药所包含的跨学科特征。PTO利用这种具有明显偏离的分类系统筛选出的几千项专利并没有达到当初建立977分类的目的,而当初的目的是:统计纳米技术领域的专利申请数量和授权数量、方便专利审查员和专利人进行纳米技术专利的检索。

4.3在纳米医药领域的现有技术检索中存在的问题和挑战

4.3.1审查员的检索资源和水平有限在纳米医药领域的检索中也存在着各种各样的问题。例如,一些专家认为PTO缺乏有效检索纳米医药现有技术的自动检索工具。另外,他们的数据库可能存在数据遗漏的问题。虽然,纳米医药专利的申请已经有显著增加,但是大多数的现有技术都被发表在杂志或书中。网站中的信息和公开的专利文献只是作为辅助的信息。而很多非专利文献,专利审查员是很难获得的,一方面是由于PTO并没有订购相关的商业数据库,另外一方面有些审查员在检索方面还不是非常专业。结果,专利审查员很可能会漏掉一些现有技术。这个问题可能并不仅仅是纳米医药专利审查中存在的问题,在其他技术领域的专利审查中也很常见。

4.3.2检索词难以确定由于目前广泛使用的纳米技术的定义常常相互重叠,就使对纳米技术相关专利的检索比其他技术领域的检索更加复杂。不同的检索词可能指的是相同的纳米材料和结构。例如,“nanofibers”、“fibrils”和“nanotubes”都可以代表多层碳纳米管,“singleshellnanocylinders”,“bucky—tubes”,“nanowires”and“nanotubes”都可以代表单层碳纳米管,因此要想精确作出纳米技术的专利地图是非常困难的。

4.3.3有些文献存在“假象”事实上,有些发明者在专利或出版物常常会把自己的发明撰写得十分隐蔽,以使自己潜在的竞争对手不会注意到他们的技术。另一方面,有一些具有商业头脑的发明者或发明的受让人,会把带有纳米的词汇加纳入到他们的专利或出版物中,以便获得较强的市场竞争力。因此,要在现有技术中找到真正的纳米技术,不但需要在检索专利和商业数据库时巧妙地选择关键词和专利分类代码,还要经过纳米技术专家的筛选,才能检索到最全面、最可靠的现有技术。十几年来,许多国家的专利局都面临着接受大量纳米医药相关专利申请的问题,PTO也不例外。随着纳米医药专利申请量的增多,其授权量也在不断猛增。但是由于PTO没能很好地解决审查工作质量低、专利授权量失控性猛涨以及职业道德降低的问题,将会对越来越紧迫的纳米医药的专利问题带来严重影响。归纳起来,PTO目前正面临的问题有:①审查员由于所能接触到的现有技术和检索水平有限,不能保证对每项纳米医药专利申请进行充分审查,做一】556一生垦堑堑苤查!!塑生笪!!鲞箜!!塑出授权决策依据的信息也往往有限。②审查员缺乏。③资金缺乏。④审查员的薪水只与审查数量挂钩,而不考虑审查质量,所以,审查质量低。⑤除了聘请过少数专家开展有关纳米医药讲座外,几乎没有聘请过外部的法律和技术专家。⑥Fro并不要求其审查员具有很高的学历。⑦没有专门针对纳米医药专利审查的培训教程和审查指南。

纳米医学论文第5篇

目前,纳米技术已广泛应用于材料学、电子学等领域,并逐渐向生物医学领域渗透。2000年,杨氏等[1]在通过研究不同粒径(≤100、150、200、500 nm)的矿物中药雄黄和石决明(纳米、微米和常态)对药效的尺寸效应后认为,利用改变中药颗粒的单元尺寸(使其小到一定程度)以改变其物理状态,可以显著改变中药制剂产生的药理效应,并由此首次提出了纳米中药的概念。此后,国内学者开始了纳米技术在中药领域的应用研究,并取得了一些突破性进展,申请了许多有关纳米中药的专利。纳米技术的应用对中药的研究和开发产生了巨大的推动作用。

1 纳米技术应用于中药研究与开发的意义

1.1 有助于对中医药基础理论研究的突破

1.1.1 揭示中药“归经”的实质 中药归经是中药选择性地归属于机体疾病状态的某些脏腑经络的属性,是药物作用的定位概念。传统的归经理论没有阐明归经所依据的经络、脏腑的实质,随着时代的发展,它已经难以继续指导中药新药的研究和开发。中药归经理论的进一步研究应该是全面探讨归经的物质基础,并从分子水平阐明这一理论所涉及的现代生理、生化、药理、病理等问题,揭示归经的实质。目前,中药归经理论实验研究的其中一类思路是观测中药有效成分在体内的分布及作用部位[2]。随着纳米中药粒子或纳米中药微胶囊的发明,可以利用其控释效应,使中药有效成分恒速稳定地作用于动物模型或人体的作用器官或特定靶组织,并较长时间地维持其有效的浓度,从而较好地确定药物主要作用的某些生理系统,揭示中药归经的实质。

1.1.2 进一步完善中药“升降沉浮”理论

中药的“升降沉浮”是指药物作用于人体的趋势。升降沉浮作为用药的基本原则,它与临床治疗有着密切的关系。在临床治疗时,需根据药物升降沉浮的不同特性选用相应的药物。传统理论认为,代赭石、半夏等能引药向下,作用趋势向下;人参、黄芪等能益气升提,作用趋势向上;金银花、细辛等可作升浮药;大黄、黄连等可作沉降药。因此,我们可以将纳米级的这些中药作用于生理器官,跟踪其作用趋向,确定其“升降”或“沉浮”。

1.1.3 揭示“五脏相音”的实质

五脏相音理论认为,五脏相应于不同的声音,五脏脾、肺、肝、心、肾相应于五音宫、商、角、徵、羽,可以根据人们声音的变化,以作为诊断和治疗的依据,提示应当进行何种经络调理和饮食调理,最终达到治未病的目的[3]。2004年,德国Gimzewski教授[4]在《Science》杂志上发表了其研究成果,利用原子力显微镜(atomic force microscope)精确地测知了单细胞细胞壁上的任何振动,并把它们转换为声音,开创了基于纳米水平的细胞声学,也开创了一个新的高科技研究领域——声音与疾病的关系。这与《黄帝内经》中论述的宏观意义上的脏腑声音、辨色听音察体诊断疾病、以声音区分阴阳并进行饮食和经络调理以达到治未病的理论具有惊人的相似之处[5]。因此,纳米技术的应用,将可能揭开中医“五脏相音”理论的神秘面纱,以更好地指导中药新药的研究和开发。

1.2 有助于提高制剂质量和水平,促进中药新产品的开发

1.2.1 改善传统制剂工艺,丰富中药剂型,提高制剂质量和水平

采用传统的水提或醇提的制剂工艺容易破坏中药的生物活性成分及有效成分,而一些与纳米技术相关的制剂技术的应用,如分子包合技术、脂质体技术、固体分散技术、固体脂质纳米粒技术、聚合物纳米粒技术和微乳技术等,不仅可以极大地丰富中药传统的以汤、丸、散、膏、丹为主的剂型,引入高效透皮释放制剂、口服控释片、口服含片、干粉吸入剂、鼻喷雾剂、舌面速溶片以及植入制剂、微乳剂和脂质体等多种新剂型,也将显著地提高中药制剂的质量和水平,如可以极大地提高制剂的混合均匀性、分剂量准确性以及可压性。

1.2.2 增加新功效,促进中药新产品的开发

纳米中药的量子尺寸效应和表面效应将导致其物理化学性质、生物活性及药理性质发生根本的变化,从而赋予传统中药全新的药效,拓展治疗范围[3]。例如,纳米化后的牛黄和灵芝都呈现普通牛黄和普通灵芝不具有的药效。若将纳米中药应用到保健品或化妆品中,将促进中药材保健品、化妆品工业的发展,拓展中药的使用范围。此外,若将纳米中药作病毒诱导物,将可能实现不含抗生素的长效广谱抗菌功效和抗病毒功效,开发出新一代的广谱抗菌药物。总之,纳米技术在中药领域的应用,对加速中药新药的研制与开发具有重要的意义。

1.2.3 促进中药制剂的标准化和国际化,提升中药的市场竞争力

中药的多种新剂型,可以使其使用方法更符合现代医学标准,利于其在国际市场上的推广。将纳米技术引入中药的研究与开发,能在纳米中药的制药技术、药效等诸方面建立一系列具有自主知识产权的专利技术和创新方法,能使中药的质量评价有国际化的标准,从而有助于提升中药的市场竞争力。

1.3 有助于提高中药的生物利用度和疗效

中药一般都含有较多的木质素、纤维、胶质、脂肪、糖类等,用传统方法粉碎往往难以达到细胞破壁,影响了中药材中有效成分的浸出,妨碍了药物在生物体内的吸收。中药粒子的纳米化可以使细胞破壁,大大提高中药有效成分的渗透性或溶解度,提高药物的生物利用度;还可以利用纳米化的中药所具有的缓释功能和靶向给药功能,提高药效。另外,也可以利用中药的纳米包覆技术,改变一些中药制剂的亲水亲油性,提高中药的临床疗效。这将有利于减少用药量,节约有限的中药资源。

2 存在的问题

2.1 与中医“辨证用药”原则相悖

中药复方的药理作用机理较复杂,往往多元反应同时进行。中药从单味药到组合成方,不仅量变,而且质变,中药在不同复方中的功效可能有所不同,这与药物在不同的复方中可能发生不同的化学反应有关。随着纳米技术的应用,中药成分之间的某些物理化学反应将受到控制或发生根本性的变化,使得药物脱离了复杂的化学环境或使化学环境更加复杂,导致中药有效成分和药效的不确定性,并影响药物的稳定性,从而可能改变药物的功效,与中医“辨证用药”的原则相悖。

2.2 与中医药“价廉”的特点相悖

纳米技术在中药制备领域的应用将极大地提高其生产成本,势必会影响到中药的销售价格,使原本以质优价廉取胜的中药因价格因素而难以推广,也会影响到我国具有中国特色的医疗卫生保障体系的建设。

2.3 一些基础性研究工作有待加强

①纳米中药制备的理论与技术研究,包括适合中药制药行业使用的系列超细颗粒装备及配套设备的研制和产业化工作;②纳米中药质量评价和质量控制方法研究,建立纳米中药药理、疗效、病理学和毒理学的理论与系统评价方法;③纳米中药新产品开发的理论和技术研究以及产业化推广工作。

3 结语

纳米技术是21世纪最具发展前景的领域之一,它给中医药的现代化提供了新的思路和方法。随着纳米技术在中药研究与开发领域的一些应用基础研究上获得突破,它必将极大地促进中药现代化的进程。

参考文献

[1] 杨祥良.基于纳米技术的中药基础问题研究[J].华中理工大学学报,2000, 28(12):104-105.

[2] 赵宗江,胡会欣,张新雪.中药归经理论现代化研究[J].北京中医药大学学报,2002,25(1):5-7.

[3] 高也陶,李捷玮,潘慧巍,等.五脏相音——《黄帝内经》失传2000多年的理论和技术的现代研究[J].医学与哲学(人文社会医学版),2006, 27(9):51-53.

[4] Pelling AE, Sehati S, Gralla EB, et al. Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae[J]. Science,

2004,305(5687):1147-1150.

纳米医学论文第6篇

目前,纳米技术已广泛应用于材料学、电子学等领域,并逐渐向生物医学领域渗透。2000年,杨氏等[1]在通过研究不同粒径(≤100、150、200、500 nm)的矿物中药雄黄和石决明(纳米、微米和常态)对药效的尺寸效应后认为,利用改变中药颗粒的单元尺寸(使其小到一定程度)以改变其物理状态,可以显著改变中药制剂产生的药理效应,并由此首次提出了纳米中药的概念。此后,国内学者开始了纳米技术在中药领域的应用研究,并取得了一些突破性进展,申请了许多有关纳米中药的专利。纳米技术的应用对中药的研究和开发产生了巨大的推动作用。

1 纳米技术应用于中药研究与开发的意义

1.1 有助于对中医药基础理论研究的突破

1.1.1 揭示中药“归经”的实质 中药归经是中药选择性地归属于机体疾病状态的某些脏腑经络的属性,是药物作用的定位概念。传统的归经理论没有阐明归经所依据的经络、脏腑的实质,随着时代的发展,它已经难以继续指导中药新药的研究和开发。中药归经理论的进一步研究应该是全面探讨归经的物质基础,并从分子水平阐明这一理论所涉及的现代生理、生化、药理、病理等问题,揭示归经的实质。目前,中药归经理论实验研究的其中一类思路是观测中药有效成分在体内的分布及作用部位[2]。随着纳米中药粒子或纳米中药微胶囊的发明,可以利用其控释效应,使中药有效成分恒速稳定地作用于动物模型或人体的作用器官或特定靶组织,并较长时间地维持其有效的浓度,从而较好地确定药物主要作用的某些生理系统,揭示中药归经的实质。

1.1.2 进一步完善中药“升降沉浮”理论

中药的“升降沉浮”是指药物作用于人体的趋势。升降沉浮作为用药的基本原则,它与临床治疗有着密切的关系。在临床治疗时,需根据药物升降沉浮的不同特性选用相应的药物。传统理论认为,代赭石、半夏等能引药向下,作用趋势向下;人参、黄芪等能益气升提,作用趋势向上;金银花、细辛等可作升浮药;大黄、黄连等可作沉降药。因此,我们可以将纳米级的这些中药作用于生理器官,跟踪其作用趋向,确定其“升降”或“沉浮”。

1.1.3 揭示“五脏相音”的实质

五脏相音理论认为,五脏相应于不同的声音,五脏脾、肺、肝、心、肾相应于五音宫、商、角、徵、羽,可以根据人们声音的变化,以作为诊断和治疗的依据,提示应当进行何种经络调理和饮食调理,最终达到治未病的目的[3]。2004年,德国gimzewski教授[4]在《science》杂志上发表了其研究成果,利用原子力显微镜(atomic force microscope)精确地测知了单细胞细胞壁上的任何振动,并把它们转换为声音,开创了基于纳米水平的细胞声学,也开创了一个新的高科技研究领域——声音与疾病的关系。这与《黄帝内经》中论述的宏观意义上的脏腑声音、辨色听音察体诊断疾病、以声音区分阴阳并进行饮食和经络调理以达到治未病的理论具有惊人的相似之处[5]。因此,纳米技术的应用,将可能揭开中医“五脏相音”理论的神秘面纱,以更好地指导中药新药的研究和开发。

1.2 有助于提高制剂质量和水平,促进中药新产品的开发

1.2.1 改善传统制剂工艺,丰富中药剂型,提高制剂质量和水平

采用传统的水提或醇提的制剂工艺容易破坏中药的生物活性成分及有效成分,而一些与纳米技术相关的制剂技术的应用,如分子包合技术、脂质体技术、固体分散技术、固体脂质纳米粒技术、聚合物纳米粒技术和微乳技术等,不仅可以极大地丰富中药传统的以汤、丸、散、膏、丹为主的剂型,引入高效透皮释放制剂、口服控释片、口服含片、干粉吸入剂、鼻喷雾剂、舌面速溶片以及植入制剂、微乳剂和脂质体等多种新剂型,也将显著地提高中药制剂的质量和水平,如可以极大地提高制剂的混合均匀性、分剂量准确性以及可压性。

1.2.2 增加新功效,促进中药新产品的开发

纳米中药的量子尺寸效应和表面效应将导致其物理化学性质、生物活性及药理性质发生根本的变化,从而赋予传统中药全新的药效,拓展治疗范围[3]。例如,纳米化后的牛黄和灵芝都呈现普通牛黄和普通灵芝不具有的药效。若将纳米中药应用到保健品或化妆品中,将促进中药材保健品、化妆品工业的发展,拓展中药的使用范围。此外,若将纳米中药作病毒诱导物,将可能实现不含抗生素的长效广谱抗菌功效和抗病毒功效,开发出新一代的广谱抗菌药物。总之,纳米技术在中药领域的应用,对加速中药新药的研制与开发具有重要的意义。

1.2.3 促进中药制剂的标准化和国际化,提升中药的市场竞争力

中药的多种新剂型,可以使其使用方法更符合现代医学标准,利于其在国际市场上的推广。将纳米技术引入中药的研究与开发,能在纳米中药的制药技术、药效等诸方面建立一系列具有自主知识产权的专利技术和创新方法,能使中药的质量评价有国际化的标准,从而有助于提升中药的市场竞争力。

1.3 有助于提高中药的生物利用度和疗效

中药一般都含有较多的木质素、纤维、胶质、脂肪、糖类等,用传统方法粉碎往往难以达到细胞破壁,影响了中药材中有效成分的浸出,妨碍了药物在生物体内的吸收。中药粒子的纳米化可以使细胞破壁,大大提高中药有效成分的渗透性或溶解度,提高药物的生物利用度;还可以利用纳米化的中药所具有的缓释功能和靶向给药功能,提高药效。另外,也可以利用中药的纳米包覆技术,改变一些中药制剂的亲水亲油性,提高中药的临床疗效。这将有利于减少用药量,节约有限的中药资源。

2 存在的问题

2.1 与中医“辨证用药”原则相悖

中药复方的药理作用机理较复杂,往往多元反应同时进行。中药从单味药到组合成方,不仅量变,而且质变,中药在不同复方中的功效可能有所不同,这与药物在不同的复方中可能发生不同的化学反应有关。随着纳米技术的应用,中药成分之间的某些物理化学反应将受到控制或发生根本性的变化,使得药物脱离了复杂的化学环境或使化学环境更加复杂,导致中药有效成分和药效的不确定性,并影响药物的稳定性,从而可能改变药物的功效,与中医“辨证用药”的原则相悖。

2.2 与中医药“价廉”的特点相悖

纳米技术在中药制备领域的应用将极大地提高其生产成本,势必会影响到中药的销售价格,使原本以质优价廉取胜的中药因价格因素而难以推广,也会影响到我国具有中国特色的医疗卫生保障体系的建设。

2.3 一些基础性研究工作有待加强

①纳米中药制备的理论与技术研究,包括适合中药制药行业使用的系列超细颗粒装备及配套设备的研制和产业化工作;②纳米中药质量评价和质量控制方法研究,建立纳米中药药理、疗效、病理学和毒理学的理论与系统评价方法;③纳米中药新产品开发的理论和技术研究以及产业化推广工作。

3 结语

纳米技术是21世纪最具发展前景的领域之一,它给中医药的现代化提供了新的思路和方法。随着纳米技术在中药研究与开发领域的一些应用基础研究上获得突破,它必将极大地促进中药现代化的进程。

【参考文献】

[1] 杨祥良.基于纳米技术的中药基础问题研究[j].华中理工大学学报,2000, 28(12):104-105.

[2] 赵宗江,胡会欣,张新雪.中药归经理论现代化研究[j].北京中医药大学学报,2002,25(1):5-7.

[3] 高也陶,李捷玮,潘慧巍,等.五脏相音——《黄帝内经》失传2000多年的理论和技术的现代研究[j].医学与哲学(人文社会医学版),2006, 27(9):51-53.

[4] pelling ae, sehati s, gralla eb, et al. local nanomechanical motion of the cell wall of saccharomyces cerevisiae[j]. science,

纳米医学论文第7篇

论文摘要:目前应用于生物医学中的纳米材料的主要类型有纳米碳材料、纳米高分子材料、纳米复合材料等。纳米材料在生物医学的许多方面都有广泛的应用前景。?

?

1应用于生物医学中的纳米材料的主要类型及其特性?

1.1纳米碳材料?

纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。?

碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的afm探针等)或显示针尖和场发射。纳米碳纤维通常是以过渡金属fe、co、ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873 k~1473 k的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称dlc)是一种具有大量金刚石结构c—c键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。?

1.2纳米高分子材料?

纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1 nm~1000 nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。?

1.3纳米复合材料?

目前,研究和开发无机—无机、有机—无机、有机—有机及生物活性—非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复和移植等许多方面具有广阔的应用前景。国外已制备出纳米zro2增韧的氧化铝复合材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。研究表明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。此外,纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对正常细胞组织丝毫无损,这一研究成果引起国际的关注。北京医科大学等权威机构通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。?

此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。?

2纳米材料在生物医学应用中的前景?

2.1用纳米材料进行细胞分离?

利用纳米复合体性能稳定,一般不与胶体溶液和生物溶液反应的特性进行细胞分离在医疗临床诊断上有广阔的应用前景。20世纪80年代后,人们便将纳米sio2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,使所需要的细胞很快分离出来。目前,生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传感器[5])。伦敦的儿科医院、挪威工科大学和美国喷气推进研究所利用纳米磁性粒子成功地进行了人体骨骼液中癌细胞的分离来治疗病患者[6]。美国科学家正在研究用这种技术在肿瘤早期的血液中检查癌细胞,实现癌症的早期诊断和治疗。?

2.2用纳米材料进行细胞内部染色?

比利时的de mey博士等人利用乙醚的黄磷饱和溶液、抗坏血酸或柠檬酸钠把金从氯化金酸(haucl4)水溶液中还原出来形成金纳米粒子,(粒径的尺寸范围是3 nm~40 nm),将金纳米粒子与预先精制的抗体或单克隆抗体混合,利用不同抗体对细胞和骨骼内组织的敏感程度和亲和力的差异,选择抗体种类,制成多种金纳米粒子—抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10 nm的金粒子在光学显微镜下呈红色),从而给各种组织“贴上”了不同颜色的标签,为提高细胞内组织分辨率提供了各种急需的染色技术。?

2.3纳米材料在医药方面的应用?

2.3.1纳米粒子用作药物载体?

一般来说,血液中红血球的大小为6000 nm~9000 nm,一般细菌的长度为2000 nm~3000 nm[7],引起人体发病的病毒尺寸为80 nm~100 nm,而纳米包覆体尺寸约30 nm[8],细胞尺寸更大,因而可利用纳米微粒制成特殊药物载体或新型抗体进行局部的定向治疗等。专利和文献资料的统计分析表明,作为药物载体的材料主要有金属纳米颗粒、无机非金属纳米颗粒、生物降解性高分子纳米颗粒和生物活性纳米颗粒。?

磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断[9]。生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,如子宫、阴道、口(颊、舌、齿)、上下呼吸道(鼻、肺)、以及眼、耳等[10]。这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。如美国麻省理工学院的科学家已研制成以用生物降解性聚乳酸(pla)制的微芯片为基础,能长时间配选精确剂量药物的药物投送系统,并已被批准用于人体。近年来生物可降解性高分子纳米粒子(nps)在基因治疗中的dna载体以及半衰期较短的大分子药物如蛋白质、多肽、基因等活性物质的口服释放载体方面具有广阔的应用前景。药物纳米载体技术将给恶性肿瘤、糖尿病和老年痴呆症的治疗带来变革。

2.3.2纳米抗菌药及创伤敷料?

ag?+可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。?

2.3.3智能—靶向药物?

在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功[11]。美国密歇根大学正在研制一种仅20 nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁。?

2.4纳米材料用于介入性诊疗?

日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗。

2.5纳米材料在人体组织方面的应用?

纳米材料在生物医学领域的应用相当广泛,除上面所述内容外还有如基因治疗、细胞移植、人造皮肤和血管以及实现人工移植动物器官的可能。?

目前,首次提出纳米医学的科学家之一詹姆斯贝克和他的同事已研制出一种树形分子的多聚物作为dna导入细胞的有效载体,在大鼠实验中已取得初步成效,为基因治疗提供了一种更微观的新思路。?

纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗(疏通脑血管中的血栓,清除心脏脂肪沉积物,吞噬病菌,杀死癌细胞,监视体内的病变等)[12];还可以用来进行人体器官的修复工作,比如作整容手术、从基因中除去有害的dna,或把正常的dna安装在基因中,使机体正常运行或使引起癌症的dna突变发生逆转从而延长人的寿命。将由硅晶片制成的存储器(rom)微型设备植入大脑中,与神经通路相连,可用以治疗帕金森氏症或其他神经性疾病。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,可以用其吞噬病毒,杀死癌细胞。第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。

瑞典正在用多层聚合物和黄金制成医用微型机器人,目前实验已进入能让机器人捡起和移动肉眼看不见的玻璃珠的阶段[13]。?

纳米材料所展示出的优异性能预示着它在生物医学工程领域,尤其在组织工程支架、人工器官材料、介入性诊疗器械、控制释放药物载体、血液净化、生物大分子分离等众多方面具有广泛的和诱人的应用前景。随着纳米技术在医学领域中的应用,临床医疗将变得节奏更快,效率更高,诊断检查更准确,治疗更有效。

参考文献?

[1]philippe p,nang z l ?et al?.science,1999,283:1513?

[2]孙晓丽等.材料科学与工艺,2002,(4):436-441?

[3]赖高惠编译.化工新型材料,2002,(5):40?

[4]苗宗宁等.实用临床医药杂志,2003,(3):212-214?

[5]崔大祥等.中国科学学院院刊,2003,(1):20-24?

[6]顾宁,付德刚等.纳米技术与应用.北京:人民邮电出版社,2002:131-133?

[7]胥保华等.生物医学工程学杂志,2004,(2):333-336?

[8]张立德,牟季美.纳米材料和结构.北京:科学出版社,2001:510?

[9]刘新云.安徽化工,2002,(5):27-29?

[10]姚康德,成国祥.智能材料.北京:化学工业出版社,2002:71?

[11]李沐纯等.中国现代医学杂志,2003,13:140-141?

纳米医学论文第8篇

引言

随着皮肤抗衰老和医学美容等学科的发展和科技进步,各种不同类型的系列皮肤抗衰老制剂和美容化妆品层出不穷;特别是分子生物学理论和基因工程技术及临床医学等学科领域的交叉和相互渗透,使人们不但认识到皮肤衰老表现和发生机制、皮肤衰老疾病过程中相关基因或蛋白组的参与调控、干预或表达缺陷等,也逐渐认识到皮肤老化的发生和发展是一个多因素、多步骤、多元化、多反应和多代谢参与的复杂过程,使得包括基因治疗、干细胞疗法、纳米技术及细胞生长因子、活性肽、生物酶及蛋白质等生物制剂及基因工程技术和分子医学疗法在当今皮肤抗衰老和医学美容领域中开始广泛应用和流行,并成为人类社会关注的焦点和研究的重点。

然而,由于皮肤美容和抗衰老制剂中的某些功效成分、生物活性物质、天然或合成药物、活性多肽分子及功能性蛋白等,具有特殊的分子结构、理化性质、作用特点、代谢反应、生理状态、细胞信号传导及半衰期等,加上人体皮肤独特的解剖学结构和生理功能及转运、吸收通道等诸多因素的影响,大多数抗衰老生物活性物质、天然药物或功效成分等难以通过皮肤外用的自然扩散、穿过、渗透、吸收等途径进入皮肤及皮下组织,从而严重影响或明显削弱了这些天然药物或功效成分应发挥的皮肤抗衰老生物学作用和生理学功能及临床应用效果。特别是由于某些皮肤抗衰老或美容的功效成分是高度亲水的大分子物质,在生理条件下带有较强的负电性,因此难以穿透皮肤屏障进入皮肤细胞。即使有些类脂结构具有皮肤抗衰老或美容作用的小分子天然药物或功效成分部分进入到皮肤组织,但由于未经合适的缓释/控释系统调控,导致某些成分在机体内很容易被酶解、水解和降解,作用半衰期明显缩短,导致其分子结构和理化性质的不稳定性增加,从而使其生物利用度和生理学效应受到一定影响甚至破坏。

要提高外用途径的皮肤美容和抗衰老作用和效果,不仅要选择合适的、确实具有皮肤美容和抗衰老效果的外源性功效成分,并确定能有效接受外源性皮肤美容和抗衰老功效成分作用的皮肤细胞和组织;而且,外源性皮肤抗衰老功效成分经皮传递系统的选择和应用至关重要。只有将这些具有皮肤抗衰老和美容效用的功效成分经皮传递系统以恒定的透皮速度通过皮肤表皮层进入真皮层和皮下组织,甚至进入人体循环,才能产生皮肤、局部组织及全身良好的皮肤抗衰老作用及缓释控释效果,最大限度地延长皮肤抗衰老和美容功效成分或天然药物或生物活性物质在体内的存在时间,使皮肤抗衰老和美容效果更有效、持久、安全。

一、透皮药物传递系统

一直以来,透皮药物传递系统曾指药物通过皮肤渗透而产生全身或局部治疗作用的可粘贴在皮肤表面的薄片状制剂,其基本类型有膜控释型、骨架扩散型、胶粘分散型、微贮库型四种。然而,随着基因工程技术的发展,这种粘贴在皮肤表面的透皮药物传递系统逐渐被一些更新型的载体系统或有机或无机包合物或结合物所取代或补充,并在皮肤表面应用发挥着越来越大的优势,因此,广义透皮药物传递系统具有更加重要的意义。

从基因治疗的角度讲,目前常见的透皮药物传递载体系统中的载体主要分为两大类:病毒和非病毒载体。前者主要用于基因治疗,它能将需要的遗传信息(目的基因)传递到特定的靶细胞以指导其合成特定的蛋白,修正遗传过程中故障基因的影响,用于治疗癌症等重大疾病,也可以通过编码特定抗原成分的基因表达,以疫苗的形式来预防疾病。因为,单纯目的裸基因通常很难进入到靶细胞进行表达,而基因传递系统需要将治疗基因运送到靶细胞以实现基因表达并达到治疗目的。因为病毒载体具有特定的噬细胞性,其基因转导效率较高,因此依然是目前研究和应用最多和最有效的基因传递系统。

但是,病毒载体的基因治疗面临着严峻的生物安全问题,非病毒载体的应用仍然被认为是更安全的TDDS,特别是在一些非基因治疗的应用性产品研制方面,非病毒载体的TDDS更受推崇和欢迎,它们主要有:

(1)脂质体:由脂质双分子层膜包封而成的中空球状体,直径约100-1000nm,主要由磷脂组成,生物相容性较好,对所携带的遗传物质或活性成分及天然药物无分子大小限制,可通过渗透、穿透、内吞和融合等作用方式进入细胞。目前应用较多的是阳离子脂质体,其它新型脂质体还有空间脂质体、长循环脂质体、趋化脂质体、阴离子趋化脂质体等,因其组成成分和结构与生物膜和细胞膜极其相似,更易透过皮肤角质层屏障进入皮内。

(2)传递体:也称柔质体,是常规脂质体经改性的类脂聚集体,即在脂质体的磷脂成分中加入不同的辅助剂如胆酸钠等,亦被称为柔性纳米脂质体。

(3)醇质体:是一种能促进生物活性成分或天然药物经皮传递的囊泡载体,它是卵磷脂在高浓度乙醇中形成的脂质囊泡。

(4)药质体:是具有表面活性的药物(或前体药物)在水溶液中组装形成的有序聚集体,结构类似泡囊或胶束等。药质体不仅载药量大,稳定性高,且药物由于本身存在的两亲性而对生物膜具有良好的亲和性和透过性。

(5)囊泡体:由非离子表面活性剂(加或不加胆固醇)组成、体内外性质与脂质体极其相似的类脂质体。它与生物膜结构类似,细胞亲和性和透过性好'可融入细胞,体内易降解,具有缓释作用,可减少给药频率,提高治疗指数,降低药物剂量和毒副作用。

(6)β-环糊精及其衍生物:是以淀粉为原料,在环糊精葡萄糖基转移酶的作用下形成闭合筒状结构,外部是亲水性表面,内部则是一个具有一定尺寸的手性疏水管腔的特殊包合物。

(7)原位凝胶:又称在位凝胶,是高分子材料以溶液或半固体状态给药后,在用药部位对外界刺激发生响应,发生分散状态或构象的可逆转化,形成的半固体或液体制剂。原位凝胶不仅可以直接作为药物的载体,还可作为中药传递系统的载体。

(8)微胶囊:是把分散的固体、液体和气体等物质完全包封在一层致密的膜中而形成微胶囊。固体的微胶囊形状一般与固体相同,液体或气体的微胶囊的形状则大多为球形。微胶囊大小约为

2-200/μm,其囊壁厚度一般为0.5-150μm。

(9)磁微球:磁微球也称磁性纳米微粒,其粒径为1-100nm,它有很强的表面化学活性,易结合生物大分子,使其成为很好的皮肤靶向性载体,且磁微球能在外磁场作用下快速运动与分离,可提高其皮肤应用的靶向性。除此之外,一些天然高分子及其衍生物,如胶原、去端肽胶原、明胶、纤维蛋白、糖胺多糖、壳聚糖、藻酸盐和琼脂糖等,以及合成的高分子及其衍生物,如聚(丙交酯-co.乙交酯)、聚乳酸、聚原酸酯、聚β-氨基酯、聚酸酐、聚氨酯和聚(乙烯-co-醋酸乙烯酯)等均可作为TDDS的载体。前者由于具有优良的生物相容性,并具有与细胞相互作用的能力和体内可降解的性质;后者的优点在于它们易于改性和加工成型,且降解速率可调控。

然而,还有一种透皮药物传递系统被认为不仅适用基因工程制剂和天然药物及生物活性成分,而且在医学美容和皮肤抗衰老及精细化工(化妆品)等领域也有广阔的应用前景和生命力,它就是纳米乳透皮药物传递系统。

二、纳米乳概述

(一)纳米乳的基本特性

纳米乳(NE)以乳滴纳米级的超微粒径著称,通常纳米乳粒径大约在10―100nm之间。纳米乳有空白纳米乳和载药纳米乳两大类,如按照给药途径又可分为外用纳米乳、口服纳米乳和注射纳米乳。空白纳米乳由油相、水相、乳化剂和助乳化剂四个体系组成。纳米乳油相的选择对药物的增溶和微乳单相区的存在至关重要。水相主要与油相一起在表面活性剂的作用下形成弯曲的油水界面膜包裹药物。表面活性剂在纳米乳中的主要作用则是降低油水界面张力、形成牢固的乳化膜、对难溶性药物的增溶作用。助表面活性剂主要是调节表面活性剂的HLB(亲水亲油平衡值)并降低油水界面张力。而载药纳米乳则增加具有功效作用的药物成分。空白纳米乳粒径大约在10―100nm之间;而载药纳米乳则是由空白纳米乳加上目的药物或功效成分组成,其粒径大约在150nm左右。通常,纳米乳的外观为透明或半透明的流体,因其乳滴分散在另一种液体中形成胶体分散系统,因此具有一定的乳光。在电镜下观察,纳米乳的乳滴多为圆球形,乳滴分布均匀,大小基本一致,且分散性、流动性、稳定性好,即使经过加热或高压灭菌或离心分离也不会使之分层,属热力学稳定系统。而且,纳米乳和一般乳液具有两个根本不同点:第一,普通乳液的形成一般需要外界提供能量,而纳米乳则是自发形成的;第二,普通乳液是热力学不稳定体系,存放过程中容易发生聚结而最终分为油相和水相,而纳米乳则是热力学稳定体系,存放过程中通常不会发生聚结或分为油相和水相。这种特性由表面活性剂与助表面活性剂作为乳化剂与助乳化剂共同起稳定作用,助表面活性剂通常为短链醇、氨或其它较弱的两性化合物。

(二)纳米乳的形成机制

纳米乳的形成机制错综复杂,目前观点众说纷纭,有增溶理论、双重膜理论、穿流理论、负界面张力学说、几何排列理论、内聚作用能比值理论、热力学理论等。目前较为成熟和公认的纳米乳形成机制有如下几种:其一是表面张力理论。该理论认为,纳米乳在形成过程中,由于乳化剂和助乳化剂的加入,使得油水界面的张力大大降低甚至达到负值,从而使油水界面自动扩大而形成纳米乳。其二是界面扩增理论。即由于纳米乳在形成过程中加入的助乳化剂,能在油相和水相二者之间进行合理分配,促进乳化剂在油水两相的界面之间形成稳定的界面膜,并使油水二相界面扩大而形成纳米乳。其三是胶束理论。即在纳米乳形成体系中,由于在乳化剂的溶液中加入助乳化剂,再加入油相,使胶束逐渐变大,当达到10~100 nm时便形成纳米乳。除此之外,还有学者利用热力学方法计算出纳米乳形成的自由能及其相变条件,但这些理论尚不能完整地解释纳米乳的形成机制。

(三)纳米乳的制备方法

纳米乳制备的正交设计和星点设计效应方法在纳米乳制备过程中被广泛应用。目前制备纳米乳的方法主要分为三类:高能乳化法、低能乳化法和自动乳化法三种。高能乳化法制备纳米乳主要是通过不同形式产生的高能进行纳米乳制备,通常将其分为三种方法,即剪切搅拌法、高压均质机匀浆法和超声乳化法。低能乳化法制备纳米乳则是利用纳米乳中各系统各自的理化性质,使乳滴自然分散自发形成纳米乳,通常分为相变温度乳化法和相转变乳化法。自动乳化法制备纳米乳则需要先制备油相,因为油相对纳米乳的自动乳化和乳剂的物理化学性质具有极为重要的影响,然后将油相和油溶性表面活性剂溶解在可与水混溶的溶剂中进行磁力搅拌,并把油相加入水相;最后与水混溶的溶剂通过减压蒸馏挥干。当有机相和水相的混溶性较好时,自动乳化的速率即可达到最大。

(四)影响纳米乳的类型及影响因素

纳米乳的类型主要有三种,即水包油(O/W)型、油包水(W/O)型和双连续相纳米乳。O/W型是细小的油滴分散在水相中,表面覆盖一层由表面活性剂与助表面活性剂分子构成的单分子膜,分子极性端朝油滴,非极性端朝向连续的水相。W/O型则是细小的水滴分散在油相中,表面覆盖一层由表面活性剂与助表面活性剂分子构成的单分子膜,分子极性端朝水滴,非极性端朝向连续的油相。当油相和水相两者比例适当时,还会形成一种称之为双连续相纳米乳,即任一部分油相在形成液滴被水连续相包围的同时,亦与其它油滴一起组成油连续相,包围介于油相中水滴,由表面活性剂组成的界面不断波动使双连续相纳米乳具有各向同性。

一般认为选择亲水亲油平衡(HLB)值介于3~7的乳化剂可形成W/O型纳米乳,选择亲水亲油平衡(HLB)值介于7~14的乳化剂可形成转相的纳米乳(0/W型或W/O型),选择亲水亲油平衡(HLB)值介于14~20的乳化剂可形成O/W型纳米乳

影响纳米乳形成不同类型的主要因素是油相和水相的体积比及两者的粘度差异和表面活性剂的种类。其中,表面活性剂对纳米乳的形成及性质最为重要,它的分子一般由非极性的、亲油的碳氢链和极性的、亲水的基团两部分构成,具有既亲油又亲水的两亲性质,此种分子具有可在各种界面上定向吸附及在溶液内部形成胶团的重要性质,具有降低界面的表面张力,决定纳米乳的类型,产生界面张力梯度,导致静电和位阻排斥效应等。

(五)纳米乳的鉴定及质量评价指标

目前,有关纳米乳的鉴定及质量评价指标主要有:(1)外观性状:可采用肉眼观察,空白纳米乳多为带有乳光的无色透明或半透明的分散体系,颜色受空白纳米乳体系中原料的颜色影响;而载药(功效成分)纳

米乳多为带有乳光的无色透明或半透明的分散体系,颜色则由所含添加剂(功效成分或药物)的颜色决定;(2)PH值测定:可采用PH3C型酸度计测定;(3)液体粘度:可采用乌式粘度计测定,空白纳米乳粘度较低;(4)电导率:O/W型纳米乳剂的导电性比W/O型纳米乳剂导电性强,可采用电导仪测定;(5)折射率:平行光入射后有丁达尔现象'可采用阿贝折光仪测定;(6)粒径大小:空白纳米乳粒径大小均在10―100nm,载药纳米乳大约在lOOnm左右'可采用激光粒径测定仪测定,或用透射电镜和扫描电镜;(7)电位:采用电泳光散射(ELS)法,取纳米乳适量,室温下置Nicomp380/ZLS激光粒度/动电位分析仪测定动电位分布;(8)颗粒分布:纳米乳分布均匀且分布范围较窄,可采用粒度分布分析测试仪测定;(9)包封率:包封率测定可参考文献,或者用透射电镜、扫描电镜等进行检测;O10)界面张力:纳米乳具有超低界面张力'在油相和水相中加入表面活性剂后,油一水相的界面张力可从50毫牛顿/米(mN/m)左右降至几毫牛顿/米(mN/m)或十几毫牛顿/米(mN/m)。此时,再加助表面活性剂,油一水界面张力甚至降到超低界面张力(10―6~10-7毫牛顿/米);(11)载药(功效成分)量及含量测定:可采用分光光度计,或高效液相色谱仪,或气相色谱仪等仪器测定;(12)稳定性:包括对光稳定性试验,对热稳定性试验及恒温加速试验等。纳米乳通常很稳定,长时间放置亦不分层和破乳;若将纳米乳放在超速离心机中旋转5―10分钟不会分层可采用肉眼观察及分光光度法,离心机分离法等进行;(13)纳米乳类型:利用红色的油溶性染料苏丹红…和蓝色的水溶性染料亚甲兰在纳米乳中扩散的快慢来判断,如果蓝色的扩散速度大于红色,则纳米乳为O/W型,反之则为W/O型,如两者一样快,就是双连续型。同时一些先进的检测设备,如纳米投射电镜、激光粒度测定仪、偏光显微镜、纳米电动色谱仪、冷冻蚀刻电镜等用于纳米制药中,其检测技术,如小角中子衍射(SANS)用于探测油分子向纳米乳表面活性剂界面膜渗透的本质,动态超速离心沉降技术、动态荧光探针、差示扫描量热法(DSC)亦用于纳米乳的研究。

(六)纳米乳的主要特点:

纳米乳透皮传递载体系统具有以下特点:(1)增溶和速溶,提高难溶性药物的溶解度;(2)制备简单,易消毒灭菌处理;(3)物理及热力学稳定性好,具有各相同性的透明液体,可以滤过,易于制备和贮存;(4)包容性强,可同时包容不同脂溶性的药物;(5)提高一些蛋白多肽类药物或功效成分的稳定性;(6)促进大分子水溶性药物在人体内的吸收;(7)提高添加药物或功效成分在体内的利用度;(8)黏度较低,使用舒适;(9)粒径小且均匀,提高包封于其中的药物分散度,促进药物的透皮吸收;(10)对易于水解的药物制成油包水型纳米乳可起到保护作用;(11)具有缓释控释和靶向作用。而且纳米乳作为一种新型经皮传递载体系统在皮肤抗衰老和美容化妆品中应用,具有科学、新颖、先进、实用等高新技术产品的特点。与一般乳剂相比,纳米乳通常只需要在室温条件下制备,这更加有利于生物活性物质和功效成分及天然药物保持其特有的生物学效应和生理学功能;与脂质体等其它靶向药物传递系统相比,纳米乳的乳滴粒径更加微小、细腻、均匀;理化性质更加温和、稳定、适合;使用更加舒适、安全、有效;制备更易工业化、产业化、环保化。而且,纳米乳由于乳滴粒径小,其经皮渗透吸收作用更快,并能促进功效成分增溶和速溶,维持功效成分生物特性稳定,减少功效成分用量,延长功效成分在皮肤表面停留时间,具有被动靶向及缓释控释作用,且能提高功效成分的生物利用度,减少使用副作用,安全性相对提高,实际效果更明显,远期或近期效果也应更好。

由此可见,纳米乳作为良好新型的经皮传递被动靶向载体系统,在皮肤抗衰老和美容化妆品等方面的应用已展现出广阔的应用前景和强大的生命力。而选用纳米乳经皮传递系统作为皮肤抗衰老和美容功效成分或生物活’性物质或天然药物的微分子载体进行全系列新型皮肤抗衰老美容功效纳米乳的研制,也就成为我们研究团队的方向之一。(待续)

作者简介

丁克祥,男,1958年出生,中华人民共和国国务院政府特殊津贴专家,国家授予的“部级有突出贡献中青年科技专家”,团中央、全国青联授予的“首届中国青年科学家科技创业奖获得者”,美国Baylor college of medicine细胞和基因治疗中心博士后,南方医科大学(原中国人民第一军医大学科研部)教授,中国海军抗衰老研究中心首任主任(海军大校军衔、副军职待遇),中山大学医学部(原中山医科大学)研究生导师,博士导师梯队成员。在国内外多家专业机构和学术刊物担任重要职务。

纳米医学论文第9篇

1.1纳米碳材料

纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。

碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的AFM探针等)或显示针尖和场发射。纳米碳纤维通常是以过渡金属Fe、Co、Ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873K~1473K的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称DLC)是一种具有大量金刚石结构C—C键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。

1.2纳米高分子材料

纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1nm~1000nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。

1.3纳米复合材料

目前,研究和开发无机—无机、有机—无机、有机—有机及生物活性—非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复和移植等许多方面具有广阔的应用前景。国外已制备出纳米ZrO2增韧的氧化铝复合材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。研究表明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。此外,纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对正常细胞组织丝毫无损,这一研究成果引起国际的关注。北京医科大学等权威机构通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。

此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。

2纳米材料在生物医学应用中的前景

2.1用纳米材料进行细胞分离

利用纳米复合体性能稳定,一般不与胶体溶液和生物溶液反应的特性进行细胞分离在医疗临床诊断上有广阔的应用前景。20世纪80年代后,人们便将纳米SiO2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,使所需要的细胞很快分离出来。目前,生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传感器[5])。伦敦的儿科医院、挪威工科大学和美国喷气推进研究所利用纳米磁性粒子成功地进行了人体骨骼液中癌细胞的分离来治疗病患者[6]。美国科学家正在研究用这种技术在肿瘤早期的血液中检查癌细胞,实现癌症的早期诊断和治疗。

2.2用纳米材料进行细胞内部染色

比利时的DeMey博士等人利用乙醚的黄磷饱和溶液、抗坏血酸或柠檬酸钠把金从氯化金酸(HAuCl4)水溶液中还原出来形成金纳米粒子,(粒径的尺寸范围是3nm~40nm),将金纳米粒子与预先精制的抗体或单克隆抗体混合,利用不同抗体对细胞和骨骼内组织的敏感程度和亲和力的差异,选择抗体种类,制成多种金纳米粒子—抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10nm的金粒子在光学显微镜下呈红色),从而给各种组织“贴上”了不同颜色的标签,为提高细胞内组织分辨率提供了各种急需的染色技术。

2.3纳米材料在医药方面的应用

2.3.1纳米粒子用作药物载体

一般来说,血液中红血球的大小为6000nm~9000nm,一般细菌的长度为2000nm~3000nm[7],引起人体发病的病毒尺寸为80nm~100nm,而纳米包覆体尺寸约30nm[8],细胞尺寸更大,因而可利用纳米微粒制成特殊药物载体或新型抗体进行局部的定向治疗等。专利和文献资料的统计分析表明,作为药物载体的材料主要有金属纳米颗粒、无机非金属纳米颗粒、生物降解性高分子纳米颗粒和生物活性纳米颗粒。

磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断[9]。生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,如子宫、阴道、口(颊、舌、齿)、上下呼吸道(鼻、肺)、以及眼、耳等[10]。这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。如美国麻省理工学院的科学家已研制成以用生物降解性聚乳酸(PLA)制的微芯片为基础,能长时间配选精确剂量药物的药物投送系统,并已被批准用于人体。近年来生物可降解性高分子纳米粒子(NPs)在基因治疗中的DNA载体以及半衰期较短的大分子药物如蛋白质、多肽、基因等活性物质的口服释放载体方面具有广阔的应用前景。药物纳米载体技术将给恶性肿瘤、糖尿病和老年痴呆症的治疗带来变革。

2.3.2纳米抗菌药及创伤敷料

Ag+可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。

2.3.3智能—靶向药物

在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功[11]。美国密歇根大学正在研制一种仅20nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁。

2.4纳米材料用于介入性诊疗

日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗。

2.5纳米材料在人体组织方面的应用

纳米材料在生物医学领域的应用相当广泛,除上面所述内容外还有如基因治疗、细胞移植、人造皮肤和血管以及实现人工移植动物器官的可能。

目前,首次提出纳米医学的科学家之一詹姆斯贝克和他的同事已研制出一种树形分子的多聚物作为DNA导入细胞的有效载体,在大鼠实验中已取得初步成效,为基因治疗提供了一种更微观的新思路。

纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗(疏通脑血管中的血栓,清除心脏脂肪沉积物,吞噬病菌,杀死癌细胞,监视体内的病变等)[12];还可以用来进行人体器官的修复工作,比如作整容手术、从基因中除去有害的DNA,或把正常的DNA安装在基因中,使机体正常运行或使引起癌症的DNA突变发生逆转从而延长人的寿命。将由硅晶片制成的存储器(ROM)微型设备植入大脑中,与神经通路相连,可用以治疗帕金森氏症或其他神经性疾病。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,可以用其吞噬病毒,杀死癌细胞。第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。

瑞典正在用多层聚合物和黄金制成医用微型机器人,目前实验已进入能让机器人捡起和移动肉眼看不见的玻璃珠的阶段[13]。

纳米材料所展示出的优异性能预示着它在生物医学工程领域,尤其在组织工程支架、人工器官材料、介入性诊疗器械、控制释放药物载体、血液净化、生物大分子分离等众多方面具有广泛的和诱人的应用前景。随着纳米技术在医学领域中的应用,临床医疗将变得节奏更快,效率更高,诊断检查更准确,治疗更有效。

论文关键词:纳米材料生物医学应用