欢迎来到易发表网,发表咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

电磁波课程论文优选九篇

时间:2023-03-16 16:34:36

电磁波课程论文

电磁波课程论文第1篇

关键词 电磁场与电磁波 电磁学 区别 教学衔接

中图分类号:G648.2 文献标识码:A 文章编号:1002-7661(2016)15-0004-02

一、引言

“大学物理”是我国高等院校理工科类非物理专业的必修基础课,其主要目的是为后续的专业课学习打下基础。“电磁场与电磁波” 是高等院校电子类和通信类专业的重要专业基础课程,主要学习电磁场与电磁波的基本属性、运动规律及相应工程应用等内容,但前期基础就是“大学物理.电磁学”(后简称“电磁学”)的核心内容,但在知识内容的深度、广度及实用性方面都有加深和拓展,同时也存在内容重叠的部分。为了避免“电磁场与电磁波”在教学过程中与“电磁学”中知识内容的重复,让学生更好地学好“电磁场与电磁波”课程的核心内容,应分析 “电磁学”与“电磁场与电磁波”的区别,并规划好二者的教学衔接问题,提高教学效率,保证教学质量。

二、教学衔接问题

“电磁场与电磁波”与“电磁学”这两门课程从内容上来看都会涉及到电磁运动基本理论和电磁波相关理论,从研究的对象来看,本质区别不大。但是由于它们在教学目标上的区别,导致教学内容上也存在很大的差异,因此我们应在教学方法、教学重点和教学思路上区别对待,并做好教学衔接,提高教学效率,改善教学效果。

1.教学目标的衔接。“电磁学”课程一般在大学一年级开设,其作为一门通识性基础课程,主要对电场、磁场、电磁波的基本概念、基本规律和基本方法进行学习和理解,为学生以后专业课程的学习打下坚实的基础。“电磁场与电磁波”是工科类高校电子工程、信息工程、通信工程等专业学生的必修课程,是信息技术的理论基础,是电子信息大类专业学生的基础知识部分。在课程定位上,其作为专业基础课,将为后续“微波技术”“射频通信电路”“电信传输理论”等专业课的学习奠定基础。因此,相对于“电磁学”这门公共基础课而言,其教学目标不同。通过该课程的学习,让学生建立电磁场的概念,认识电磁场的物质性,掌握电磁场运动的基本规律,理解麦克斯韦方程的表达形式及其物理意义,并让学生掌握一些典型电磁场问题的数学建模与求解,使学生能够用“场”的观点去思考、分析和计算一些简单的电磁场基本问题。这将对学生的数学功底、逻辑推理、理性思维能力有一定的拓展。可以说,两门课程在教学目标上是一个由低到高的层次递进关系。

2.教学内容的衔接。从教学内容上看,“电磁学”课程介绍了静电场的基本性质、稳恒磁场的基本规律、电磁感应的基本规律,并简单地引出麦克斯韦方程组,至于时变电磁场、平面电磁波、传输线、波导、天线等问题均未涉及。故它只是从“静态”的观点对电磁场的基本问题进行讲解,使学生从整体上对电磁场有一个初步认识。而“电磁场与电磁波”作为电子信息大类专业不可或缺的专业基础课,内容丰富的同时,难度也有所增加。它包括“电磁场”与“电磁波”两大部分的核心内容。“电磁场”部分是在“电磁学”课程的基础上,运用矢量分析描述静电场、恒定电流场和静磁场的基本物理概念,在总结基本实验定律的基础上给出时变电磁场的基本规律,引出边界条件,学习静电场问题的求解方法,如镜像法、分离变量法等。“电磁波”部分主要介绍电磁波在真空和介质中的传播规律以及天线的基本理论。具体内容包括平面电磁波、传输线理论、导行电磁波以及电磁波辐射等部分。即这部分内容主要从“动态”角度描述和分析电磁波。可见,在教学内容上,“电磁场与电磁波”课程相对于“电磁学”课程不是简单的重复,而是知识体系的递进关系。

3.教学方法的衔接。“电磁学”课程的知识相对简单,很多概念和规律都是在实验基础上,通过学生的感性认识后抽象出物理模型而建立起来的。而“电磁场与电磁波”课程却侧重于利用矢量分析和场论等数学工具,对物理模型所满足的物理规律进行严格的理论推导,得出合理的结论,形成完整的理论知识体系。因此,在教学中我们应该有意识地引导学生从“形象思维”向“抽象思维”转变与过渡,引导他们通过理性的思考、严密的分析、逻辑的推理来学习和理解电磁波传播的内在规律。在理论学习的同时,辅助以一些仿真(HFSS、CST、MATLAB等)和演示验证性实验,加强对电磁波现象和规律的理解。这样才能在教学方法上对两门课程进行良好的衔接,改善教学效果。

三、结语

本文从教学目标、教学内容、教学方法上分析“电磁场与电磁波”与“电磁学”两门课程的区别,找出它们之间的切入点,在教学过程中对两门课程进行良好的衔接、承前启后,使学生在知识上自然过渡,树立学习的信心,提高“电磁场与电磁波”课程的教学效率, 保证课程的教学质量,具有一定的参考价值。

参考文献:

[1]许琰,杨爽. 对大学物理教学改革的探索[J]. 教育教学论坛,2014,(1):49-51.

[2]林相波,刘军民.“电磁场与电磁波”课程教学中的几点思考[J]. 电气电子教学学报. 2009,31(2):95-97.

电磁波课程论文第2篇

关键词:电磁场;电磁波;教学改革;仿真教学

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)15-0167-02

“电磁场与电磁波”课程是电子信息科学与技术专业和通信工程专业本科生必修的一门重要的专业核心基础课。该门课程的理论性很强,概念抽象,特别是电磁波部分的对学生的数学知识及其应用能力要求很高,所以“教”与“学”的难度很大,借助软件编程是行之有效的方法。

MATLAB科学计算软件因其编程高效、可视化好、交互性强、仿真逼真等优点,在大学教育和科学研究中的应用也日益广泛。我们在“电磁场与电磁波”课程建设中,在教学方法和手段上借助MATLAB软件进行了一些的改革与建设,取得了良好的效果。本文通过电磁波极化特性的实例介绍了MATLAB在电磁场与电磁波教学中的应用。

一、电磁波的极化特性

电场强度方向随时间变化的规律称为电磁波的极化特性。平面电磁波极化分为线极化、圆极化和椭圆极化。两个相互正交的、频率相同、振幅不同、相位相同的线极化平面波,可以合成线极化平面波。

三、仿真结果

运行以上代码,可以得到在不同时间点上,电场矢量的端点合成运动轨迹,线极化、圆极化和椭圆极化分别如图1、图2和图3所示。图4为传播方向为x轴的左旋圆极化波,表示空间各点电场在不同时刻时的运动轨迹。

四、结论

通过以上电磁波极化特性实例的仿真,展示了MALTAB科学计算软件在电磁场与电磁波课程仿真教学中的应用,仿真效果表明MATLAB可以展现数学公式的物理图像,对复杂物理过程进行生动的仿真,并以图形和动画方式呈现,使物理过程变得直观、形象、更容易理解,也激发了学生的学习兴趣,提高课堂教学质量,取得了良好的教学效果。值得推广。

参考文献:

[1]杨儒贵.电磁场与电磁波[M].北京:高等教育出版社,2007.

[2]王家礼,朱满座,路宏敏.电磁场与电磁波[M].西安电子科技大学出版社,2003.

[3]肖汉光.《电磁场与电磁波》的课程教学研究与探索[J].教育教学论坛,2013,27(2):49-50.

电磁波课程论文第3篇

关键词:电磁场与微波技术;精品课程;教学实践

作者简介:裘国华(1974-),男,浙江绍兴人,中国计量学院信息工程学院,讲师;李九生(1976-),男,广西桂林人,中国计量学院信息工程学院,教授。(浙江杭州310018)

基金项目:本文系浙江省高等学校精品课程建设项目、中国计量学院校立高教课题资助(编号:HEX200727、HEX200872)的研究成果。

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2012)08-0051-02

“电磁场理论与微波技术”是电子信息工程、通信工程和电子科学与技术类专业的一门重要专业必修课。也是一门学生公认较难学难教的课程,该课程既与前期的高等数学、大学物理学等课程的知识紧密联系,又对目前移动通信、电磁兼容和生物电磁学等前沿学科的学习与认知起着重要作用。[1-2]随着信息技术的快速发展,为满足社会对从事于微波工程、电磁测量技术和无线电技术等领域人才的需求,中国计量学院(以下简称“我校”)始终如一支持该课程的建设,我们对“电磁场理论与微波技术”进行课程改革和教学实践,有效地提高课程的教学质量,改进了教学效果,[3]2009年被评为学校精品课程,在2010年被增选为浙江省精品课程。本文对课程的改革和实践作初步总结。

一、课程建设和教学实践历程简述

我校“电磁场理论与微波技术”课程建设与教学改革实践经历多年,从原先“电磁场理论”和“微波技术与天线”分开授课,然后合并成“电磁场理论、微波技术与天线”课程,发展到目前为“电磁场理论与微波技术”,期间主要经历了三个时期:

2004年以前,课程建设初期。“电磁场理论”和“微波技术与天线”单独设课,两个课程安排在不同学期,理论与实践相隔一个学期,总体教学效果不明显。

2005至2006年,课程建设的起步期。学校根据高校微波专业的电磁场培养目标,决定将原来的“电磁场理论”和“微波技术与天线”合并为“电磁场理论、微波技术与天线”课程,电信、通信和电科三个专业同时开设该课程,并进行教学方法、教学手段的改进,以及教材建设和师资队伍建设。编写了《电磁场理论与微波技术》实验指导书;在校内实行微波实验室“全日制”开放,积极开辟学生第二课堂;制作《电磁场理论与微波技术》课件,改革教学方法与手段,结束了“黑板+粉笔”的单一教学模式,聘请外校知名教授来校讲课和培训新教师,取得了一定的教学效果。

2007年至今,课程的建设改革期。2007年申请了校级教改课题,开展“电磁场理论与微波技术”课程实践和教学探索,并以建设学校重点课程为契机,全面修改课程内容体系。从内容的广度、深度都有了质的改变,强化了电磁场理论的基本原理、基本知识,以及仿真、设计、制作方法和步骤等内容,进行精品课程建设,全面提高教学质量。

二、课程建设和教学实践的主要内容

1.完善教学大纲,调整教学内容

教学大纲是指导课程教学、评价教学质量的主要依据。根据培养计划和课程设置等情况,最近五年对教学大纲进行了三次较大的修改和完善,使学生掌握电磁场和微波的基本结构,建立相关概念间的联系,对本课程理论知识有比较完整的理解,为后续课程的学习打下基础。比如在电磁场理论方面,重点要求重点掌握静电场的梯度和散度、静电场的基本性质、恒定磁场的磁通连续性、磁介质的磁化及矢量磁位和矢量泊松方程、标量磁位和拉普拉斯方程、麦克斯韦方程组的内容及其物理内涵和时变电磁场中的分界面的边界条件等内容;在微波技术方面,掌握传输常数、特性阻抗、反射系数、驻波比等微波传输线的基本概念及其物理意义。掌握不同负载时的传输线的工作状态和传输线的阻抗圆图及其应用,掌握导波系统中的波型、传播常数、相位常数、截止波长、相速、群速等的概念,掌握微波网络分析中常用的参量和双口网络的工作特性参量,对矩形波导的波型及传输特性、TE10及波导壁的电流分布也予以重点要求,掌握各种基本微波元件的结构、原理和使用,使学生能对微波器件等最新技术有更加深入的认识,为学生在将来选修天线等知识时打下良好的基础,对于课程其余知识则要求了解。虽然本课程总学时数有所下降,但是教学大纲仍能在知识更新和课程体系结构等方面保证其合理性。

2.精选教材,突出“化繁为简”理念

根据教学大纲选择合适的教材是教学质量的基本保证。近些年来,我们先采用高等教育出版社1999年出版,谢处方、饶克勤编的《电磁场与电磁波》和西安电子科技大学出版社2001年出版,刘学观、郭辉萍编的21世纪高等学校电子信息类系列教材《微波技术与天线》,由于课本内容太多,公式推导繁琐,影响部分学生学习积极性。然后就改选用西安电子科技大学出版社2002年出版,盛振华编著的《电磁场微波技术与天线》,在与学生的互动过程中,学生反映对矢量分析这部分内容比较困惑,希望能在课本中列出这部分知识。于是又选用机械工业出版社2007年出版,傅文斌主编的《微波技术与天线》为教材,[4-6]该教材属于普通高等教育“十一五”部级规划教材。

由于进行精品课程建设,对教材也提出更高的要求。吸取以往选择教材的经验,现在使用北京邮电大学出版社2010年出版,李媛、李久生编写的《电磁场与微波技术》,与以前教材相比,该教材根据面向21世纪电类技术基础课程教学改革的要求,并考虑到电子类专业的特点,注重对电磁场与微波技术的基本概念、基本规律、基本分析方法的介绍,着重对广大普通学生分析问题、解决问题能力的培养。本书内容由浅入深、重点突出,基本理论推导去繁就简,着眼于应用,方便学生理解,使学生更易于接受课程知识。[7]

3.促进教学科研互动,培养创新能力

教学与科研的相互结合,可促进教学质量提高。任课教师在授课过程中,把自己相关的科学研究项目和研究结果介绍给学生,例如在讲授微波滤波器知识时,介绍如何用微带设计新型微波器件,并用Ansoft HFSS和MathCAD等仿真软件进行设计和分析,画出设计电路原理图,然后再播放相关滤波器件的实际电路图,这样一方面使学生对利用微带设计微波器件等复杂过程和抽象概念有简洁的理解,加深对理论知识的认识,另一方面提高学生对本课程的学习兴趣,为学生今后做相关微波研究和创新设计打下基础,例如利用MATLAB软件进行练习和处理,学生还可以自己动手实践,起到良好的效果。目前太赫兹波的研究利用是近些年比较热门的课题,在车站、奥运会和出入境等安检以及食品质量检测方面具有越来越多的应用前景,鼓励有潜力的学生利用学校太赫兹波实验室进行研究和创新设计,允许学生与老师一道,积极参与发表科研论文和撰写专利,有些学生在攻读硕士研究生时,继续选择与本课程相关的课题作为研究方向,学生的创新能力得到培养。

4.改进实验教学,提高实验效果

根据教学大纲,改革实验内容,重新编写实验指导书,增加综合性和设计性实验。在实验中,教师首先讲解实验要点和注意事项,然后以学生操作为主,教师指导为辅进行实验,对实验结果进行当场验收并进行相关理论知识的提问,以此作为评定学生实验平时成绩的主要依据,有助于学生的实验预习和增强学生的动手积极性,鼓励学生多角度分析实验现象,检验实验数据的可靠性,规范学生实验报告,提高实验效果。实验室还提供高要求的选做实验和开放性实验,利用学院建立的RF-2000系列射频实验基地,鼓励学生自行创新设计,切实体验和探索电磁场和微波技术在工程中的应用,使学生感受理论知识与实际工程的联系,增进对基本概念的认识。

5.重视教学电子资源建设,拓宽课程信息来源

课程组利用学校教学网络设施,建设本课程的教学网站,列出该课程的教学团队情况、教学大纲、教学日历、电子教案、授课录像、实验指导书、实验大纲、思考题、习题及解答和多媒体课件等信息,鼓励学生经常点击浏览。作为随堂答疑的补充,还安排教师负责解答学生提出的疑难问题,解决学生在学习中遇到的困惑,增强学生对学习本课程的自信心,也为学生提供了一个崭新的自学环境,拓宽了本课程信息来源。

6.改革考试方式,促进考核公平公正

本课程的考试方式曾经采用开卷考试,相当一部分学生就以为只要考试时带上书本就能考好,在平时也不认真做作业和复习,实际情况是考得不是很理想。课题组教师决定改变考试方式,采用闭卷考的方式,建立20多套试题库,由于本课程的公式较多,有的公式又较繁琐,就在每套试题后面附上公式,而且公式不按照章节的先后顺序排列,比如有关相速度的公式可能就有;;;;;等公式,需要学生真正了解试题所指物理概念才能找到正确公式。期末考试时由学校教务处随机抽取试题进行考试,任课教师也不清楚具体会考什么题目,使学生打消了以前认为的平时可以不来上课,只要划重点的那节课来了就能考好的投机心理,从而重视平时按时上课,既提高了课堂出勤率,又促使学生自觉加强考前复习,改善了学习效果,促进学生考核更加公平和公正。

7.建设精品课程,提升教学水平

精品课程建设对教学质量的提高起到积极作用,已成为课程建设的重要标志。本课程积极参与精品课程建设,整合课程资源,优化教学内容体系,全面提升课题组的教学水平,在2009年经学校评审成为校级精品课程,2010年被增选为浙江省精品课程,表明该课程建设取得了良好成果,课程的教学水平也得到进一步的提升和认可。

三、结束语

课题组教师经过多年的不懈努力,“电磁场理论与微波技术”课程建设和教学实践取得了初步成效,学生对本课程的学习积极性更加主动,教学效果得到明显改善,在校内外获得了积极评价。当然,还有许多工作需要进一步完善,我们一定会在今后的教学中继续改进。

参考文献:

[1]周雪芳,钱胜,李齐良.“电磁场与电磁波”精品课程建设的探索与实践[J].中国电力教育,2011,(4):68-69.

[2]李丹美,仇润鹤,叶建芳.“电磁场与电磁波”课程教学改革探索[J].实验室研究与探索,2005,(S1):157-159.

[3]姜宇.在“电磁场与电磁波”课程中建立创新理念[J].电气电子教学学报,2009,31(1):95-96.

[4]谢处方,饶克勤.电磁场与电磁波[M].北京:高等教育出版社,1999.

[5]盛振华.电磁场微波技术与天线[M].西安:西安电子科技大学出版社,2002.

电磁波课程论文第4篇

关键词:教学方法;电磁场与电磁波;类比;创新

作者简介:黄麟舒(1975-),女,湖南常德人,海军工程大学电子工程学院,讲师;柳超(1963-),男,湖南岳阳人,海军工程大学电子工程学院,教授。(湖北 武汉 430033)

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)23-0068-02

一、“电磁场与电磁波”课程和类比教学简介

“电磁场与电磁波”课程历来是一门疑难课程。尤其是在教学改革后,这主要有三个方面的原因:课程理论性强,公式繁杂,理论抽象;实验设备不配套,实验设备投入大,院校缺乏开设电磁场与电磁波实验的条件,理论与实践脱节;随着近几年的教学改革,此类课程的课时被大幅压缩,有的学时分配减少约三分之一,教学自由度受到很大限制。该课程被学生视为天书,被列为大学阶段难学的课程前列。为激发学员的学习兴趣,改善“老师讲得津津有味,学生听得昏昏欲睡”的局面,急需对这门课程的教学方法进行改进。经过几年的不懈努力,不断总结完善,将多种教学手段综合运用,积累了一些有利于该课程的教学方法。

类比教学是一种比较教学,对象是几种不同的教学内容,它们必须有先后,是用已学的课程知识来导入新课知识,使学生学习起来有参照,易于接受。在“电磁场与电磁波”课程中引入类比的教学策略,不但可以提高教学效率,从教学效果看,学员也相对容易接受新知识。但教师在教学中处理教学内容时,需要注意简繁有度、重点突出,调动学生的联想记忆、想象力等能力,通过类比方法掌握新知识点。

二、类比教学方法的实施

“电磁场与电磁波”课程的类比教学方法有几种实施策略。有的是课程、领域之间的横向类比,例如与“大学物理”相关知识点的类比,“电磁场”和“流体力场”、“电磁波”和“机械横波”的比较。有的则是纵向类比,譬如该课程本身的静电场和静磁场、静电场和恒定电流场等的对比。在如下几个方面对“电磁场与电磁波”课程教学进行类比探讨,目的是探索适合该课程的行之有效的教学方法,以提升学生的学习兴趣和效率,培养学生的创新能力。

1.课程之间的类比。

即“电磁场与电磁波”和“大学物理”的类比。

首先需明确“电磁场与电磁波”并非“大学物理”的简单重复。高等院校的“大学物理”课程一般安排在大学一年级下学期,而“电磁场与电磁波”课程一般安排在大学三年级上学期或下学期,它们之间有先后且有衔接。因此,“电磁场与电磁波”不仅包含“大学物理”中的静电场、恒定磁场、电磁感应、时变电磁场的麦克斯韦方程等内容,还包括磁介质及磁化、边值问题及其解法、正弦电磁场、场的复数和瞬时值表示、标量位函数和矢量位函数、波动方程及其解、平面波的传播规律、电磁辐射等内容,是后续课程“微波技术”、“天线与电波传播”的基础课。而且,在大学物理中学过的浅显的电磁学往往是一些特例,而“电磁场与电磁波”深入介绍了电磁场与电磁波的一般性的基本特性及规律,学生需要学习的是更多一般性的规律,而且内容侧重时变电磁场和波的规律研究。因此,“电磁场与电磁波”既与大学物理有衔接又有区别,教学中如果借助类比的教学方法,从“大学物理”过渡到“电磁场与电磁波”的知识点,既可以节省授课时间,又能为学员所接受。

举一个证明方法的例子。“大学物理”中麦克斯韦方程组是以积分形式给出的,而“电磁场与电磁波”中以积分和微分形式给出,学生在理解时微分形式比积分要难,所以比较好的方式是采用类比方法讲述微分形式。譬如,在讲解麦克斯韦方程第一方程时,即传导电流和变化的电场均产生磁场的推广的安培环路定理时,先写出已学“大学物理”中的积分形式:

让学生推导微分形式,要提醒学生推导中要用到前面所学数学知识旋度定理,实际教学中大部分学生都能从如下所示步骤推出微分形式:

s是以L为边界的任意曲面,故有:。

由于能够推导出微分形式,学生由被动抄写变为主动推导,加入了主观思考,调动了积极性,使得其踊跃去推导另外三个方程,比如利用散度定理由磁通连续性原理的积分形式推导出微分形式,自己总结得到磁场是无散场的推论。学生在探究过程中水到渠成地掌握了麦克斯韦方程的两个重要定理的微分和积分形式。故激发了学生探究的兴趣,也活跃了课堂气氛。可见,类比教学可激发学生学习兴趣,提高课堂授课质量。

2.课程自身知识点的纵向类比

在时变电磁场中,电和磁是紧密联系的两种现象。虽然某些电现象和磁现象在本质上相异,但宏观现象上有很好的相似性,启发我们在教学方法上注意到这种研究方法的相似性。在各章节讲授完成进行章节小结时,譬如在小结恒定磁场时,先与学生一道回顾静电场是由电荷量不随时间变化的静止电荷产生的电场。而恒定磁场是恒定电流在周围空间产生的对于运动电荷有力的作用的一种场。在讲授内容上,这两种场有很相似的现象,对应着很相似的知识点。例如:电介质的极化现象与磁介质的磁化现象,电场的场量、位函数等等,详细对比见表1。在掌握了电现象的基础上,利用电磁对偶关系,理解磁现象的相关知识就容易些,而且更加深了对其本质的理解。

在前面讲授静电场时,首先给出电场强度的定义,讨论真空中的静电场,然后讨论介质中的静电场,在不同介质的交界面上,静电场会发生变化,讨论场量的边界条件,最后介绍电容,讨论静电场的能量与力的计算方法。在讲授恒定磁场时,如同讨论静电场一样,先讨论真空中的恒定磁场,然后再讨论磁介质在恒定磁场作用下发生的磁化现象,然后再分析介质中的恒定磁场,接下来讨论恒定磁场方程及其边界条件,电感、磁场能量和磁场力的计算。为了清晰地表现这种宏观的对称性,文献[3]给出了几种电场和磁场的典型的对偶关系应用,见表2。利用该表进行课程小结,既缩短了知识传授与接受的过程,又有助于对知识融会贯通,便于记忆。

更进一步,引入磁荷和磁流后,对于时谐场,可以推导出只有电流源和只有磁流源的麦克斯韦方程,可以看到两个方程组的数学形式完全相同。对偶形式可见下表3。

则可由另一个方程组得到另一个方程组。如果按照上述各量的互换关系,可由一类问题的边界条件得到另一类问题的边界条件(如只存在磁流源的边界条件),那么由一类问题的解经上述各量互换后即可得到另一类问题的解,这就是所谓的二重性或对称性。概括地说,如果描述两种不同物理现象的方程具有相同的数学形式,则它们的解也将具有相同的数学形式,这样的事实称为二重性或对偶性。利用二重性原理,可由电流源激发的电磁场的一般解法及其结果,直接导出磁流源激发的电磁场的一般解法。

另外,恒定电场与静电场在一定条件下机理类似,故也可以用类比方法进行教学。首先交代恒定电流场的产生是:将一块导体与电源的两个极板相连,由于两个极板之间始终存在一定的电位差,在导体中形成电场,迫使自由电子维持连续不断的定向运动,从而形成电流,或者说,若电源的电压与时间无关,导体中的电流强度是恒定的,导体中的电场也是恒定的。

无外源区中均匀导电介质内部的恒定电流场方程和无源区中的均匀介质内部的静电场方程分别归纳如表4所示。从表中容易看出,在不包括电源局外场的导电媒质中恒流电场的基本方程与无电荷分布区域内静电场的基本方程有相似的形式。

由表可见,两种场非常相似。恒定电场和静电场一样,也与时间无关。由于两个场的电位函数均满足拉普拉斯方程,所以如果两个场用电位表示的边界条件相同时,则两个场的解必然相同。因此对于某一恒流电场的边值问题,如果对应的静电场边值问题是已经有解的,则恒流电场的解便可以直接写出,只需将ε换成σ、q换成I、换成等相对应的物理量就可以了,而不需要重新计算。这种方法称为静电比拟法。为了培养学生的创新思维可进一步引导学生思考:在什么条件下二者可比拟?如何形成这种条件。由此引出实验室研究静电场时常用的一种方法,即静电比拟法,用恒流电场模拟静电场,而实验室在恒流电场中进行测量比在静电场中容易得多。所以利用类比的方法能启发学生步步深入。

还有电磁波与机械波都是横波,都具有横波的特性等方面的类比,水波的传播与电磁波能的传播的类比,电磁场与流体力场的类比等等,也可以采用类比的教学策略进行更加形象、直观的传授,启发创造性思维。

三、结束语

提高教学质量和实效始终是高等院校的工作重点。如何为学生创造一个宽松、活泼的课堂学习氛围?如何引导学生自发学习,超越自我?如何为学生打下宽厚的知识基础,以便能够为其将来的某一领域的研究打下基础?这些都需要教育工作者在实践中进行深入研究。实践教学结果表明,类比教学方法运用于“电磁场与电磁波”课程中,有利于提升学生的学习积极性和能动性,教学效果得到提升。

参考文献:

[1]杨儒贵.电磁场与电磁波[M].北京:高等教育出版社,2010.:122-143.

[2]梁昌洪.关于电磁理论的若干思考[J].电气电子教学学报,2004,26(1):1-8.

[3]葛文萍,贾振红,山拜·达拉拜.探索解决电磁场理论难教难学的方法[J].理工高教研究,2007,26(5).

[4]周雪芳,钱胜,李齐良.电磁场与电磁波精品课程建设的探索与实践[J].中国电力教育,2011,(4).

电磁波课程论文第5篇

关键词 电磁场与电磁波 课程教学探究 现代信息技术 整合

中图分类号:G424 文献标识码:A

1 省内外相关研究现状分析

“卓越人才培养计划”要求学校培养出基础扎实、知识面宽、创新实践能力强、具有社会责任感、团队合作精神和卓越人才培养潜质的优秀学生。对于我校电信、电科专业学生而言,最好的平台之一就是利用好每一年一度的电子设计竞赛和物理创新大赛。而要想在各类大型竞赛中获得成绩,学生必需要有扎实的理论知识。其中电磁场与电磁波是高等院校通信工程、电子信息工程专业的一门重要的专业基础课。如何上好这门基础课,给同学们提供扎实的理论指导,是卓越人才培养计划必然要求。信息化是当今世界经济和社会发展的大趋势,当代教育技术的发展,给电磁场与电磁波课程的学习带来新的春天。在新的教育理念下,探索信息技术与学科课程整合成为当前教育研究的一个热点内容。研究信息技术与电磁场与电磁波课程整合,对于整体优化教学过程,深化高等教育改革,增进学生的专业知识学习效果,提高学生的信息技术能力,培养学生的合作意识和创新精神具有重大的现实意义。作为一门探究性课程。我们将如何信息技术与电磁场与电磁波课程整合方面进行了初步的探讨。将“知识、能力、人格”的培养理念落实到具体教学环节中。推行启发式、探究式、讨论式、小制作等授课方式,将创新实践能力训练贯穿于课程教学之中。

2 课程教学改革研究对促进教学工作、提高教学质量的作用和意义探究

(1)作为一门探究性课程,电磁场与电磁波课程是通信工程、电子信息工程专业的一门重要的专业基础课。它以麦克斯韦方程为根本基础构建电磁理论的知识体系,它研究自然界中电磁现象和电磁过程。近年来材料、光子晶体等领域的理论研究和材料研发的突破给经典电磁理论带来了勃勃生机。

(2)另一方面,电磁场与电磁波课程对于学生的动手创造能力的培养遗迹从事相关科学研究都具有基础性的重要意义,对于学习其它相关专业(如通信技术、电力系统、电子技术、激光技术、光学工程等)的课程也有重要影响。

(3)以多媒体技术和网络技术为核心的信息技术在教育领域中的应用是教育信息化的重要标志。通过电磁场与电磁波课程的探究教学与当代信息技术的整合与深化,使学生掌握电磁场与电磁波课程知识所涉及的相关科学方法,有效提高学生发现问题、分析问题、解决问题的能力,提高学生知识拓展能力和自我学习能力。

3 课程教学探究的实施方案

3.1 具体研究对象和内容

(1)我们将采用传统板书、电子课件、网络和视频多种手段结合。课内讲授与课外讨论和制作相结合、基础理论教学与学科前沿讲座结合,基本理论训练与科研实践训练相结合。(2)针对电磁场与电磁波是理论基础课的特点,课堂教学主要采用探究式课堂教学法:即每节课突出一个主题,讲清论透;每个主题,通过多种形式的师生互动,及时了解学生的疑难问题和创造欲望。(3)鼓励和指导有能力的学生提早进入科研实践训练、参加各类科技竞赛。将学生撰写课程小论文融入教学全过程,从中选出有质量的项目进入科研实践训练。构建多样化应用型人才,培养应用型、复合型、技能型人才,增强毕业生就业能力;完成本课的预期目的。(4)电磁场与电磁波也是一门实践性很强的课程,其研究对象——场是区别于实物的物质形态,具有抽象的特征。为避免课程教学的数学化,我们将充分应用当代信息技术的优势,比如说应用视频教学资料增强学生的感性认识和动手能力,同时反过来应用于当代信息技术,充分发展学生的物理思维和物理探究能力。(5)我们将充分利用好点子竞赛等创新平台,促进电磁场与电磁波的教学。

3.2 课堂教学改革研究拟达到的目标

在课堂教学中,突出学生的参与性,使他们主动获取而不是被动接受科学结论,强调思维互动,使学生感觉电磁场与电磁波发人深思,不难入门。作为电磁理论基础的麦克斯韦方程是从大量个体电磁实验总结而得的“共性”规律。同时,电磁场与电磁波与其他物理学分支也具有“共性”和“个性”的关系。针对这一特点,教学中注意引导学生“相似性形象思维”,开展“抽象思维”,促成“顿悟思维”。学生感觉电磁场与电磁波思路清晰,容易理解。激发学生学习兴趣,经常采用课堂讨论,由学生提问,在教师引导下大家讨论,总结得出准确认识。由于分析“电磁场和电磁波”要在多维时空中抽象思维,课堂教学充分使用多媒体,尽力使用图像和色彩搭配,使学生建立正确的物理图像。

3.3 课堂教学改革研究拟解决的主要问题

(1)突出科学性和探究性。电磁场与电磁波探究式教学,强调学生能力的培养。教学中遵循“物理现象的发现—物理现象的描述—物理过程的分析—结果验证与实验测量”,再现科学研究过程,突出物理学实验性的特征。教学中注意知识拓展,充分联系实际应用和现代科技发展,提高了学生学习兴趣和毕业生就业的适应性。(2)重视物理思维和学生能力培养。课程教学中锻炼“相似性形象思维”,提高“抽象思维”,促成“顿悟思维”。采用多媒体手段、有效使用图示,帮助学生正确建立物理图像,认识物理过程。提高学生发现问题、分析问题、解决问题的能力。培养他们的科学创新能力。(3)推进个性化教育。探究式教学可以使具有不同基础的学生各有所获。课程网站的建立和电磁场与电磁波论坛的开通,也将有效推动个性化教育的实施。

4 课堂教学改革研究的特色和应用价值及推广

4.1 特色

(1)通过网络解答学生的问题,及时了解学生的创造欲望。(2)通过课外阅读、讨论与讲座扩展学生视野,引导学生了解学科前沿发展动态,将有些问题安排给学生进行课外阅读和讨论,提高学生独立分析问题的能力。

4.2 创新点

(1)网络与视频教学可以扩展学生自主学习空间,有些问题通过播放视频,让学生可以直观地理解电磁现象基本规律的内涵。(2)多种形式的师生互动,可以了解学生的学习与创造欲望。(3)科研实践训练培养学生的探索精神和创新能力,从学生课程论文中,挑选有质量的项目进入科研实践训练。 鼓励和指导有能力的学生参加各级科研训练项目与科技竞赛。

4.3 应用价值及推广

(1)当代教育技术中网络视频教学提供了传统教学中所没有的优势。通过播放演示实验中的与电磁场与电磁波现象相关的视频资料,学生可以直观地理解这些现象及其物理内涵。(2)任课教师通过课后答疑和讨论、电子邮件、学生QQ群,解答学生的问题,了解学生的创造欲望,指导有能力的学生开展科研实践训练、参加各类科技竞赛。这种教学方式不仅对提高学生的理解能力、动手能力、创新能力都有相当好的效果,同时也可以促进本课程的教学改进也很有益。(3)同时这种教学模式还可以推广到其他物理类基础学科,对于改变传统的教学模式,增强教学效果以及学生的动手能力和知识理解都有很好的借鉴作用。

电磁场与电磁波是物理学发展比较成熟的一门学科,从电磁理论发展史看,章章节节中渗透着科学家的成功思想和方法,让学生了解并学习这一点,对于培养学生学习方法,培养学生的物理直觉和科学素质是十分有益的,这也是本课程教学的一个目的。本课程教学的基本要求是:使学生系统而深入地掌握静电场和静磁场理论,掌握电磁波的传播和电磁场辐射规律,并能够熟练运用知识分析和解决相关电磁问题。

参考文献

[1] 吴海江.科学原创与科学积累[J].自然辩证法研究,2002.18(5):42-50.

[2] 孙秀英.全国科技创新大会在京举行[N].人民日报,2012-07-08.

[3] 姜宇.在“电磁场与电磁波”课程中建立创新理念[J].电气电子教学学报,2009(1).

电磁波课程论文第6篇

[关键词]电磁场与电磁波 教学方法 教学改革

[中图分类号] G642.0 [文献标识码] A [文章编号] 2095-3437(2015)08-0172-02

早在18世纪八九十年代,科学家就开始展开对电磁场的研究,逐渐形成电磁场与电磁波理论并应用于实际。当今社会,随着科学技术的猛速发展,电磁场与电磁波理论应用领域也越来越广,不仅局限于自身领域,而且与相关学科相互交叉渗透,还逐步形成了生物电磁技术以及电磁隐身理论等。可以说,电磁场的应用已经深入几乎所有信息类学科。[1]信息时代在不断发展,高频电磁波―微波应时代要求成为信息的主要载体,不仅在卫星通信、计算机通信、光纤通信、雷达等高科技领域得到广泛的应用,而且在现代社会生产、生活中的应用也极为广泛,已经渗透到人们的日常生活中,与人们的日常生活息息相关。

一、课程特点及存在问题

1.课程特点

“电磁场与电磁波”是一门理论性很强的专业基础课,主要内容有矢量分析、静电场、恒定磁场、恒定电场、时变电磁场、均匀平面电磁波、导行电磁波、电磁辐射等。对于电子信息工程专业的学生来说,该课程是不可缺少的基础专业课程。通过该课程的学习,学生可以为毕业后从事相关工作打下一定的理论及实践基础。但是该课程的学习讲究抽象思维和逻辑推理两者的结合,不仅概念抽象、公式复杂多变,而且需要一定的数学推理过程,学生往往不易理解掌握,因此如何提高该课程的教学质量和效果,是教学者在改革探索和实践过程中遇到的难题,是值得进一步深入研究的课题。[2]

2.课程教学存在的主要问题

(1)课程传统的教学目标往往是直接向学生灌输事实性知识,即课程内容是介绍电磁场与电磁波“是什么”和“为什么”,而缺乏电磁场与电磁波“怎么做”和“怎么用”,教学过程过多的偏重理论,对理论的实际应用介绍甚少。

(2)总体来讲,教师只采用板书和多媒体幻灯片相结合教学,一门课程从头讲到尾,学生被动接受,课堂上疲于记笔记和用大脑接受老师所讲的内容,没有一个系统的去理解思考的过程,教与学过程分离,这样便不利于学生原创性思维的有效发展。

(3)学生在学习过程中,除了反映电磁场太抽象,无法生动的想象实际不存在的电磁场,也不能像电路可以直观的测量,还反映课程内容多、理论性强,而且公式多,许多地方需要将工程应用数学灵活运用。[3]

(4)电磁场与电磁波课程的考核方式也有一些弊端,一般情况下采用的还是“一刀切”模式,即“考试分数定高低”,没有照顾到部分学生的基础差异,同时又过分强调了对理论知识推导的考核,仅通过一张试卷来考查学生掌握知识的程度,缺乏全面性与科学性。

二、教学改革方法

1.以理论为基础,以应用为根本,确定实际教学的研究方法。对教学大纲和教学计划进行一定的调节、修订,弱化理论讲解,重视实际应用,提高学生自我解决问题的能力,主要采用“用什么理论,讲什么理论”和选学、自学内容相结合的模式,这样可以让大部分学生掌握课程的主要内容,又可以让对该课程深感兴趣的学生得到深层次的学习和提高。

2.上好绪论课。任何一门课程的教学都必须以上好绪论课作为良好的开端。“电磁场与电磁波”课程的绪论课对于激发学生的学习兴趣和学习热情相当关键,课中除了讲授电磁场理论的发展过程――经典电磁场理论阶段与计算电磁场理论阶段,也可适当讲述其实际中的重要应用,引起学生对该课程的重视及兴趣。

3.结合多种教学手段,提高教学质量。科学的教学方法不能依然采用传统的“粉笔+黑板”的模式,应该考虑适当利用计算机多媒体辅助教学,使教学内容显得丰富、形象,能够对教学起到很好的促进作用。比如合理的运用Matlab软件。Matlab软件是一款功能强大的科学计算软件,它集许多功能和诸多的工具箱为一体,在课堂时间充裕的情况下,通过编写较为简单的Matlab程序语句,可以在课堂上进行小规模电磁场数值计算问题的演示。

4.注重案例教学。比如,讲解静电平衡与静电屏蔽原理时,选取的教学案例是有金属外壳的汽车能够避免雷击的应用事例;讲解法拉第感应定律时,选取的教学案例是电动机、发电机以及变压器的应用事例;讲解电磁波辐射和接收时,选取的教学案例是雷达与隐形飞机之间的对抗的应用事例。[4]在讲解电磁兼容问题时笔者常采用1982年著名的英阿马岛海战作为教学案例,由于阿根廷海军没有能够很好的解决电磁兼容问题,从而导致了被英国导弹击沉的悲惨结果。

5.注重对比,善于分阶段总结。“电磁场与电磁波”课程中涉及的理论多且较为抽象,让学生在学习过程中经常有无所适从的感觉。[5]因此,分阶段进行课程总结是非常必要的,这样可将书本的相关知识点归纳并对比,便于学生连贯理解,对学生学习效率的提升很有帮助,也提升了教学质量。

6.结合实际,改进教学。“电磁场与电磁波”课程理论性强、概念抽象,又与工程应用数学结合紧密,公式多且推导繁杂,一直被认为是教师难教、学生难学的课程。在教学过程中,应改变传统的纯理论讲解,注重实例分析、习题课相结合;提出一些思考题,激发学生对课堂的兴趣,还可以对其进行有效的思维能力训练。

7.定期举办学术报告会。让学生了解电磁场与微波技术的最新发展现状和发展趋势,了解电磁场与微波技术的市场需求,了解电磁场与微波技术及相关人才市场需求,了解电磁场与微波技术方向就业前景,从而激发学生的学习兴趣,充分调动学生的学习积极性。

8.摒弃传统的考核模式,开辟科学的考核制度。经过“电磁场与电磁波”课程教学改革后的考核采用平时成绩和期末考试成绩加权平均获得总评成绩的方式,其中平时成绩占总评成绩的40%,期末成绩占总评成绩的60%。在平时成绩中,除了出勤率、作业质量以外,还将课堂问答作为额外的项目加入考核,对回答问题态度积极踊跃、对课程有着独到见解的学生予以奖励,最后的总评成绩可以适当提高。这样不仅可以增加师生互动,活跃课堂气氛,而且还可以避免学生为了分数投机取巧,仅为高分而去学习课程。

三、教学改革实践成果

通过对“电磁场与电磁波”课程教学目标与教学内容的适当调整与优化,使学生更加容易的掌握课程的根本,从而少走弯路,节约了大量的学习时间,避免学生在学习时陷入复杂繁琐的数理推导之中,让学生在课程的学习过程中获得了更丰富的工程实践案例,从而顺利实现应用型本科院校的工程技术型人才目标。教学方法的改革,使得理论与实际的联系更加紧密,避免了学生纠结于该课程中一些难而无用的知识,更加侧重于工程实际应用;教学手段的改革,使得课堂上的气氛更加活跃,也使得学生的实践能力大大提高;课程考核方式的改革,使得学生的学习积极性得到了全面地调动,学生主动参与到课堂学习过程中,学习兴趣有了很大的提高。

“电磁场与电磁波”课程的合格率达到了96%以上,优秀率将近30%,越来越多的毕业生选择从事相关工作;在飞思卡尔大学生电子设计大赛中,3名同学选择了该方向的科研设计,因设计创新超越其他设计而取得了优异成绩;同时该方向的考研率也有很大提高,从2010届开始,五届有数十名应届毕业生选择电磁场与微波技术方向作为硕士研究生报考方向,其中31名顺利考取了东南大学、南京理工大学、重庆邮电大学、中国计量学院等国内知名院校的电磁场与微波技术专业。有近六成的学生参加了该课程的研讨式学习和科研课题研究,多位同学在国内外知名科技期刊上发表了科研论文。我校的“电磁场与电磁波”课程经过教学改革以后,可以较为全面的培养学生的科学作风、创新精神和实践能力,促进学生全面协调发展。

四、结语

“电磁场与电磁波”课程在电类专业的学科地位举足轻重,是学习电类专业学生必学的一门专业课程,如何把这门课程上好对教师的教学能力提出了很高的要求。笔者在教学过程中对课程内容进行了适当调整与改革,在教学方法上进行了多种新颖的尝试,科研教学相结合使得教学多样化,对多媒体教学手段的合理应用以及教学过程中与学生面对面交流增强了学生对该课程的学习兴趣,对教学质量的提高起到了较好的效果。

[ 注 释 ]

[1] 李长胜,林志立,冯丽爽.“电磁场与电磁波”课程内容的修改建议[J].电气电子教学学报,2012(6):11-15.

[2] 肖春燕.“电磁场”课程教学改革的研究[J].电气电子教学学报,2010(1):29-31.

[3] 李丽华.论三本院校电磁场与微波技术课程教学[J].投资与合作(学术版),2010(9):64-65.

电磁波课程论文第7篇

【关键词】 教学研究 电磁场与电磁波 应用型高校

在十二届全国人大四次会议的记者会上,教育部部长袁贵仁在围绕“教育改革和发展”的谈话中指出,中国高等教育供给侧结构性改革的主要矛盾是培养理论性、学术性人才的学校多,而培养技术、技能型人才的学校少。他在提出的高校创新创业教育的六件事中明确提到了提升教师创新创业教育教学能力。从工科“电磁场与电磁波”课程的特点看,由于其数学要求高、理论性强,一直是一门公认的难教难学难考的课程。考虑到该课程作为专业基础课有着很强的应用背景,有着充足及广泛的素材和实例,引入教学的可行性极强,从而能为培养高素质和高质量的应用型人才搭建一个可靠的平台。目前各高校对该课程的教学改革进行得如火如荼,包括教学方法、教学内容、考试方式等方面,但无论什么办法,核心的一点就是如何提高学生的学习兴趣和积极性。笔者认为最重要的是通过认识和专业课的联系及广泛的工程和实际应用例子,使学生真正体会该课程的重要性而自觉投入到学习中。此课程改革也和中国高等教育和本校的转型完全一致。要把各种应用例子充实到“电磁场与电磁波”教学的各个环节,不断地强化学生对此的认识。本文就这一思路和实施重点加以阐述。

一、绪论的精心准备

每门课的第一堂课尤为重要,学生听课的效率很高。十分有必要精心准备好补充的绪论部分,把本课程的地位作用、特点、应用等加以讲述。要根据不同专业预先了解已上了那些课程,后续有那些专业课,有针对性地设计例子来体现本课程的作用和地位。如从日常生活中的遥控器到微波炉,从实验中的示波器到电子显微镜,从工程中的发电机到磁悬浮,从医学上的X透射到核磁共振,从通讯领域的手机、局域网到导航系统,从军事上的雷达到隐身飞机等等[1]。这些例子无不都深刻地反映了电磁场和电磁波在不同领域极其广泛的应用,从而来吸引学生对本课程的学习兴趣和积极性,起到一个良好的开端作用。

二、课堂教学环节的深度融入

课堂教学是最核心的环节,除了要使学生掌握“电磁场与电磁波”基本概念和基础知识外,更重要的就要在整个授课过程中贯穿各种应用实例,真正让学生认识到学习本课程的广泛的应用价值。以前可能是学时有限,一般最多是绪论或每一章提到一些具体应用,这远远不够。要在合适的章节甚至具体特点和性质上都要引入合适的应用实例,从而真正达到我们提倡的创新教学目的。

2.1静态场

在讲静电场时,可举静电放电、静电感应、静电屏蔽、静电力的应用等等。如带电体为球形时表面均匀带电,但如在尖锐处就会有大量电荷积累而形成很强的电场,像高压线附近形成的电晕就是一种放电现象。当平板电容器的极板面积和间距一定时,改变其间的填充介质,电容量即发生变化,这就形成所谓的电容式传感器。静电屏蔽是封闭的导体腔可以阻断外界静电场的影响,例如高电压实验室及微波暗室通常应具备接地良好的金属网状屏蔽墙,以阻断内外静电场的相互影响。像某些电路板及敏感电子器件应放入导电袋中。其实对时变电磁场也可起到同样的作用。再如讲到电容器时,可举每人用的手机的电容式触摸屏,它原理上通过与工作面形成的耦合电容来吸走一点交流电来定位坐标等。

恒定磁场的应用非常普遍,如发电机、电动机、电磁铁、示波器、磁屏蔽技术、电子显微镜、回旋加速器、磁悬浮技术等等。在讲到用基本理论求解螺旋管的磁场时,其产生的均匀磁场就可用于质谱仪、磁控管、回旋加速器、显像管及控制电子束的扫描等。类似电场,当线圈的匝数和尺寸不变时,变更线圈中的填充物可改变线圈的电感,就是电感传感器的基本原理。磁悬浮技术是利用磁场力抵消重力的影响从而使物体悬浮。如采用德国技术在我国上海浦东长度为30公里,时速达430km/h的磁悬浮列车。首条国产磁悬浮明年上半年将在长沙投入运营。

在讲到基本方法叠加原理和镜像法时,就可举雷云静电场对地面的影响及输电线路周围的工频磁场分布计算[2]。这都是很好的镜像法并具体利用叠加原理计算的例子,从而来引起学生的注意对上述两方法的认识和理解。对于不能用解析解处理的复杂问题,就可介绍利用类似MATLAB计算语言来进行计算和处理[3]。

对于求解静电场和静磁场都满足的拉普拉斯方程时,除认识能处理电(磁)场的计算外,由于其它领域也有一样的方程形式,也可适用于恒定流场、恒定温度场。比如说水电比拟就是在同样边界条件下,可利用两者的相似性先做出其中一个参量测定推出另一个参量的具体数据。实际应用中由于测量电位较方便且精确,就可以通过此方法来计算出流场的速度分布。这在某些湖泊(如杭州西湖)的环境治理研究中有具体例子说明[4]。

2.2时变场

时变场中首先学的就是电磁感应定律,它的应用极其广泛。如当一根导电棒在磁场中旋转切割磁场线时,导电棒的两端之间产生电动势,就是单极直流发电机的工作原理。反之就构成单极马达。家用的电度表、电磁灶也都以此为原理。还可以根据导体中感应产生的涡流变化来检测导体中存在的缺陷等。

电磁波的传播例子不胜枚举,从收音机到有线电视、从雷达到微波通讯、从有线电视到卫星导航系统、从无线局域网到蓝牙技术,无不利用电磁波作为载体。在讲理想介质中传播的电磁波时,认识到电磁波的频率相同时,在介质中的波长比真空中的要短,这种现象称为缩波效应。利用此效应在制造微带电路和微带天线中起到关键的作用,尺寸小、重量轻对于航天及军用设备尤为重要。当电磁波在有耗介质中传播时,电磁能量将会损失。这种吸波效应现象就可以利用制造吸波材料用于隐形飞机或隐形军舰等。测量天线的微波暗室也采用吸波材料制成墙壁、顶面和地面,以消除电磁波的反射[1]。

电磁波的传播特性中的极化规律在工程实际应用中也得处处考虑,圆极化波雷达也称为全天候雷达,在穿过雨区时不会受到强烈吸收,飞机与地面的通信往往需要采用圆极化天线。极化匹配对于无线通信链路是达到最佳状态的一个指标。光波是一种电磁波,虽然光波的极化方向随机,采用一些方法可以获得极化特性即偏振特性,如目前流行的3D电影就是利用偏振光产生的效果。

电磁波的另一个重要量是频率,不同频率的电磁波传输过程中有其自身的特点,所以我们知道有很多中传输的方式和方法。有双导线、同轴线、微带、金属波导和光纤等,可以根据和介质的相互作用及辐射等特点来认识和理解各自的性质和作用。

讲到电磁波的辐射,就可从天线引入。从常见的金属拉杆天线、收音机的磁棒天线到日常离不开的基站天线、电视塔天线等等来体现。尽可能避免烦琐的理论推导,主要通过基本的结论来分析辐射和那些参量相关,并举例说明。如拉杆天线、收音机螺旋管天线接收时的方向性问题;太阳在清晨特别呈现鲜红色而天空又为什么是蔚蓝色的。随着现代高速电路技术飞速发展,电路设计中遇到的高频问题越来越多,带来研究电磁辐射的电磁兼容与电磁干扰等诸多问题[5][6]。

三、研究性学习的小论文

课堂上教学的时间毕竟有限,实施自主和研究性学习是大家普遍公认的好方法。“电磁场与电磁波”在各领域的广泛应用使得可选的课题面广量大,现在网络的普及也使实施具备良好的可操作性,学生可根据各自的兴趣来选择课题内容。

当然有取得良好的效果,关键是要组织实施好。重点抓好以下几个步骤:如研究性学习的初步介绍、研究课题的选择、课题研究和撰写和评价。毕竟学生对研究性学习的方法和手段并不很熟悉,所以需要花点时间进行引导。可编写学习手册放至课程的教学网站。特别可重点推荐一些信息资源,如生活中的电磁理论,磁化水、微波加热、条形码技术、雷电、电磁波公害等;军事领域方面的雷达、隐身技术、激光武器等;高新技术方面的液晶技术、光纤通讯、纳米材料等。当然要使此环节起到良好的效果,必须给学生一定的压力,一是在课程的总分中占部分比例,二是要安排时间随机抽取部分学生进行交流,大家进行一起交流学习,并通过老师的点评让学生认识到还有那些地方存在缺陷和不足,起到举一反三的作用。

四、实用应用软件的体现

适合研究“电磁场与电磁波”的应用软件有不少,根据实际情况本课程中重点突出MATLAB语言和HFSS仿真软件[3][7][8],穿插在适当的课程教学中。MATLAB是学生开设的课程,而且在“电磁场与电磁波”中有广泛的应用。无论是从静态场到时变场,从平面波的传播到波导中的电磁场分布,从电磁波的反射折射到电流元的辐射规律,都可很好地用MATLAB进行计算或仿真。这样一方面丰富了课堂教学的多样性和可视化,也使学生认识了MATLAB在处理各类问题的具体应用。HFSS是一款三维电磁场仿真软件,是当今流行的微波无源器件和天线的设计与仿真工具。天线部分在整个“电磁场与电磁波”中虽只占很少的课时,但用该软件可展示一下各类天线的仿真图,让学生尽早了解到HFSS的应用,也为今后毕业论文选择相关内容作一定的铺垫和今后的独立工作储备知识。

参 考 文 献

[1]杨儒贵,刘云林.电磁场与波简明教程[M].北京:科学出版社,2006

[2]李学文,孙可平,于格非.雷云静电场的模型化研究[J].军械工程学院学报,2006:18(增刊):1-4

[3]施梨.MATLAB工程仿真与应用30例[M].北京:电子工业出版社,2015

[4]夏新华,曹飞凤,楼章华.引水工程前后西湖流畅的数值模拟研究[J].上海:上海环境科学,2008:27(3),99-103

[5]唐利军.浅析电子设备的电磁兼容性设计[J].信息通信,2015:8(152),267

[6]陈晓冬.汽车电器的电磁兼容[J].水电工程,2015:8,118

电磁波课程论文第8篇

关键词:教学改革;电磁仿真;XFDTD;Matlab

DOIDOI:10.11907/rjdk.161934

中图分类号:G434

文献标识码:A 文章编号文章编号:16727800(2016)011021204

0 引言

1873年麦克斯韦尔提出了著名的Maxwell方程组,并预示了电磁波的存在。1888年,赫兹通过实验测量证明了电磁波的存在。20世纪初,意大利发明家兼商人马尔可尼用简单的无线电收、发装置实现了跨大西洋的简单电报传输,开辟了无线通信广阔的应用前景。随着电磁场与波在雷达、通信、导航、遥感、医学、空间等领域应用的不断深入,电磁场与波技术在高等院校电子信息类学科发展和学生培养中的作用日趋重要[1]。《电磁场与波》课程是电子信息类专业必修的专业基础课,更是后续课程《微波技术》、《天线与电波传播》、《移动通信技术》的基础课 [2]。

《电磁场与波》的前修课程是《大学物理》和《高等数学》,其课程特点是概念抽象、理论深奥、计算复杂、公式繁多,具有“学生难学、教师难教”的特点[3]。由于电磁场与波看不见摸不着,传统的教学模式又是学生被动接受知识,从而使学生更加难以理解和掌握电磁场与波理论。为了使学生直观、生动理解电磁场模型,很多高校加入了实验教学环节。但就“场”类的硬件测量实验来说,实验配套设备昂贵、仪器操作复杂,使用不当可能造成较大的经济损失[4],且“场”类实验需要专门的测试场地,如微波暗室。有些高校不具备这样的实验条件,即使有微波暗室,也很难在微波暗室中给本科生开设实验课。因而 ,“场”类硬件测量实验在很多高校中要么不开设,即使开设的也是一些非常简单的实验,很难满足学生对电磁场与波的深刻理解要求。为了解决这些难题,借助于目前先进的商业电磁仿真软件,设计出和课程相对应的仿真程序,使电磁场与波原理通过图形甚至动画形式呈现出来,学生目睹电磁场与波的传播过程,提高对电磁场与波的理解。另外,由于许多高校进行了教学改革,专业基础课课时不断压缩,《电磁场与波》的教学课时相应减少,这对教师和教学内容提出了更高要求。电磁仿真演示型实验信息量大、易被接受,能够在一定程度上解决课时不足的窘境[3]。不仅如此,目前利用电磁仿真软件对微波、毫米波工程的设计与仿真已成为潮流。在《电磁场与波》课程中引入电磁仿真软件,可以让学生感受电磁仿真软件的功能与效果,在以后的学习和应用中,有选择地使用其中一种作为解决电磁问题的手段。为了培养既懂“电磁场与波”,又熟悉电磁仿真软件的高层次人才,在教学中引入电磁仿真软件辅佐理论教学势在必行。事实证明,只有不断探索“场”类实验课程教学的新模式、新方法,以培养学生创新精神、团队意识和实践能力为重点,加强学生解决实际问题和独立工作能力的训练,才能为学生继续深造和未来任职奠定坚实的基础[3]。

1 仿真实验平台

1.1 XFDTD软件

XFDTD是基于时域有限差分(Finite-difference Time-domain,FDTD)方法的全波三维电磁仿真软件,是美国REMCOM公司开发的软件包核心产品之一。FDTD是直接对Maxwell方程的微分形式进行离散的时域方法,能解决复杂精细结构和电大尺寸天线及阵列设计、电中小尺寸的天线布局问题等。FDTD方法计算复杂度低,所需内存和计算时间与未知量成正比,仿真复杂结构效率高。相比于Ansoft公司推出的HFSS(High Frequency Structure Simulator)软件,XFDTD在仿真电大尺寸、解决宽频瞬态问题等方面更胜一筹。在《电磁场与波》课程中,电偶极子及对称天线在远区场的辐射分布、均匀平面波在多层媒质中的传播过程等都无法在HFSS软件中仿真。但在XFDTD软件中,不仅能得到定量结果,还能看到电场、磁场或者电流等各个场量在空间的辐射过程。对于类似矩形波导这样的微波元器件,不仅能在HFSS软件中仿真,还能在XFDTD软件中仿真。因而,本文选用XFDTD作为电磁仿真软件进行仿真和分析。

1.2 Matlab软件

Matlab是Math Works公司研发的一款用于科学与工程计算的软件工具,具有强大的矩阵运算、数据处理和图形显示功能。Matlab拥有大量简单、灵活、易用的二维、三维图形函数以及丰富的图形表现能力,方便各种科技图形的绘制[5]。在很多论文中,直接利用Matlab进行编程,对电磁场与波中的一些电磁现象进行计算和绘图,得到形象、直观的电磁波传播过程[67]。本文先利用XFDTD软件仿真电磁模型得到仿真数据,然后利用Matlab对这些数据进行处理,得到想要的结果。这样处理的目的有三:①更易仿真复杂的电磁模型。Matlab毕竟是程序语言,面对复杂问题的处理能力和速度没有仿真软件强;②虽然电磁仿真软件也能得到图形,但形式单一。为了得到更多的图形,就必须把仿真数据输出,然后再利用绘图软件进行绘图,Matlab正好满足这种需求;③学习电磁仿真软件,可为今后的电磁工程设计和仿真打下基础。

2 仿真实验教学实例

以对称天线和矩形波导这两个典型案例作为仿真对象,演示第1节提到的实验方法,查看实验结果,判断本文方法的准确性和合理性。

XFDTD商用软件基于FDTD,在建模时要设置以下内容:①创建仿真模型,并指定媒质材质;②网格剖分,保证仿真稳定性;③激励源的设置,有电压源、波导界面、外部激励等;④边界条件设置,有PEC边界、PMC边界、PML边界、Liao边界等;⑤设置收集数据的Sensors,有近场Sensors、远场Sensors等,还可设置收集点数据、面数据、体数据;⑥全部设置完后保存,即可进行仿真;⑦仿真后查看结果,结果是数值、图形或者动态图形。有些结果可直接输出,有些是一些数据,可以保存下来再通过绘图程序显示。

2.1 对称天线方向图

对称天线是最常用的线天线类型之一,由一根中心馈电的直导线构成。假设对称天线的长度为L,和工作波长处于相同数量级,本文中假设L等于两倍的工作波长。馈电口间隙很小,可近似认为等于零。对称天线如图1所示。

以对称天线的中心即馈电点为原点,z轴与该天线的轴线重合。当在天线的馈电口输入电磁能量时,天线将产生感应电流,这个电流在天线的两个开路端上应为0,其分布规律可近似表示为:

在XFDTD软件中,先设定工作频率为2GHz,对应的工作波长为15 cm。创建Wire Body模型,即对称天线,天线的总长度为30 cm,即两倍工作波长,中间留一定间隙用于馈电。新建Materials-Perfect Conductor,即理想导体媒质。把设置好的材料拖到Wire Body上,即可设定对称天线的材质是理想导体。设置Waveforms的Type为Sinusoid,即正弦函数。设置Outer Boundary为PML Absorbing,设置边界条件为7层的PML。由于默认的网格设置能满足要求,所以不作任何修改。馈源设置最重要,选用Circuit Components,打开界面后,设置馈源的起始点和终止点,并设置Component Definition为50 ohm Voltage Source,即可完成馈源设置。因要收集对称天线远场特性,所以选择Sensors中的Far Zone Sensors,根据需要设置参数。所有的模型和参数设置完成后,保存工程,然后进行仿真Simulations。仿真完成后,可在Results中查看结果。结果中包括对称天线的远场特性Far Zone Sensor、馈源参数Feed、天线系统参数System等有关结果。所得结果不仅包括数值、二维图像、三维图像,还能动态演示场量的变化过程。因篇幅限制,下面只给出了E面、H面方向性图,如图2所示。其结果和教材[8]上通过解析计算得到的结果一致。

2.2 矩形波导场分布

矩形波导是截面形状为矩形的空芯金属管,其结构如图3所示。矩形波导是最常见的波导,a、b分别为内壁的宽边和窄边尺寸。矩形波导的管壁材料是金属,求解时可认为是理想导体,波导内填充的介质可认为是理想介质。电磁波只有在满足传播条件时才能在波导内传播,即和电磁波的工作频率、矩形波导尺寸以及模指数都有关。当这些参数发生变化时,传播的模式也会随之改变。大多情况下,不管波导内是单模传播还是多模传播,都想得到单个模式的传播特性和场结构。据此,通过XFDTD仿真得到国产BJ-100型号波导内TE10模的场结构。

对于BJ-100型号波导,宽边a=22.86 mm,窄边b=10.16mm,波导内媒质为空气。设置工作频率为15GHz,工作波长为2cm。根据工作波长

为验证XFDTD方法的准确性,根据教材[8]提供的解析法,利用Matlab编程,也得到了TE10模的场分布,如图5所示。

对比图4和图5,可以得知周期和变化规律是一样的,只是初始相位略有不同。解析法中设置初始相位为零,而在XFDTD中则不然。

3 结语

本文提出了利用电磁仿真软件设计《电磁场与波》课程中典型例子的方法,得到二维、三维及动态图形,形象、直观地演示了电磁波在媒质或传输线中的传播过程和分布情况,把深奥难懂的理论知识通过图像的形式表现出来,激发了学生的学习热情,促进充分了解课程内容精髓,深刻理解课程内容,从而为今后的学习打下坚实基础。学生对电磁仿真软件和Matlab语言有所了解和掌握,拓展了知识面,为培养宽口径、高素质人才打下基础。

参考文献:

[1] 凌丹,陈文华. 电磁场与微波实验教学的探索与实践[J]. 实验室研究与探索,2014(33):210213.

[2] 黄麟舒,柳超,项顺祥. 《电磁场与电磁波》与《大学物理・电磁学》的教学比较研究[J]. 软件导刊:教育技术,2013(5):1617.

[3] 黄冶,张建华,戴剑华. 电磁仿真在“场”类实验教学中的应用[J]. 实验室研究与探索,2012(4):322326.

[4] 戴晴,黄纪军,莫锦军. 现代微波与天线测量技术[M]. 北京:电子工业出版社,2008.

[5] 张量,孔勐,陈明生,等. 《电磁场与电磁波》课程实验教学研究[J]. 合肥师范学院学报,2013(31):7375.

[6] 梁振光. MATLAB在《电磁场》教学中的应用[J]. 电气电子教学学报,2004(26):105106.

电磁波课程论文第9篇

关键词:电磁场与电磁波;教学改革;Mathematica数学软件;辅助教学

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)01-0086-02

“电磁场与电磁波”是电子、通信等信息类理工科本科专业的一门基础必修课程,是教育部电子信息类工程教育专业论证指定课程之一。随着现代信息技术的飞速发展,从事各类信息技术的人员必须通晓和掌握电磁场与电磁波的基本理论、分析方法及其技术应用。同时,现代化课程教学手段和工具也在发生着巨大的变化,伴随着多媒体教室的推广和个人计算机的普及,各种专业软件在课堂教学的应用具备了硬件条件支撑,成为了一类重要的辅助教学工具。特别地,以Mathematica符号计算和MATLAB数值计算为典型代表的专业数学软件已在许多课程教学中得到大量应用。它们不仅可以进行微积分、矢量分析和坐标系变Q之类的符号运算以及大型复杂矩阵运算、偏微分方程求解等科学计算,而且还具有丰富的可视化能力,可以描绘出各类复杂的二、三维图形或动画图形,为辅助求解电磁场问题提供了方便。将专业数学软件引入到课堂的辅助教学中,有利于帮助学生理解和掌握电磁场与电磁波的特点与规律,对于提升课堂教学质量,提高教学效果具有重要意义。

一、教改目的

“电磁场与电磁波”课程是一门具有浓厚数学与物理学色彩的课程。它理论性强,概念抽象,数学推导繁琐,而且基本物理量是三维空间矢量,对学生的科学计算、抽象思维和空间想象等诸多能力要求较高,被公认为是一门“教师难教、学生难学”的理论课程。究其原因,主要包括以下几个方面:

1.计算繁琐。电磁场问题的求解通常比较复杂,它涉及到许多数学领域的计算,例如旋度散度中的求导、时谐场的复数运算和偏微分方程的特殊函数求解,特别是矢量分析几乎贯穿在整个电磁场问题的求解过程中。

2.模型抽象。各种电磁场都具有复杂的矢量空间分布,同时非可见光频段的电磁波具有不可见和不可触摸的特性,只能进行抽象的空间想象,或者借助昂贵的仪器进行测量。

3.时空分布复杂。电磁波是电场与磁场相互激发的结果,它在不同位置不同时刻都在发生变化。为更好地描述电磁波的性质,绘制出空变化的动画图形是十分必要的。如果按照传统手工画图的课堂教学方式,对于复杂问题的求解和分析不仅耗时费力,容易出错,而且不能得到美观精确的三维图形演示。

以上这些不足极大影响了学生对该课程的学习兴趣,不利于教学工作的顺利开展。因此,在教学中我们应在熟练掌握Mathematica数学软件所具备的强大计算能力以及出色的图形展示能力的基础上,深入分析“电磁场与电磁波”课程内容、教学重点与难点,选择和设计典型电磁场与电磁波问题作为范例,全面、系统地开发对应的辅助教学配套讲义和程序包,并在该课程的辅助教学实践中不断改进完善。

二、教改意义

“电磁场与电磁波”课程包含有大量繁琐的公式推导、复杂多变的科学计算以及难以绘制的空间三维分布图。学生普遍反映该门课程比较难学,概念抽象,难以理解。这就要求在该课程教学中应针对这些实际问题开展教学改革探索与实践,寻求一条建设优质辅助教学资源的途径,努力为该课程的新型教学手段探索出一条崭新的道路。

基于Mathematica数学软件可安装在个人计算机上,并且具有其超强的公式推导、科学计算、模拟仿真和结果可视化功能,在理论理解上就可化抽象为清晰,在公式推导上化繁杂为简单,在科学计算上化耗时易错为快捷精确,用直观的图像形象地描述电磁场分布和电磁波传播的状态。这样师生们就可以从繁琐的数学计算和手工绘图中解放出来,将更多的精力放到对理论概念的理解和专业知识的获取上。同时,在掌握课程基本理论的基础上,对数学软件的初步学习和熟练使用,必将使得学生的科学计算和图形可视化展示能力“如虎添翼”,培养学生懂得借助现代计算工具来辅助课程学习和求解实际问题的意识。

开展此类基于数学软件的辅助教学还具有以下几个方面的优点:

1.课程内容和专业软件有机结合的综合教学。经过数学软件开发者多年的不懈努力和版本更新,现代专业数学软件已具有强大的功能,特别是符号计算和图形可视化功能的全力提升,可快速计算“高等数学”、“线性代数”、“复变函数”、“常微分和偏微分方程”等课程所涵盖的公式和方程,而这些课程是大部分物理类专业课程的数学基础。“电磁场与电磁波”课程刚好具有大量微积分计算、偏微分方程求解、公式推导和三维图形展示的教学需要,将Mathematica数学软件应用到这门课程的教学中可谓恰到好处。反过来,数学软件在电磁场与电磁波问题中的应用也为数学软件新功能的开发和完善提供了发展方向。

2.理论知识讲授和计算仿真演示结合的实时教学。由于场地、经费方面的制约,部分学校院系对“电磁场与电磁波”课程还没有开展实物实验的客观条件,导致课程变成纯理论教学,不利于学生对知识的深刻理解和实践应用。随着现代多媒体教室和个人笔记本电脑的普及,基于数学软件平台的电磁仿真计算和图形展示,使得科学计算和仿真演示可以和理论教学同时在教室里进行。这个优势也有利于学生在任意时间、地点应用笔记本电脑动手解决一些实际电磁学问题。

3.准确快捷的现代计算工具的全面应用替代了耗时易错的传统手工计算。利用Mathematica数学软件快速的符号计算功能辅助教学,使得电磁学问题的求解过程更加快捷方便,公式推导更加得心应手,还能完成手工无法胜任的大型矩阵计算和复杂偏微分方程求解等计算任务。

4.直观的可视化图形展示替代了深奥的抽象化想象理解。基于Mathematica数学软件强大的函数可视化功能,对不可见不可触摸的电磁场的求解结果进行仿真处理和图形展示,可以帮助我们直观理解电磁学问题,使得学生对电磁理论相关知识点更加易学易懂。

三、教改步骤

任课教师可在熟练掌握Mathematica专业数学软件所具备的功能基础上,深入分析“电磁场与电磁波”课程内容的特点、教学重点与难点,选择和设计典型问题作为范例,全面系统地开发这些范例所对应的配套辅助教学资料,并在辅助教学实践中不断完善。具体步骤建议如下:

1.教改方案与设计思路:调研国内“电磁场与电磁波”课程数学软件辅助教学开展情况,搜集有关文献资料,制定辅助教改方案,确定教改思路方法,合理安排人员分工和任务进度计划。

2.教改资源开发与建设:根据“电磁场与电磁波”课程教学大纲,以课程重点和难点内容为核心,挑选一些既典型又有一定计算难度和复杂性的电磁学问题作为范例。基于Mathematica数学软件,开展代码编写、调试和优化,汇总整理程序代码包,编写一套完整的辅助教学讲义和资料。

3.教改成果实践与完善:将上述辅助教学资料在“电磁场与电磁波”课程教学中应用。根据教学实践中碰到的问题和学生反馈的意见,不断加以改进完善。

四、总结

在“电磁场与电磁波”课程中引入Mathematica数学软件作为辅助教学工具,可有效解决该课程的诸多教学难题,全面提升学生的科学计算、公式推导和图形可视化能力,提高其对课程的学习兴趣。以Mathematica数学软件为开发平台,我们可以把理论教学和计算仿真教学有效结合起来,加深学生对电磁理论的直观化形象化理解,鼓励学生自己动手利用Mathematica数学软件解决一些实际的电磁学问题。这也是全面提高学生综合素质能力,培养现代创新型人才的改革需要。同时,在“电磁场与电磁波”课程中开展基于数学软件的辅助教学改革实践不仅丰富了该课程的教学手段,而且由于软件程序代码具有很好的可移植性和可修改性,对其他类似专业课程的教学改革也具有很高的参考价值。

参考文献:

[1]杜建明.Mathematica在电磁场理论中的应用[M].安徽:合肥工业出版社,2004.

[2]王明军,李应乐,唐静.MATLAB在电磁场与电磁波课程教学中的应用[J].咸阳师范学院学报,2009,24(2):89-91.

[3]邵小桃,郭勇,李一玫.“电磁场与电磁波”课程的MATLAB辅助教学[J].电气电子教学学报,2010,32(5):111-113.

相关文章
相关期刊
友情链接