时间:2023-03-06 16:03:25
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇数学概念教学论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
摘 要:在科学技术不断发展、进步的今天,知识的更新速度日新月异,作为一名高中数学教学者,只有不断学习、进步,才能顺应时代的发展。
关键词:高中数学;高效课堂;策略
在新课改不断推行的过程中,各门课程的改革势在必行。为了适应时代的发展,符合新课改的要求,高中数学也做了一些相应的调整,采取了相应的措施。课堂是教学开展的主要平台,是学生学习的主要阵地,它就是教师完成教学任务,学生完成学习任务的主要途径,而高效课堂是促使教师教学效率以及学生学习效率稳定提升的主要途径,所以,高效课堂成为整个教育界共同探讨的话题。如何构建高效的高中数学教学课堂成为新课程改革大环境下一个相当棘手的话题。因此,本文就如何构建高效的高中数学课堂提出几种策略。
一、通过生活化问题情境的导入,调动学生学习的积极性
有经验的教师都知道,学生学习的积极性,在教学过程中是多么的重要。只有善于调动学生学习积极性,激发学生学习兴趣的教师,其课堂教学效率才会高,教学结果才会理想。因此,在教学中,教师的首要教学任务,就是通过精心设计生活化的问题情境,导入课题,激发学生与课堂产生共鸣,让他们能够触景生情,积极走进课堂,参与教学。比如,我在教学高一《集合与函数概念》这一章中“函数及其表示”这一知识点时,为了促使学生很快清晰地掌握完整的函数定义,我结合学生刚学过的《集合》这一章内容进行导入,首先,我借助有关集合的两个例题,让学生回顾与集合相关的知识,然后我根据学生实际生活进行提问,引发学生进行思考,如,“期中考试的成绩出来了,我们班50人中,每个阶段的学生人数都不尽相同,成绩分布如下,90——100分5人,80——90分12人,70——80人10人,60——70分8人,60——50分5人,40——50分5分,30——40分3人,20——30分0人,而20分以下2人,请同学们分别算出各个阶段学生的数学成绩的概率是多少?”学生在做题的过程中,复习了以前的知识,同时,也激发了学习兴趣,调动了学生学习的积极性。再如,我在教学《空间几何体》这一章时,为了促使学生意识到什么是空间集合图形,我首先结合学生的实际生活举了两个例子,如“粉笔盒”“电冰箱”“洗衣机”,而后再结合空间集合图形的结构特点对学生进行引导,再让学生联系的亲身经历,谈谈他们所认识的空间几何图形。学生在我的引导下,积极动脑,主动思考,很快地就走进课堂,融入教学,这对我下一步教学的开展是非常有利的。
二、重视“问题”在教学开展中的重要性
数学是一门思维性很强的应用学科,其教学过程也是发现问题、解决问题的过程。“问题”作为整个数学课堂的灵魂,在教学中非常重要。因此,作为高中数学教师,()在教学中一定要重视“问题”的重要性,要善于“提问”。
1。在关键处提问
“提问”是激发学生思维发展的直接途径,是促使学生开动脑筋思考的最有利手段。因此,在教学中教师要善于在关键处“精”问,问题要能够起到引导学生思维发展、促进学生学习能力提升的目的,切忌提“对不对”“是不是”“不是吗”等毫无启发价值的问题。例如,在教学《函数》这一知识点时,为了让学生明白函数在生活中的运用,我通过“同学们,你们还能举例说明函数在我们生活中的应用吗?”引导学生进行思考,收到了很好的教学效果。
2。注意提问的技巧
在高中数学教学中,提问也是一门艺术,有许多的提问技巧。教师要善于总结、归纳,并灵活运用。首先,在课堂上,教师的提问要具有启发性,能够引导学生思考,最好在关键处进行提问,激发学生的思维,积极动脑。其次,提问的语言尽量简单、明了、循序渐进,使学生容易理解,便于接受。最后,每次提问,教师都应该给学生留足够的思考时间,切忌盲目地提问,无效地提问。
三、提倡学生注重预习
学习是“文本”“教师”“学生”三者有机结合的过程,每一个因素在教学中都占有非常重要的分量。就高中数学这门教学课程的学科特点而言,对学生实践能力、动手能力的要求都很严。而高中数学教学大纲也曾清晰地指出,高中数学教学必须倡导学生自主动手,主动学习。因此,在教学中,教师应该注重引导学生预习,课文预习、习题预习。在文本预习中,学生要能够通过自主学习,掌握教学内容,明确课文中的基本概念,并且通过分析、整理,能够掌握概念、公式的特点、规律,同时,在预习中能够针对教材中出现的问题,进行思考,并作上相应的标记符号,方便在新授课中的学习。在习题预习中,要重点根据文中例题进行分析,总结做题思路以及格式,能够提前将文本相应的习题做一遍,并找出相应的重难点。
四、重视学生学习的主体性,将课堂还给学生
1巧借“概念图”回顾教学内容,帮助学生巩固数学概念
在高中数学教学中,由于受到课堂教学时间、教学计划和教学内容安排等诸多因素的限制,很多学生对教学内容的认识、理解和学习都存在片面性,无法将教学内容有机结合起来形成整体.如果学生在课后没有及时对其进行分析、思考和巩固,就会导致对数学概念和数学知识无法做到综合应用.因此,数学教师需要在课堂教学中,巧借“概念图”帮助学生回顾教学内容,这样既可以帮助学生巩固数学概念和数学知识,又可以帮助学生对教学内容进行消化吸收.例如:在苏教版高中数学必修二第二章第一节“直线与方程”的讲解中,教学内容既包括倾斜角和斜率等数学概念,又包括直线方程的表达形式、距离求解和两直线间位置关系等内容,而每部分教学内容又涉及很多的数学公式.学生在分课程学习的过程中,很难做到一窥全貌.教师可以在整节知识讲解结束后,单独安排一节课的教学时间,引领学生以“概念图”的形式对教学内容进行回顾(如图2),以加深学生对数学知识的理解和掌握.在教师的概念图中,不仅将数学概念和数学公式逐一列出,而且对数学概念和数学公式应用的条件也有详细的说明.同时,数学教师在讲解的过程中,还可以与学生进行积极的互动交流,以引导的方式让学生回顾相关的数学概念和数学知识,从而加深学生对教学内容的印象.
2巧借“概念图”加强知识联系,帮助学生推导数学公式
高中数学教学内容中包含着很多数学公式,这给学生的理解和记忆造成了一定的困难.因此,高中数学教师在课堂教学中,可以巧借“概念图”,将不同数学公式之间千丝万缕的联系清晰直观地呈现出来,这样既可以帮助学生综合应用数学公式,又可以帮助学生学会推导数学公式,降低学生记忆数学公式的难度.例如:在苏教版高中数学必修四第三章“三角恒等变换”的讲解中,教学目标要求学生既要掌握数学公式的理解和运用,又要了解数学公式的推导过程,尝试运用所学数学知识推导两角和与差及二倍角公式.很多学生对两角和与差及二倍角公式的运用较为熟练,但是对于其推导过程却不太熟悉,只能通过死记硬背的方式掌握数学公式.数学教师可以将和角公式、差角公式和二倍角公式以“概念图”的形式进行呈现(如图3),帮助学生更好地理解、掌握和运用这些数学公式.在概念图中,学生可以很清楚地认识到不同数学公式之间的关系,以及相互推导的关键环节,这样既减少了学生记忆数学公式的时间,提高了学生记忆数学公式的效率,又帮助学生加深了对数学公式推导过程的理解,为学生更好地运用数学公式解题创造了有利的条件.襛巧借“概念图”进行解题,提高学生解题水平概念图不但可以帮助学生掌握数学概念之间的联系,而且可以帮助学生求解较难数学题目,让学生找到正确的解题方法和解题思路.因此,高中数学教师在教学中,可以利用“概念图”指导学生分析和思考题目,建立已知条件和求解问题之间的“概念图”.例题:已知函数f(x)=loga(2-ax)在区间[0,1]上为减函数,求a的取值范围.分析:本题为对数函数中的综合题,虽然题目中的已知条件较少,但是在底数和真数中均含有参数a,即使对底数进行分类讨论,也不太容易求解最终的答案.教师可以利用“概念图”进行讲解(如图4).首先,教师可以让学生将题目中的已知条件列举出来,如原函数是由u=2-ax和f(x)=logau构成的复合函数,定义域为[0,1],原函数在定义域中为减函数.然后教师以“概念图”的形式,让学生思考题目中复合函数同增异减性质和定义域及单调递减条件之间的联系.最后,学生很容易通过“概念图”,想到利用复合函数单调性进行求解,并得到正确答案.高中数学教师在指导学生解题时,可以巧借“概念图”帮助学生将题目中的已知条件和隐含条件有机结合起来,从而使学生找到正确的解题思路和解题方法,逐步提高学生的解题能力.总之,高中数学教学内容抽象深奥,数学概念和数学公式较多,如果教师单纯以课堂理论知识讲解的形式开展教学活动,就会使课堂教学枯燥无味,学生失去了学习的兴趣,课堂教学效果自然也难以尽如人意.而高中数学教师在课堂教学中巧借“概念图”,利用其形象直观、层次分明和条理清晰等特点,既可以帮助学生构建完整的知识体系,又可以加深学生对教学内容的理解和掌握,从而在提高课堂教学质量和教学效率的基础上,培养学生的数学思想,增强学生处理数学问题的能力.
作者:周建平 单位:江苏苏州市陆慕高级中学
一、在引入概念时训练学生的形象思维
形象思维以表象和想象为基本形式,以观察、实验、联想、类比、猜想等为基本方法。在数学概念引入时,教师应从学生的生活实际入手,充分运用实物、教具、图表等直观教具,以及动手操作等直观手段,帮助学生获得正确、完整、丰富的表象,训练学生的形象思维。
例如“面积”的概念,可通过引导学生观察黑板、桌子、课本等实物的面引入,还可以引导学生用小刀剖开萝卜观察它的截面,让学生亲眼看一看,亲手摸一摸引入。通过多种感官的协同活动,使面积的具体形象在学生头脑中得到全面的反映。
又如教学“除法的初步认识”,一位教师先让学生分小棒:每人拿出8根小棒,把它们分成两排,看有几种分法。教师适时把他们的不同分法展示出来:
附图{图}
然后启发学生观察比较:这四种分法有什么相同?有什么不同?从而引出“平均分”。
这样引入概念,符合小学生掌握概念的认知规律:即从外部的感知开始,通过一系列外部操作活动和内部智力活动,把感性材料和生活经验化为概念。
二、在概念的形成中训练学生的抽象思维
抽象思维是用抽象的方式对事物进行概括,并凭借抽象材料进行的思维活动。它以概念、判断、推理为基本形式,以分析与综合,比较与分类,抽象与概括、归纳与演绎为基本方法。数学抽象思维能力指的是理解、掌握和运用数学概念与原理的能力。
在小学数学概念形成过程中,要及时把概念从具体引向抽象,抓住实质,排除个别实例对全面理解和运用概念的干扰,使学生充分了解概念的内涵和外延。
例如,一位教师教学“长方体和正方体的认识”时,在指导学生给不同形体的实物分类引入“长方体”和“正方体”的概念后,及时引导学生先把“长方体”或“正方体”的各个面描在纸上,并仔细观察描出的各个面有什么特点,再认识什么叫“棱”?什么叫“顶点”,然后,指导学生分组填好领料单,根据领料单领取“顶点”和“棱”,制作“长方体”或“正方体”的模型,边观察边讨论,长方体与正方体的顶点和棱有什么特点,最后指导学生自己归纳、概括出“长方体”和“正方体”的特征。从而使学生充分了解“长方体”和“正方体”这两个概念的内涵和外延。这样,既使学生掌握了“长方体”、“正方体”概念的本质属性,又训练了抽象思维。
三、在深化概念中训练学生思维的深刻性
学生数学思维的深刻性集中表现在善于全面地、深入地思考问题,能运用逻辑思维方法,思考与问题有关的所有条件,抓住问题的实质,正确、简捷地解决问题。在深化概念的教学中,可从以下两方面训练学生思维的深刻性。
一是在学生理解和形成概念之后,要引导他们对学过的有关概念进行比较、归类。既要注意概念间的相同点和内在联系,把有关概念沟通起来,使其系统化,又要注意概念之间的不同点,把有关概念区分开来。从而使学生逐步加深对概念内涵和外延的认识,深入理解概念。例如学习了“比”的概念后,可设计下表引导学生弄清“比”、“除法”、“分数”这三个概念之间的联系与区别。名称举例相互关系区别
比2:3前项:(比号)后项比值两个数的关系除法2÷3被除数÷(除号)除数商一种运算分数2/3分子──(分数线)分母分数值一个数
二是在运用数学概念解决问题的过程中,要引导学生识别数学概念的各种变式,从变化中抓概念的本质。例如,学生认识了“直角”后,教师,出示不同位置的直角(如下图),让学生判断:
附图{图}
一、教材分析
1、教材的地位和作用:
函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中学生对函数概念理解的程度会直接影响数学其它知识的学习,所以函数的第一课时非常的重要。
2、教学目标及确立的依据:
教学目标:
(1)教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。
(2)能力训练目标:通过教学培养学生的抽象概括能力、逻辑思维能力。
(3)德育渗透目标:使学生懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。
教学目标确立的依据:
函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学生学好其他的数学内容。而掌握好函数的概念是学好函数的基石。
3、教学重点难点及确立的依据:
教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。
教学难点:映射的概念,函数近代概念,及函数符号的理解。
重点难点确立的依据:
映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的学生来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来高考有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。
二、教材的处理:
将映射的定义及类比手法的运用作为本课突破难点的关键。函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使学生真正对函数的概念有很准确的认识。
三、教学方法和学法
教学方法:讲授为主,学生自主预习为辅。
依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为学生能学好后面的知识打下坚实的基础。学法:四、教学程序
一、课程导入
通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。
例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起?
二.新课讲授:
(1)接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生总结归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:AB,及原像和像的定义。强调指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的对应法则f。进一步引导学生总结判断一个从A到B的对应是否为映射的关键是看A中的任意一个元素通过对应法则f在B中是否有唯一确定的元素与之对应。
(2)巩固练习课本52页第八题。
此练习能让学生更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。
例1.给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导学生发现它们是特殊的映射进而给出函数的近代定义(设A、B是两个非空集合,如果按照某种对应法则f,使得A中的任何一个元素在集合B中都有唯一的元素与之对应则这样的对应叫做集合A到集合B的映射,它包括非空集合A和B以及从A到B的对应法则f),并说明把函f:AB记为y=f(x),其中自变量x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{f(x):x∈A}叫做函数的值域。
并把函数的近代定义与映射定义比较使学生认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。
再以让学生判断的方式给出以下关于函数近代定义的注意事项:
2.函数是非空数集到非空数集的映射。
3.f表示对应关系,在不同的函数中f的具体含义不一样。
4.f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。
5.集合A中的数的任意性,集合B中数的唯一性。
6.“f:AB”表示一个函数有三要素:法则f(是核心),定义域A(要优先),值域C(上函数值的集合且C∈B)。
三.讲解例题
例1.问y=1(x∈A)是不是函数?
解:y=1可以化为y=0*X+1
画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。
[注]:引导学生从集合,映射的观点认识函数的定义。四.课时小结:
1.映射的定义。
2.函数的近代定义。
3.函数的三要素及符号的正确理解和应用。
4.函数近代定义的五大注意点。
五.课后作业及板书设计
当前,小学高年级的数学教学方法种类比较多。老师不同教学方法就千差万别,数学老师在教学的时候会根据课程内容进行规划,然后根据学生的实际情况进行难易的搭配,然后运用适当的教学方法。但是,教学方法的制定未必就能带来学生成绩的变化,很多情况下,老师制定了教学方法,可是由于多种原因,在现实教学中不能实施,或者是实施起来并不能收到想要的教学效果。这就需要老师在制定教学方法的时候要注意贴近性,不要只追求新、变,而失去了教学方法的真正意义。一般情况下,在小学高年级数学教学中出现最多的教学方法就是,老师通过板书在讲台上讲解,然后学生进行被动的接受。这种教学方法存在着极大的缺点,首先,教学方法呆板、无趣,不能吸引学生的注意力以及引起学生的学习兴趣,所以学生在数学课上并不积极。其次,这种教学方法,让学生成为了学习的被动者,学生应该是课堂的学习主体,而这样的方法使得学生不能自由发挥自己的想法,使得思想受到了束缚。再次就是这样的教学方法需要学生全神贯注的听,因为数学是一种连贯性、思维性极强的学科,所以一旦其中一个环节没有听到就会导致后面的整个内容都不能理解。但是这种教学方法的一大优势就是可以让学生在最短的时间内获取足够多的知识。还有一种常见的方法就是通过向学生提问来进行数学知识的讲解。这种教学方法,在实施中有很多的问题。首先,学生刚刚接触一个新的知识点,并没有一定的基础,采取这种方法,会有很大的难度,而且这种方法降低了教学进度。使得教学缓慢,而且学生理解上也会存在一定的偏差。在当前新课改的背景下,作为小学高年级数学教师应该努力进行教学方法的改进,在原有的教学方法上,提取精髓,摒弃糟粕。帮助学生提高数学能力。同时,还要进行教学方法的创新,这样的做法有助于提高学生的学习兴趣,培养学生的求知欲望。
二、新课改背景下小学高年级数学教学方法
随着小学数学教学的改革,为了紧随教学的改革,就需要小学数学老师不断的改进自己的教学方法,根据以往的教学经验进行方法的总结,不断的对教学方法进行创新、改革,提高小学高年级数学教学质量,培养学生对数学学习的兴趣还有自身的数学能力,为学生以后的发展奠定坚实的基础。
三、结语
(一)让学生们形成清晰的概念表象
概念表象指的是学生们以前所学过的概念在脑中再现的形象。表象并不是一种简单的再现,它属于感性认识,是一种从感性知觉到思维,由印象到概念的过渡环节。例如在复习“分数的意义”时,当学生看到便会在脑海中建立这样的一个形象:“把一个物体平均分成4份表示这样的1份”。当学生们在信中睡起这样的一个表象后,就能够更加容易的理解分数的意义“表示把一个物体平均分成几份表示这样一份的数”这一句话时就会更加的容易了。
(二)帮助学生再现概念形成与同化的过程
概念的形成,其指的是人们对于同类事物中的不同例子,在进行感知、分析、比较与抽象后,对这类事物的属性进行概括,从而形成概念的方式。概念同化是一种概念学习的方式。它是在教学的过程中,利用学生现有的知识经验,通过定义的方式直接提出概念,同时再揭示概念的本质属性,由学生主动的地与原认知结构中的有关概念相联系去学习和掌握概念的方式。因此在数学的概念复习的过程中,必须要为学生们再现概念的形成与同化的过程,以此来加深概念在学生心中的印象,让学生们能够知其然再知其所以然。例如在复习“平面图形面积”时,首先,先让学生们自己回忆到底学过多少中平面图形,让回让他们回忆这些平面图形的面积公式是如何来的,并让他们用自己的语言来描述这些面积公式得来的过程,并发现自己是否还有什么不理解的地方。这个过程就是一个概念的再一次形成与同化过程。在这一个过程中教师需要从其中发现学生们所掌握的知识是否还存在缺陷,并引导他们进行改进。
二、帮助学生形成一个系统的概念系
这里的概念系指的是在个体头脑中所形成的一个概念网络,在这个网络中的概念相互之间都存在着一些联系。对于概念的学习就必须要理清概念之间的相互联系,只有这样才能够更加牢固的掌握概念。
(一)为学生提供探究素材,理清概念之间的相互关系
例如在复习“量与计量单位”时,我们可以设计这样的一个教学过程:在课前让学生自己整理、了解量与计量单位的相关概念,以及相互之间的概念;进行转换摸底,了解学生对这两者的概念的掌握程度;通过教学突出量与计量单位这两者概念之间的关系,让学生自己形成一个系统的模式。例如帮助学生认清长度单位、面积单位和体积单位之间的关系,整合长度、面积、体积单位的进率和各自进率的联系。
(二)联系现实,让学生触类旁通
概念的复习其重点应该帮助学生去努力的建立起关系体系,而不是鼓励他们成为一个方法的熟练操作者。概念的复习是为了让学生们更好的掌握概念。通过这训练,让学生们对分数、比例的概念已经它们之间的关系了解的更加的深刻,同时让学生们学会在进行概念的复习的时候要举一反三,并能够触类旁通。
三、帮助学生对一些概念的等价定义形成知识网络
在概念复习的过程中,要帮助学生对那些概念的多个等价定义在头脑中形成一个个完整的知识网络。
(一)帮助学生加强对相似概念的辨析
在小学数学中,有一些概念,他们含义接近,但是在具体的本质上却又有一些区别。对于这些概念,学生们背诵了、记住了字面意思,并不等于他们就真正的理解了概念了。教师们必须要痛实例来突出这些概念的特征,帮助学生们真正的理解概念的内涵,区分这些概念的区别,以此来加强对概念的掌握。例如在复习“小数的性质”时,可以让学生去判断“0.40,0.03,20.020,2.800,10.404,5.000”这一组数中的那些“0”可以去掉,哪些“0”不能去掉?为什么能去掉(或不能去掉)?利用这种练习来让学生们对小数的性质有更加深刻的理解。再例如奇数与质数,偶数与合数,化简比与求比值,时间与时刻,质数与质因数,周长与面积等等这些概念有很多都是那种乍看上去都很相似,但实际上却又有很多的不同之处,这类概念学生们在学习的时候很容易产生混淆,从而影响到他们后面的数学学习,因此必须要及时的让他们区分这些概念,以避免相互干扰
(二)加强变式,帮助学生掌握概念的本质特征
在学习概念的时候,小学生有一个显著的特点,那就是对某一个概念的内涵不是很清楚,掌握的也不全面,常常将一些非本质的特征来作为概念的本质特征。例如,有一些学生存在着这样的一种认识,那就是只有水平放置的长方形才叫长方形,斜着放的长方形就不知道叫什么了。为此在进行复习的时候,我们应该将概念的叙述或者表达方式进行一定变化,让学生们从各个侧面去理解概念,其主要目的是让学生从变式中去理解概念的本质属性,以便于排除各种非本质属性的干扰。
四、帮助学生构建完善的概念网
概念以及各种陈述性的知识,都是关于事物及其关系的知识,或者说是关于“是什么”的知识,包括对事实、规则、事件等信息的表达。它们主要是通过网络化与结构性来表示观念之间的各种联系。因此,我们必须要在复习的过程中,帮助学生们构建一个完善的概念网。这个过程教师只能够引导,因为这张“网”必须要根据学生的知识掌握程度,来构建他们自己的知识链、知识网及知识存放的序。
(一)帮助学生找接点
设计开放题来了解学生的知识结构与概念掌握情况,并帮助学生将已经学过的各种概念知识点串联到一起。例如在复习“比”的概念的时候,可以设计这样的一道开放题:“学了“比”你能联想到哪些知识?”看到这道题学生们自然就会联想到分数、除法。而除法、分数、比这三者之间的相似之处就是我们需要抓住的连接点。然后在通过有的放矢地将分数、除法、比等知识散点组串起来。
关键词:高中数学;概念图教学;应用策略
概念图教学策略已经被许多学校应用到了实际教学过程中,但是,由于受多方面因素的影响,它所取得的成就并不是很显著,为了尽快改变这一现状,我们必须首先发现问题,然后针对不同问题提出相对应的解决对策.
一、高中数学概念图教学的应用现状
随着近几年来各国教学方法的不断改革和创新,许多国家已经将概念图教学方法应用到了各个学科之中.概念图首先是被美国研究并且应用到实际教学过程中的,美国在应用概念图的过程中取得了一系列的显著成就,并且正式对这一教学方法进行公布.我国采用概念图教学的起步比较晚,这就大大地增加了我国与其他发达国家之间的差距.我国在将概念图教学方法引用之后,主要将这一教学方法应用到物理、化学以及生物领域中,而很少在数学以及英语等学科中应用.我们知道,高中数学中许多重要的知识点都需要利用概念图来进行阐述和表达,它的应用可以减少高中数学的难度,提高学生学习数学的兴趣.
二、高中数学中概念图教学方法的应用策略
(一)认真进行课前预习
概念图对于所有的高中教师和学生而言,都是一个全新的概念,如果教师仅仅依靠课堂上仅有的时间来讲解所有的知识,而学生也只是利用短暂的时间来理解和掌握,并不能达到我们预期的结果.因此,教师在讲解之前必须要认真进行备课.首先了解概念图教学方法的实质和特点,然后,结合课堂上需要讲解的内容适当地应用概念图,将所讲解的知识都利用直观的概念图来呈现出来.而学生在上课之前,也应该认真进行预习,对于课堂上所要学习的知识进行一个总体的理解和概括,对于一些自己无法理解的知识应该做一定的标记,然后,在课堂上认真听课.例如,教师在讲解数集的时候,可以针对数集的概念来制定一个简单而又形象的概念图.
(二)不断改革和创新教学方法
高中数学是一门复杂性较强的科目,它所涉及的内容不仅广泛,而且比较复杂,许多学生,尤其是女生在学习过程中遇到了许多的问题,久而久之,她们就会渐渐地失去学习的兴趣.为了提高学生学习数学的兴趣,教师应该不断地改革和创新教学方法,并且尽快将概念图教学方法应用到实际中.例如,当在讲解函数的时候,教师应该首先确定一个合理的概念图;然后,在课堂上,教师让学生自己去想象概念图,并且让其中一位学生将自己所理解的概念图画在黑板上,接着选择一位学生对这位学生的概念图进行补充,如果概念图还不完善,继续选择其他的学生对这一概念图进行补充;最后,利用概念图将函数形象地表示出来.
(三)完善课堂评价和奖励机制
在高中阶段,许多高中学生的自尊心以及好胜心都比较强,他们都渴望自己可以得到教师的夸奖,如果教师可以定期对他们的学习进行评价和奖励,可以提高他们学习数学的兴趣.另外,我们知道,由于概念图教学是一个全新的方法,许多学生对于这一方法并没有过多的了解,因此,教师可以根据高中学生的心理特点不断完善数学课堂评价和奖励机制,从而增加他们对于概念图教学方法的兴趣.例如,当教师在讲解集合的时候,可以鼓励学生先自己去构建概念图,然后,由其他学生对这些概念图的构建进行评价和总结,并且选择出最好的概念图,最后,教师对这位学生进行一定的奖励.
三、高中数学概念图教学方法应用的意义
(一)提高学生的综合能力
概念图是一种新型的教学方法,这种教学方法的应用,不仅可以激发学生学习数学的兴趣,还可以帮助他们更好地掌握一种全新的学习方法,开拓自己的视眼,丰富自己的知识.另外,概念图这种学习方法既可以应用到数学的学习过程中,也可以将它应用到其他科目的学习过程中,督促自己可以更好地掌握这种学习方法.利用这种学习方法不断提高自己自主学习的能力和理解新知识的能力,也可以帮助我们更好地构建整个课本的知识框架,从而充分理解和掌握所有的知识.通过这种学习方法还可以帮助学生树立自信心,加强学生之间的交流和探讨.
(二)增加了师生之间的互动和交流
到目前为止,我国仍然采用应试考试制度,这种考试制度给我国许多的高中生以及高中教师带来了较大的压力.在课堂上始终坚持教师一味讲解,而学生则一味被动吸收的教学方法,这种教学方法减少了学生学习数学的兴趣.而概念图教学方法与传统的教学方法存在着较大的差异,它注重培养学生的自主学习能力以及交流合作能力.在利用这一方法教学的过程中,教师要求学生自主学习,主动去学习和理解新的知识,并且将这些知识利用概念图表示出来.在课堂上,教师要求学生去画出自己的概念图,并且说明自己构建概念图的思路,教师对他们的概念图进行评价和总结.这样不仅可以激发学生的创新能力,而且还可以增加教师和学生之间的互动,从而更有利于教学工作的开展和进步.
(三)提高教师的教学技能
概念图教学方法的应用对于教师的教学技巧有着较高的要求.利用概念图教学方法进行教学可以更好地增加教师对于所讲解知识的理解和掌握,不断地提高自己的教学技巧.例如,当教师在上课之前,必须对所要讲解的所有知识进行一个全面的理解和掌握,了解各个知识点之间的关系以及各个知识点的难易程度,然后,结合所有的这些特点来构建一个合理有效的概念图.另外,在构建过程中,教师还应该将新知识和旧知识进行联系,将旧知识插入新知识中,利用旧知识来提高学生对于新知识的理解和掌握能力.最后,在教师利用概念图这一方法进行教学的过程中,教师必须对与所要讲解知识有关的所有其他知识进行总结和整理,这样可以帮助教师形成一个良好的教学框架,久而久之,教师的教学技巧便会得到提高.
(四)增强学生学习数学的兴趣
与初中数学相比较,高中数学内容繁多复杂,许多学生在刚开始学习数学的时候热情高涨,久而久之,有一部分学生就会失去学习数学的兴趣,他们认为数学中所涉及的知识不仅非常广阔,而且极其不容易理解,尤其女生更是如此.另外,由于许多高中数学教学到目前为止仍然采用的是传统的教学方法,这就大大减少了学生学习数学的兴趣.而概念图教学方法的出现和应用很好地解决了这一问题,概念图教学方法的应用要求教师和学生在上课之前必须对新的知识认真进行预习,对这些知识有一定的理解和掌握.在课堂上,要求学生积极地去表达自己的思维,画出自己的概念图,并且积极与教师进行交流和探讨.另外,小组学习方法不仅可以增加学生与学生以及教师与学生之间的互动,还可以激发学生的思维,提高他们自主学习的能力,进而提高他们的学习技巧和学习能力.
小学数学中,有许多的概念存在相似之处,而小学生的年龄小识别能力较差,在学习数学概念时,往往只注意了概念的表象,而忽略了其本质属性,所以在教学数学概念时,首先要认真分析概念的特性和概念之间的内在联系,然后根据学生的年龄特点,选择几个关联密切的概念,让学生进行比较,使学生认清相关概念的差异。从而全面理解数学概念的本质属性,同时又进一步巩固相关的几个概念,发挥出举一反三的作用。
在教学互质数的意义时,教师可以通过表格式让学生对质数、质因数、互质数进行比较,使学生充分认识它们之间的关系,找出它们之间区别,弄清楚互质数是针对两个数而言的,不一定非质数不可,而是存在公约数只有1这一特性。然后再运用质数与质数,合数与合数,质数与合数的举例比较,使学生不仅全面认识互质数的性质,重要的是还进一步理解了质数和质因数的意义。
二、通过纵向比较,挖掘概念的共同性
数学概念不仅存在差异性,还存在着共同特性。许多数学概念看似“风马牛不相及”,但它们隐含着一定的共性,如果准确地把握它们的共性,运用这种特性可以帮助学生理解概念、掌握概念。小学生对事物的认识水平明显不如成人,所以,有相当一部分学生在一段时间内不能或没有把握数学概念之间的共性,从而使他们在学习数学概念时,学习效果不理想,所以需要教师在钻研教材时,注意挖掘各概念之间存在的共同性,在教学的前阶段做好铺垫教学,教学中阶段进行强化教学,教学后阶段拓展深化,使这类知识形成一个整体,也能提高对一系列概念的理解与巩固。
在教学比的基本性质时,首先复习分数的基本性质和商不变性质,然后引导学生认清比与分数、除法之间的关系,接着让学生将分数中的分子、分母,除法中的被除数、除数转换成比式中的前项与后项,并用具体的数字加以计算,从而得出结论,使三者概念融为一体,连成一串,学生学起来觉得轻松。
三、通过多元比较,把握概念的深刻性。
高中生较之初中生来说,虽然抽象思维能力有了一定的提高,但是辩证思维能力等仍然有待提高.因此面对着高中数学知识点的繁杂以及高中数学难度的增加,甚至是高中生在学习数学的时间减少的情况下,高中生在进行数学学习的时候,仍然会存在着吃不消的状况,因此我们引进概念图的教学方法,我们就可以将数学知识点之间的联系清晰地展现在学生的面前,从而在一定程度上降低了学生学习的难度,有助于提高学生对于数学知识点的综合把握,有助于促进学生将相关的知识点联系起来,从而提高学生的数学能力.
二、高中数学教育中的概念图教学实践
1.分析教学的目标,准备备课的笔记
教学活动开始之前教师要对整门课程以及教学单元进行分析,从而在宏观上对教学目标进行把握,对教学结构进行分析,有助于数学概念图的准确确立.教师要做好备课的笔记,这样在进行概念图构建的时候,对知识点容易连接,并且可以有重点地进行突出,这样教师在讲课时,就可以将概念图画得一目了然,有助于学生对于数学概念图的掌握.例如,我们在进行人教版高一数学第一单元“集合”的学习的时候,教师可以根据“集合”在整个高中数学知识点间的作用等进行分析,确立集合是高中数学学习的重要基础,对于函数学习有着重要的意义.然后根据“集合”整个章节的特点制定小的目标,并且构建合理的概念图.如,第二节课“集合的基本关系”这节课,教师通过研究教材合理的构建交集、并集、全集、补集之间关系的概念图.
2.创设问题情境,启发学生学习
根据奥苏贝尔的意义学习的心理学理论,创设问题情境,启发学生学习是一个很有效的学习方法.因此教师在课堂上可以利用数学概念图不断地创设问题情境,让同学们自发地进行学习,自发地将不同的知识点进行整理,可以促进学生对于知识点进行意义的建构,这样最后形成一个整体,对于高中数学的学习有着重要的意义.例如,教师在教授高中数学新课程的时候,教师引入数学概念图可以让学生更加形象、直观地理解数学知识.我们在学习高中数学人教版“函数的单调性”的时候,同学们很容易将不同函数的图形特点等混淆,这时候,教师就可以运用数学概念图,创设问题情境,启发学生对于不同函数单调性进行意义的建构,这样只有建立起一个完整的意义建构,学生对于这些知识点的混淆程度就会降低,有助于高中生对于“函数单调性”知识点的学习.
3.明确问题,学生自主绘制数学概念图
教师引导学生归根到底是为了让学生自己掌握数学概念图的绘制方法并且应用到学生的学习当中去.因此,教师对学生在宏观上对于知识点进行引导完毕后,可以要求学生,自己查阅资料,明确问题,绘制数学概念图.学生通过查阅资料自己绘制数学概念图就可以自己将有关的知识点进行连接,这有助于学生对于知识点的综合把握,以及对于不同知识点之间的联系进行意义建构,从而促进学生从宏观上和微观上综合把握数学知识点,提高学生的数学能力.
4.小组合作,完善数学概念图
合作的学习模式能够使得小组之间不同的社会成员就自己的理解进行交流,对于数学概念图不断地进行完善.“人无完人”,小组之内的不同成员的交流,不同思想的碰撞,就容易解决在学习的道路上碰到的疑难问题,从而不断地对数学概念图进行改进,使其更加科学,更加成熟,更加全面.
三、结束语