欢迎来到易发表网,发表咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

传感器设计论文优选九篇

时间:2022-11-25 09:50:49

传感器设计论文

传感器设计论文第1篇

1.1气压传感器的结构设计

压阻效应于1865年由LordKelvin首先发现,现在这个原理广泛应用于传感器原理中。当传感器薄膜结构上的压敏电阻受到外界压力作用时会产生形变,使电阻率发生变化从而引起电信号的改变,这就是压阻式压力传感器的工作原理。由此可见,压敏电阻的变化与受到的压力大小和压阻系数有关。本文中的气压传感器是基于硅的压阻效应设计的,制备的气压传感器芯片结构截面图。传感器结构由一个单晶硅弹性薄膜和集成在膜上的4个压敏电阻组成,4个电阻形成了惠斯通电桥结构,当有气压作用在弹性膜上时电桥会产生一个与所施加压力成线性比例关系的电压输出信号。

1.2气压传感器制作工艺流程

整个流程主要是采用硅表面微加工工艺。与传统的压阻式压力传感器的加工方法相比,该工艺流程采用了外延单晶硅硅膜的工艺进行真空腔密封,这种方法可以克服传统的湿法刻蚀工艺的缺点,加工出的单晶硅膜具有很好的机械性能。①首先,对硅衬底采用各向异性干法刻蚀,刻蚀出一道道约5μm深的浅槽。然后采用各向同性干法刻蚀,使浅槽下方形成一个连通的腔。②采用外延工艺,在衬底上进行单晶硅外延,并利用外延的硅材料将浅槽完全封住,从而在下面形成一个接近真空的密封腔。外延工艺如下:温度为1135℃,采用的是H2,PH3等气体,外延时的真空度为80torr。③在对外延硅层的局部区域进行小剂量硼离子注入。该部工艺主要是为了制作压敏电阻,压敏电阻主要位于膜四边的中央。④对局部区域进行大剂量硼离子注入。该步工艺主要是要实现压敏电阻条之间的欧姆连接,并为压敏电阻的引出做准备。⑤在硅片表面生长一层氧化层及氮化层,用作绝缘介质层。⑥对氧化层和氮化层光刻并图形化,形成接触孔。⑦溅射金属层并光刻图形化,形成引线及压焊块。

2测试电路设计

此压阻式气压传感器,压敏电阻初始电阻值为163Ω,满量程输出电阻变化最大为9Ω,针对此微小阻值变化量,本文中设计了一款专用接口测试电路。该测试电路主要包括STM32系列单片机及ADS1247模/数转换模块和液晶显示模块。电路应用时将惠斯通电桥输出节点与测试电路连接起来,通过硬件和软件的结合实现外界气压信号的检测并转化为数字电信号进行输出,读数在LCD显示屏上进行显示,测试电路板的说明如图4所示,针对部分重要模块的电路设计在下文说明。

2.1电源电路设计

测试系统中需要用到3.3V和5V两种电压(选用的STM32单片机规定工作电压为2.0V~3.6V,ADS1247数/模转换模块模拟电源部分供电电压为5V),根据测试电路元件的需求,采用国产LM2940-5和LM1117-3.3两个稳压模块来进行电源供电的设计。

2.2ADS1247模/数转换电路设计

ADS1247是TI公司推出的一种高性能、高精度的24位模拟数字转换器。ADS1247单片集成一个单周期低通数字滤波器和一个内部时钟、一个精密(ΔΣ)ADC与一个单周期低通数字滤波器和一个内部时钟。内置10mA低漂移电源参考和两个可编程电流型数字模拟转换器(DAC)。通过程序设置,在输出电压裕度内,DACS可为外部提供多种强度的电流,分别为50μA、100μA、250μA、500μA、750μA、1000μA、1500μA。除此之外,ADS1247还具有一个可编程放大器(PGA),放大倍数可设置为1倍、2倍、4倍、8倍、16倍、32倍、64倍、128倍。

3气压传感器性能测试分析

气压传感器作为一种高空探测的工具,它的性能好坏直接影响到高空探测的准确性,针对本传感器结构进行测试并从数据中对气压传感器的灵敏度、线性度、测试精度进行了分析及拟合修正。

4结束与讨论

传感器设计论文第2篇

交流电力智能传感器粗信号处理实验平台利用图1所示的采集、存储、微处理器、通信、上位机和VC-Matlab共6个接口即可将各功能模块构成一个有机整体。在研发该平台时,根据这些接口,也可以并行开发与之相应的采集模块、存储模块、通信模块、上位机模块及其他模块。由于粗信号处理研究的基本出发点在于为低成本实现交流电力智能传感器提供方法和技术支持,实验平台选取成本低、性价比高和稳定性好的89C51/52系列单片机作为其微处理器。接着将对这6个接口进行设计。

1.1采集接口采集模块由电流、电压等电力信号的感知部件、信号调理电路和A/D转换电路等构成。要求信号采集的分辨率为0.3V,采样频率不低于20kHz。采集模块对其滤波等信号调理方面没有要求,便于交流电力智能传感器硬件的简化,以利于减小体积和低成本实现。工业上一般采用三相交流电力,故采集模块应能采集三相电力的电压、电流信号。实验平台留给采集模块的微处理器I/O系统资源为P1口的低5位,以供采集模块使用。

1.2存储接口本实验平台需要存储来自于上位机的模拟电力信号u′、通过采集模块获得的三相电压、电流采集信号uA、uB、uC、iA、iB、iC,以及利用粗信号处理方法分析得来的电力特征参数或性能指标等数据。模拟电力信号主要用于分析粗信号处理方法在电力智能传感器中的实际测试精度、实时性以及可靠性。实测电力信号用于研究粗信号处理方法的现场分析性能,电力特征参数或性能指标是粗信号处理方法性能评价的依据。电力信号的采样周期Ts越短,一个电力信号周期T内的采样点数N越大,样本就越趋近于实际的电力信号。因此,本实验平台需要存储大量数据,仅利用微控制器自身的存储空间是远远不够的,需要扩展存储器。为确保分析精度,本实验平台采用基于IEEE754—1985《IEEEStandardforBoraryFloating-PointArithmeti》标准的浮点型数据格式进行存储,一个数据信息占用4个字节。为了让样本较好地逼近电力信号,无论对于实测信号还是模拟信号,N均取为512,存放3个周期的电力信号。频率、电压与电流的幅值、初相位是交流电力的特征参数;交流电力功率的基本性能指标为视在功率、有功功率、无功功率和功率因子。通过不同方法获得的这些参数或指标均需要保存。另外,还有用于计算、分析过程中的数据临时缓存区bufter,至少需要1kB的空间。另外,实验平台留给存储模块的系统I/O资源为P0、P2.0~P2.5、P3.6、P3.7。

1.3通信接流电力智能传感器粗信号处理实验平台对现场系统与上位机系统之间的通信速度无特别要求,采用RS-232串口全双工通信,数据格式为16进制,波特率为9600bit/s、8位数据位、1位停止位、无奇偶校验。本平台的通信协议格式如表1所示。其中字节头取值为0x68,结束码取值为0x16,A、B、C三相电压、电流采集通道ID分别为1,2,3,4,5,6,数据域内放置要传送的具体数据。数据长度表示数据域中的字节数,占用2个字节。将除校验码和结束码外的其他项通信信息累加,形成用1个字节表示的校验码。5个字节描述的控制字主要分成3类:数据请求控制字、数据上传控制字和辅助控制字。对于前两类,由于通信的内容为表1所示的信息(buffer项除外),故其格式为:Q或S+4位描述的表1中的数据(数据的下标变为正常字体,数据不足4位的项,其高位用零表示,如θuA1、uA1、u1′分别描述为θuA1、0uA1、0u1′,表示利用粗信号处理方法1分析实测交流A相电压信号所得的初始相位、电压有效值,分析模拟信号所得的电压有效值),其中,Q表示查询信息,S表示发送信息。辅助控制字的格式为:ACW+两位控制指令,其中,01表示测试串口通信是否正常(回复0表示串口通信正常,其他值表示串口通信不正常),02表示查询平台正常采集电力信号的通道数目,03表示查询平台正常采集电力信号的通道,04表示查询平台通信的波特率,05表示设置平台通信的波特率。辅助控制指令还可以根据需要进行扩展。

1.4微处理器接口微处理器模块主要由89C51/52集成芯片、复位电路、时钟电路、键盘单元、显示单元、CPU监视单元和电源单元等构成。它能将A/D单元后的电力信号进行采集并存放在存储器中,并利用多种粗信号处理方法分析采集或模拟交流电力信号,输入现场指令,显示现场系统的工作状态、分析结果;与上位机系统进行通信,监视CPU的工作状态,一旦出现“跑飞”等故障,复位CPU让其重新正常工作;能提供现场系统正常工作的电源。供微处理器模块使用的I/O为P1口的高3位。

1.5上位机接口与VisualC-Matlab接口上位机模块能模拟交流电力信号,实现多种交流电力粗信号处理方法,并将模拟交流电力信号“告知”现场系统,从现场系统处“获知”交流电力的实测信号以及现场系统的分析结果等;以图、列表等方式显示实测或模拟交流电力信号,并显示交流电力信号多种粗信号处理方法的分析结果等。VisualC++6.0是Window平台上一种强有力的软件开发集成环境,所以,本实验平台的上位机将利用VisualC++6.0进行其软件开发。对于模拟的交流电力,其特征参数和性能指标的真值是已知的;对于实测的交流电力,确定其特征参数和性能指标的真值比较困难。利用现有的经典方法获得这些真值不失为一种有效途径。Matlab工具箱提供了丰富的经典方法、算法和绘图方式,在VisualC++6.0中利用这些工具能可靠地计算出电力特征参数、性能指标的真值,并有效地缩短上位机软件的开发周期。在VisualC++6.0中调用Matlab工具箱中的函数有几种方式,结合自身特点,上位机模块宜采用引擎方式。利用这种方式的具体步骤为:1)在VisualC++6.0环境中添加Matlab引擎库头文件和库函数的路径,并在其菜单项ProjectSet-tings的【Link】选项卡上文本框中添加3个文件名libmx.lib、libmex.lib、libeng.lib。2)在工程头文件中加入引擎库头文件名Engine.h。首次调用Matlab函数时先利用engOpen函数打开Matlab引擎。该函数返回的引擎指针用于之后Matlab函数的调用。不再调用Matlab函数时,通过engClose函数关闭引擎。3)通过engEvalString函数向Matlab引擎发送包含所调用的Matlab函数名及其参数的命令字符串实现函数的调用。利用函数engGetVariable获取Matlab函数分析出来的信息。该函数返回一个mxArray类型的指针。函数mxGetData可将该类型的指针转化成可在VisualC++6.0中操作的void类型指针。

2实验

项目组将5位硕士研究生划分成4个小组:从原理设计到系统集成、调试,研制出该平台[7]共花费1个半月。利用实验室中的工业用交流电力对研制出的实验平台进行系统测试和验证。图2(a)为现场系统采集的一个单相交流电压信号,上位机系统通过通信模块获取了该信号并利用0、1、2号粗信号处理方法对其进行分析。上位机系统调用Matlab工具箱中的FFT函数获得该信号特征参数的真值,其中图2(b)、2(c)分别为该信号幅频、相频特性。图2(d)为该信号在实验平台上测试得出的综合信息。其中,幅值数据、相位数据列表框中的内容为图2(b)、2(c)的数据化,对该信号进行的3种粗信号处理(一个信号周期内用了21个采样点进行分析)是在上位机系统上进行的,其分析结果与现场系统基本相同,不同的主要在于处理速度,其主要原因是微处理器的晶振频率为12MHz,而上位机的主频为2.1GHz。由图2可知,方法1、2的精度高于方法0,这与相关研究成果相吻合,从而验证了该实验平台的有效性、可靠性。该实验平台研制的快速性、高效性以及研制出的平台有效性、可靠性证明了用于该平台研制的接口设计的有效性、合理性。

3结束语

传感器设计论文第3篇

关键词:传感器;AD转换;控制器;硬件电路

引言

随着微电子工业的迅速发展,单片机控制的智能型控制器广泛应用于电子产品中,为了使学生对单片机控制的智能型控制器有较深的了解。经过综合分析选择了由单片机控制的智能型液位控制器作为研究项目,通过训练充分激发学生分析问题、解决问题和综合应用所学知识的潜能。另外,液位控制在高层小区水塔水位控制,污水处理设备和有毒,腐蚀性液体液位控制中也被广泛应用。通过对模型的设计可很好的延伸到具体应用案例中。

一、系统设计方案比较说明

对于液位进行控制的方式有很多,而应用较多的主要有2种,一种是简单的机械式控制装置控制,一种是复杂的控制器控制方式。两种方式的实现如下:

(1)简单的机械式控制方式。其常用形式有浮标式、电极式等,这种控制形式的优点是结构简单,成本低廉。存在问题是精度不高,不能进行数值显示,另外很容易引起误动作,且只能单独控制,与计算机进行通信较难实现。

(2)复杂控制器控制方式。这种控制方式是通过安装在水泵出口管道上的压力传感器,把出口压力变成标准工业电信号的模拟信号,经过前置放大、多路切换、AD变换成数字信号传送到单片机,经单片机运算和给定参量的比较,进行PID运算,得出调节参量;经由DA变换给调压变频调速装置输入给定端,控制其输出电压变化,来调节电机转速,以达到控制水箱液位的目的。

针对上述2种控制方式,以及设计需达到的性能要求,这里选择第二种控制方式,同时考虑到成本需要把PID控制去掉。最终形成的方案是,利用单片机为控制核心,设计一个对供水箱水位进行监控的系统。根据监控对象的特征,要求实时检测水箱的液位高度,并与开始预设定值做比较,由单片机控制固态继电器的开断进行液位的调整,最终达到液位的预设定值。检测值若高于上限设定值时,要求报警,断开继电器,控制水泵停止上水;检测值若低于下限设定值,要求报警,开启继电器,控制水泵开始上水。现场实时显示测量值,从而实现对水箱液位的监控。

二、工作原理

基于单片机实现的液位控制器是以AT89C51芯片为核心,由键盘、数码显示、AD转换、传感器,电源和控制部分等组成。

工作过程如下:水箱(水塔)液位发生变化时,引起连接在水箱(水塔)底部的软管管内的空气气压变化,气压传感器在接收到软管内的空气气压信号后,即把变化量转化成电压信号;该信号经过运算放大电路放大后变成幅度为0~5V标准信号,送入AD转换器,AD转换器把模拟信号变成数字信号量,由单片机进行实时数据采集,并进行处理,根据设定要求控制输出,同时数码管显示液位高度。通过键盘设置液位高、低和限定值以及强制报警值。该系统控制器特点是直观地显示水位高度,可任意控制水位高度。

三、硬件设计

液位控制器的硬件主要包括由单片机、传感器(带变送器)、键盘电路、数码显示电路、AD转换器和输出控制电路等。

3.1单片机

单片机采用由Atmel公司生产的双列40脚AT89C51芯片。

3.2传感器

传感器使用SY一9411L—D型变送器,它内部含有1个压力传感器和相应的放大电路。压力传感器是美国SM公司生产的555—2型OEM压阻式压力传感器,其有全温度补偿及标定(O~70℃),传感器经过特殊加工处理,用坚固的耐高温塑料外壳封装。在水箱底部安装1根直径为5mm的软管,一端安装在水箱底部;另一端与传感器连接。水箱水位高度发生变化时,引起软管内气压变化,然后传感器把气压转换成电压信号,输送到AD转换器。

3.3键盘电路

P1口作为键盘接口,连接一个4×4键盘。

3.4液位显示电路

液位显示采用数码管动态显示,范围从0~999(单位可自定),选择的数码管是7段共阴极连接,型号是LDSl8820。在这里使用到了74LS373,它是一个8位的D触发器,在单片机系统中经常使用,可以作地址数据总线扩展的锁存器,也可以作为普通的LED的驱动器件,由于单独使用HEF4511B七段译码驱动显示器来完成数码管的驱动显示,因此74LS373在这里只用作扩展的缓冲。

3.5AD转换电路及控制输出

AD转换电路在控制器中起主导作用,用它将传感器输出的模拟电压信号转换成单片机能处理的数字量。该控制器采用CMOS工艺制造的逐步逼近式8位AD转换器芯片ADC0809。在使用时可选择中断、查询和延时等待3种方式编制AD转换程序。控制输出主要有上下限状态显示、超限报警。另外在设计过程中预留了串行口,供进一步开发使用。

四、软件设计

4.1键盘程序

由于键盘采用的是4×4结构,因此可使用的键有16个,根据需要分别定义各键,0~9号为数字键,10~15号分别是确定键、修改键、移位键、加减键、取消键和复位键。

值得注意的是,在用汇编语言编写控制器程序时,相对会比较麻烦,如果用C语言编写程序会简单很多,这里就不再做具体说明。

五、结束语

基于单片机实现液位控制器模型设计的关键在于硬件电路的正确构建,只有在电路准确的前提下再进行软件编程才能取得成功。

参考文献:

[1]黄智伟.传感器技术.2002,21(9):31~33

传感器设计论文第4篇

1.弹性元件的虚拟模型根据导体材料的应变电阻效应,电阻的相对变化与应变之间的关系。为了获得电桥输出与载荷的关系,需要构建弹性元件的数学模型。电阻式传感器的弹性元件结构有圆筒式、柱环式、悬梁式和轮辐式四种基本类型,各种不同的结构型式的弹性元件应变ε与载荷F的关系如下所示。(1)柱筒式弹性元件其中E为弹性模量,A为横截面积。(2)柱环式弹性元件其中R0为内环半径,b为柱环宽度,h为柱环厚度,E为弹性模量。(3)悬梁式弹性元件其中l为有效长度,b为悬梁宽度,h为悬梁厚度,E为弹性模量。(4)轮辐式弹性元件其中b为轮辐条厚度,h为轮辐条宽度,G为剪切模量。将四种弹性元件类型设计在一个子VI中,通过操作“弹性元件类型”下拉列表进行选择。

2.虚拟电桥模型电桥是目前常用的电阻式传感器测量电路,整个电桥电路由四个桥臂组成,当桥臂接入应变电阻时则成为应变电桥。当有一个臂被接入应变电阻时,被称为单臂电桥;两个臂被接入应变电阻时则为双臂电桥(也称半桥);四个臂均被接入应变电阻时则称为全桥。在桥路中均未接入应变电阻时。

3.电阻属性和接桥方式设计前面板(如图1所示)上电桥部分的电阻属性分为固定电阻、应变电阻和平衡电阻三种,应变电阻的贴片方式分为受拉应力和受压应力。(1)电阻属性。图1中的电阻R1的属性只有两种:应变电阻和固定电阻。该属性通过操作“R1”设置开关进行选择。若R1为应变电阻属性,其阻值会随载荷F的增减而产生相应的ΔR1以及因温度变化产生的ΔR1t。电阻R2的属性与R1相同。通过操作“R2”设置开关可以选择R2的属性。若R2作为应变电阻,则会随载荷F的增减而产生相应的ΔR2以及因温度变化产生的ΔR2t。若操作“差动设置”开关,则可使R2的受力方式为受压应力,从而会随载荷F的增减而产生相应的-ΔR2以及因温度变化产生的ΔR2t。R3,R4需要参与调平电路的设计,因此接线也会相对复杂。通过操作“R3”和“R4”设置开关对该电阻进行属性操作。图中出现的Rr显示框为调零电路中的R5的右半部分与R6串联然后再与R3并联后的阻值。Rl显示框为R5的左半部分与R6串联后再与R4并联后的阻值。(2)接桥方式的设计。虚拟前面板上的电桥工作方式分别为:不工作、单臂工作,半桥工作和全电桥工作方式四大类型。对于半桥和全桥方式,其中应变片又分为差动和非差动两种布片方式。不工作方式指的是R1,R2,R3和R4都设置成固定电阻。该方式无论怎样施加外力,输出始终为零。单臂工作时将R1设置为应变电阻,R2、R3、R4设置为固定电阻。此时,按“R1”按钮,“R1”按钮变绿,图中应变电阻R1如果显示向上的箭头,表明该应变电阻受拉应力,对应电阻值增大;如果应变电阻R1显示向下的箭头,表明该应变电阻受压应力,对应电阻值减小。半桥非差动工作时,R1、R2设置为应变电阻,R3、R4设置为固定电阻。按下“R1”、“R2”两个按钮,两者均变绿表示接入工作臂,同时电阻R1、R2上的箭头方向一致,表示应变片受到相同性质的应力,此时电桥输出基本为零。半桥差动工作时,R1、R2设置为应变电阻,R3、R4设置为固定电阻。按下“R1”、“R2”两个按钮,两者均变绿表示接入工作臂,同时电阻R1显示向上箭头,R2显示向下的箭头,表示对应的应变片受到拉应力和压应力。全桥非差动工作时R1、R2、R3、R4属性均为应变电阻,此时,按下“R1”、“R2”、“R3”、“R4”按钮,均变为绿色。四个电阻上的箭头方向一致,表明四个电阻受相同性质的应力,此时电桥输出基本为零。全桥差动工作时,“R1”、“R3”电阻箭头向上,表示受拉应力;“R2”“R4”箭头向下,表示受压应力。

4.温度误差计算及补偿在讨论应变计的工作特性时通常是以温度恒定为前提的,但在实际应用过程中,工作温度可能会发生变化,从而导致应变电阻的阻值发生变化。设工作温度变化为Δt℃,则由此引起粘贴在试件上的应变电阻的相对变化为。将公式(11)代入公式(7)-(10),即可以计算出温度变化时的电桥输出,该输出即为温度误差。单臂工作时,采用补偿块法进行温度误差补偿,该方法利用两块参数相同的应变计R1、R2,R1贴于试件上并接入工作臂,R2贴于与试件材料相同温度环境的补偿块上,但该补偿块不参与机械应变,同时接入电桥相邻臂作为补偿臂。当接通电源并施加负载时,补偿臂产生的热输出与工作臂产生的热输出相同,则可达到温度误差补偿的目的。对于半桥差动和全桥差动工作方式,根据公式(10)的和差特性即能进行温度误差补偿。5.非线性误差计算及补偿公式(10)是对公式(9)进行线性化后的输出。对于单臂工作时,非线性误差可以通过在电路中加入补偿臂(该臂不受外加应力作用)。对于半桥差动和全桥差动工作方式,不需要外接补偿电路,因为差动工作方式具有很好的非线性补偿作用。

二、虚拟操作面板的设计

用LabVIEW软件开发虚拟仪器,用户能“量身定制”仪器的操作面板。本实验根据真实的电阻式传感器实验电路接线图作为虚拟仪器的操作面板,能直观地阐述电阻式传感器实验原理及操作方式,虚拟面板如图1所示,主要包括虚拟弹性元件选择、应变电阻布片方式选择、电桥接法选择、电桥调零模块、差动放大模块、直流电源模块。此外前面板还包括电阻、外力、温度的赋值等。

三、远程虚拟实验的演示步骤

电阻式传感器实验的远程操作分别由DataSocket技术与Web网络工具来实现。DataSocket技术以及网络化技术的结合使虚拟仪器的远程控制成为可能,可在若干计算机上对传感器虚拟实验进行操作及数据处理。这为传感器虚拟实验的互动教学提升了便捷性。电阻式传感器虚拟实验的远程操作过程如下:第一步,打开服务器网页。第二步,输入R1、R2、R3、R4的阻值。第三步,选择弹性元件类型。第四步,设置接桥和布片方式。第五步,打开电源开关。第六步,调节调零电位计,直至电桥近似达到初始平衡状态。第七步,点击“施力F”按钮。第八步,查看客户端网页,查看电桥输出曲线。第十步,点击服务器面板中的“复位键”,使所有选项、开关及输入数据均清零和初始化。第十一步,关闭电源开关。

四、结束语

传感器设计论文第5篇

关键词:误差理论;传感器;测控技术

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)30-0154-02

一、引言

工程测量中必然存在误差,误差的处理会影响测量数据的可靠性。误差理论与数据处理课程是测控技术与仪器专业的核心课程,学生对该课程知识的掌握好坏,直接影响其后续专业课程的学习,并将对其今后从事的精密检测、测试系统设计、质量控制、仪器设计及制造等工作产生持续深远的影响。测控技术与仪器专业由仪器仪表及精密测量等多个专业综合而成,在全国有两百多所高校具有此专业,也大多开设了误差理论的相关课程。其实,自高等学校首次设立误差理论与数据处理课程以来,它便得到了许多大学的高度重视。目前,除仪器仪表类专业外,很多学校在机电类专业及测绘类专业也开设了该课程。为了提供误差理论课程教学质量,已经提出了较多的教学方法改革方案[1-3],或者实践体系的改革[4]。这些教学改革大多针对误差理论和数据处理课程理论性较强的特征,通过增强实践教学环节,利用多种数据处理软件或者综合平台对学生进行实践训练[5]。这些教学方法的改革可以有效提高学生对误差理论和数据处理方法的认识,改善教学效果。

在全国高校的测控技术与仪器专业中,专业培养大多具有自己的特色和侧重。对误差理论课程的教学应该与专业特色相关联,为后续的专业课程奠定基础。本文针对传感器应用和动态测试技术为特色的专业培养体系,进行围绕传感器应用的误差理论课程教学改革。

二、误差理论在专业课程体系中的作用

误差理论课程在测控技术与仪器专业中大多属于专业基础课程,其前修课程包括高等数学、概率与数理统计和线性代数,它也是工程测试及系统设计、仪器设计、仪器应用类课程的重要基础和支撑课程。误差理论课程内容涵盖误差性质与分析、误差的发现、误差的处理以及基于误差的回归分析等,并使学生建立测量精度和不确定度等概念,这些知识会在自动控制、仪器设计等课程中得到应用。但是学生在学习误差理论的过程中,由于没有专业课和工程实践的学习锻炼,很难建立实际的应用概念,对误差的理解难以深入。

如果能从一类具体的应用出发,讲解误差的分析、发现和处理,这有利于学生对概念的理解。也为学生的学习找到一个方向,找到一个思路。在以传感器应用和动态测试技术为特色的培养课程体系中,传感器始终扮演着重要的角色。从非电量信号的获取、测量电路的设计和测试系统特性分析到数据的采集和处理,都围绕着传感器进行。误差理论在传感器的标定和传感器误差分析等方面都扮演着重要的角色,通过在误差理论教学中贯穿传感器应用的概念,有利于学生对误差概念的理解,更有利于特色专业课程体系的建立。

三、围绕传感器应用的教学方法

围绕传感器应用的误差理论教学方法,并不是只对传感器相关误差知识进行教学。而是将误差的理论和方法在传感器这个平台上进行应用,巩固知识加深理解。主要从课堂教学和实验实践环节进行教学方法的探索。

1.课堂教学。围绕传感器应用的误差理论课堂教学改革主要是改变以前的知识讲解思路。误差理论课程的知识结构主要分为误差的基本性质与处理、误差的合成与分配、不确定度及回归分析等几个部分,常见的课堂教学主要以理论讲解为主,在每个知识点后面会有相应的例题。误差理论课程含有很多抽象概念、公式,内容相对来说比较单调、枯燥,对于没有测量经验的学生,往往按照高等数学的学习习惯来学习误差,重计算,轻概念。学生往往记公式,难以灵活应用,由此影响了学习兴趣和教学质量。

对于以传感器应用和动态测试为特色的专业,学生从大三开始已经初步接触传感器的概念,同时在学校的学生实践实验室和各种电子类竞赛实验室都有许多传感器的应用实例,学生们对传感器应用有了基本的认识。所以,可以通过传感器的应用来进行误差理论的学习,如图1所示。针对误差理论课程中的四个主要知识模块,以压力传感器为例可以有相应的应用案例。在压力传感器的静态测量中,可能产生系统误差、随机误差和粗大误差。通过分析传感器和测量系统的误差来源认识系统误差,通过测量数据分析随机误差和粗大误差;对于压力传感器加信号调理电路的测量情况,通过传感器的误差和调理放大电路的误差可以学习认识误差的合成与分配;通过对一种确定的压力源进行测量,计算测量的不确定度;通过对压力传感器的标定学习基于误差理论的最小二乘法处理及回归分析等知识点。

2.实验教学。目前的误差理论实验教学往往借助计算机开设一些数据处理的实验,缺乏对测量误差及其来源的根本性认识。导致学生在学完该课程后,仍不能运用所学知识指导测试实践,解决实际问题。通过实际的传感器采集测量数据,可以生动直观地让学生进行误差的分析。我校的测控技术与仪器专业具有专门的传感器原理及应用实验室,不用重复建设,学生就可以完成多种传感器的实际信号采集。通过应用软件与采集系统对接就可以建立围绕传感器应用的误差分析实验教学。

以压力传感器标定进行误差理论课程中的回归分析实验教学,如图2所示。利用传感器实验室的油压标定机、电压放大滤波器、数据采集卡和数据处理软件,通过软件中误差分析功能对接,可以进行误差理论的实验教学。学生通过更换油压标定机的砝码改变输入压力值,获得多组测量数据。学生利用最小二乘法和回归分析的知识对这些数据处理以得到传感器的灵敏度。

四、结论

通过围绕传感器应用的误差理论教学,有助于学生对误差概念的理解,帮助学生找到一个从理论到实践的通道。利用现有的传感器应用实验室,通过误差处理软件的对接,直接完成了误差理论实验教学的改革。通过近年的误差理论课程教学,学生对误差理论课程的认知程度得到了提高。

参考文献:

[1]徐志玲,赵玉晓,金骥,等.“误差理论与数据处理”立体化课程设计与实践[J].实验室研究与探索,2014,33(11):191.

[2]宋爱国,崔建伟,符金波.“误差理论与数据处理”课程的教学改革[J].电气电子教学学报,2012,34(1):12.

[3]吴石林,张},刘国福,等.《误差理论与数据处理》课程教学改革初探[J].高等教育研究学报,2011,34(4):80.

传感器设计论文第6篇

1 多传感器融合技术简介

多传感器融合技术可类比于人类逻辑系统中自然实现的基本功能,是用机器实现人类由感知到认知过程的模仿。在人类对客观事物的认知过程中,首先使用来自人体中的传感器(眼、耳、鼻、皮肤等)通过听、嗅、视、触、味五觉对客观事物信息(景物、声音、气味等)进行多方位、多种类的感知,从中获得大量冗余和互补的信息。然后根据人脑的先验知识去对这些信息进行相关分析与处理,进而估计、理解周围环境和正在发生的事件,获得对客观事物统一与和谐的理解与认识。这就是人的复杂的,同时也是自适应的认知过程。人类的感官由于具有各自不同的度量特征可以在不同空间范围内对各种事件进行反应。人脑把各种信息(图像、声音、气味、形貌、上下文等)转换成对事物有价值的一致性解释,需要大量不同的智能处理,以及适用于解释组合信息含义的知识库。

传感器可以类比于人的感知器官:通过不同的原理对自然界的光、热、声、磁等信号进行捕捉,由换能器将其转换成电信号,再数字化后经通讯系统传递给计算机进行处理。单传感器系统只能从单个度量维度获得片面的、局部的特征信息,信息量十分有限。同时单个传感器本身的累计误差对系统造成的影响也无法消除。[2]因此,想要获得对事物的一致性准确解释,单一传感器系统力有不足。

多传感器融合技术把多个不同种类的传感器集中于同一个感知系统中,将各个传感器来的数据进行数据融合,形成对[( dylw.NEt) 专业提供专业论文写作和发表教育论文的服务,欢迎光临]被测事物更准确认识。它出现在20世纪70年代初期,最早应用于军事领域,后于20世纪80年展起来。近年来随着计算技术、遥感技术、通讯技术以及微电子制造业的迅猛发展,多传感器信息融合技术成为了一个热门的研究方向,获得了更广泛的应用。例如,在人机交互领域,要实现人机交互所追求的最终目标“自然人机交互”,对于人、环境的解读尤为重要,[3]这正是多传感器融合技术的优势所在。

2 多传感器融合系统的基本组成及技术原理

多传感器融合技术,虽然没有一个严格的定义,但可以基本概括为: (1)充分利用多传感器数据资源(来自不同时/空范围)。 (2)在一定的规则下对多传感器所得检测数据进行综合分析。 (3)获得一致性解释并根据所设算法实现相应的决策或估计,实现整个系统获得比各单传感器更加充分的信息。[4]多传感器融合系统一般由如图1所示的三个部分组成:传感器部分(包括数据获取及预处理)、数据融合部分、结果输出部分。

多传感器融合系统就像一个为了实现“对被测对象的一致性解释或描述”而有机装配而成的整体,可类比于人的身、脑综合信息处理系统。其中多传感器系统是整个系统获取数据的硬件基础和手段,所得多源信息成为数据融合的对象;融合是指对数据的协调优化和综合处理,也是联系整个系统的核心。它无法用单一的技术来解决,而是多种跨学科技术、理论的综合。

多传感器融合系统同单传感器系统相比,其系统的复杂性大大增加的同时从自然界所获得的信息量也成倍增长。多个传感器的存在从时间和空间的角度都扩展了信息获取的覆盖范围,[5]而传感器之间的协同作业则提高了信息获取的概率,对于某个传感器不能顾及的检测对象,可由其他传感器完成工作。在某个传感器出现故障、受干扰或不可用的情况下,系统仍有其他传感器可以提供信息,不易受到破坏。

各传感器在信息融合系统中所得的数据、信息具有不同的特征,可以是实时/非实时,快变/缓变,模糊/确定,相互支持/互补,相互矛盾/竞争等等。在系统中,这些复杂的数据不是孤立而是融合的,所得最终信息并不是各传感器信息的简单加和,需要根据各传感器之间的逻辑关系依据智能算法进行联合、相关、组合推导出更多的信息。利用多个传感器协同作业的多传感器融合相比由它的各个传感器分别构成单独系统再加和而成的系统集更有优势。

3 多传感器融合技术在公共艺术设计中的应用

利用多传感器融合技术进行公共艺术设计,将前沿科技与传统艺术方式集成在一起,是一种全新的尝试。从字面意思的理解来看,公共艺术分为公共和艺术两个独立的定义,可以理解为:具有“公共性”含义的艺术形式。其界定的核心原则就是“公共性”。“公共”就意味着公共艺术作品必须是能与民众产生自由交流的一种艺术形式,要以公众自主、自由参与到公共艺术中为前提,任何缺少与民众之间自由评论和互动的艺术形式都不是公共艺术。[6]因此,公共艺术不能仅仅是“艺术家创作”的艺术,而是一种“公共互动”的艺术。如何让公众自主自由参与到艺术作品中,形成真正的“公共艺术”是艺术家们亟待解决的重要问题。完整的公共艺术作品必须是“表达”与“吸收”经互动过程的完整呈现。“吸收”的是来自公众的思想,由公众的行为进行表达,通过互动产生交流。因此,艺术家们需要考虑的一个重要问题是,如何由公众的行为导向公众思想的表达,形成有效的交互。在日本艺术家草间弥生(Yayoi Kusama)创造的作品The Obliteration Room中,草间弥生构建了一个纯白色的房间,每个参观者都将被发放一张彩色波点贴纸,参观者可以根据喜好将贴纸贴在房间中的任意位置。空间中的每一个彩色波点都是参观者对此次参观经历的一种表达。[7]

从参观者的行为、思想的角度进行考虑,人类对于思想的表达具有多样性,有显 式的主动动作、行为、语言等等,也有隐式的如表情、眼动、甚至气味及生化物质(如唾液、汗液、荷尔蒙等)的分泌。传统的艺术作品(如图2例)[( dylw.NEt) 专业提供专业论文写作和发表教育论文的服务,欢迎光临]主要是从公众显式的主动作为中获得表达形成交互,所受限制较大,参与门槛较高。将多传感器融合系统应用于公共艺术,首先拓宽了公众思想的行为来源,降低了公众参与的门槛。目前,在国内外已出现了一些基于单传感器的公共艺术作品,但单传感器的单一数据来源、不可靠、易受干扰、不稳定等技术局限性使其发展受到限制。随着先进传感技术的飞跃,除了人类的主要信息来源声音、光、力等自然信号之外,甚至在人传感器力所不及的范畴如红外、紫外等非可见光区域,次/超声波区域,非挥发性痕量生化物质等,我们也能够通过先进传感技术获得所需要的信息。通过多传感器融合技术所带来的巨大优势,科技比人类更懂得人类已经不再是梦想。将多传感器融合系统应用于公共艺术,降低了公众参与公共艺术的阈值。多传感器融合系统对于公众行为的捕捉不是被动的,而是主动地感知公众的行为,将公众“拉”入参与公共艺术的行为中,为公共艺术的设计提供了一种崭新的思路。

以城市中某广场为例,在人们进入广场时,形成参观经历。假设给每个人分发一张彩色波点纸,通过张贴彩色波点纸的显示行为进行表达,即形成类似草间弥生洁净之屋的效果。在没有彩色波点纸的情况下,人们对其参观经历产生隐式的表达。例如,不同的面部表情、走路的步长、速度、方向等等。公众的这些隐式表达可以使用多传感器融合系统进行捕捉。使用彩色数字投影代替彩色波点纸,每一种颜色对应多传感器融合系统所得到的一致性结论。例如,红色对应热情、绿色对应平静、不同程度的黑色对应一些负面情绪如沮丧等,形成交互。此例的多传感器融合系统中,使用摄像装置及压力感应装置对人群进行检测,即通过摄像装置对公众面部表情进行捕捉、压力传感器对公众步态进行捕捉。二类传感器所得数据需进行时间、空间二个层面的融合。时间融合主要是将单传感器的数据进行融合,是指对不同时间点的检测数据进行融合。空间融合适用于多传感器所得信息的一次融合处理,是指对不同位置、类型传感器在同一时刻的检测数据进行融合。在融合过程中,需要结合图像识别技术、步态分析对公众的面部表情、步态行为进行特征数据提取、分析,从而得出对该参与个体的一致性结论,并根据设计需求予以分类。此处可分为热情、平静、沮丧等类别,每一个类别对应于一种颜色,由数字投影进行表达。该“波点”设计的简单模型如图3所示。

随着多传感器融合系统中传感器数量、种类的不断增加,可根据归属将公共艺术装置中使用的传感器分为两类:第一类传感器从属于装置艺术本身,由艺术家根据艺术表达的需求进行设计安装。第二类传感器从属于公众,来自公众随身携带的电子设备,艺术装置提供数据接口,从中获取数据。二类传感器协同作业,通过融合中心进行数据融合,得到全方位多角度的“立体信息”。将多传感器融合系统应用于公共艺术装置,是实现公共艺术公共性的有力保障。

从设计目的的层面考虑,根据马斯洛的理论,将人的需求由低级层次到高级层次依次分为5个层次:生理、安全、社会、尊重以及自我实现。公共艺术的实质就是满足人的真正需求,而不是公共艺术装置的物质形态本身。多传感器融合系统对所得多元数据进行多种层次上的融合,实现对人脑综合信息处理的高级模仿,深刻挖掘公众[( dylw.NEt) 专业提供专业论文写作和发表教育论文的服务,欢迎光临]表面行为背后的含义,帮助艺术家们分析、理解、满足公众的真正需求。随着分布式计算、通讯、云计算、物联网等技术与多传感器数据融合技术的共进发展,多传感器数据融合技术所能实现的功能也越来越强大。可以预见,随着数字化进程的进一步深入,多传感器融合技术与公共艺术的结合必将带给我们更多的惊喜。

参考文献:

[1] 付志勇.设计的重构——论计算机对设计的变革[J].装饰,1995(04):46-47.

[2] 杨万海.多传感器数据融合及其应用[M].西安电子科技大学出版社,2004.

[3] 王熙元.交互设计中的信息传达研究[J].包装工程,2010,31(12):12-14.

[4] 刘同明,夏祖勋,解洪成.数据融合技术及其应用[M].国防工业出版社,2000.

[5] 王祁,聂伟.分布式多传感器数据融合[J].传感器技术,1997,16(5):8-10.

[6] 王峰,过伟敏.数字化城市公共艺术交互性内涵研究[J].包装工程,2010,31(24):124-127.

传感器设计论文第7篇

关键词:传感器与检测技术;学做合一;教学模式

作者简介:张立霞(1978-),女,河北枣强人,正德职业技术学院,讲师。(江苏 南京 211106)

中图分类号:G712 文献标识码:A 文章编号:1007-0079(2013)22-0100-02

传感器作为信息科学领域的源头技术,用以直接感受被测对象,它所获得的信息正确与否直接关系到整个测量或控制系统的成败。汽车产品、电子通讯等产业的迅猛发展离不开传感器与检测技术。“传感器与检测技术”作为高职院校电子类专业主要职业技能课程之一,强调培养学生的工程素质和工程实践能力。[1]面对课程特点和当前授课对象,要实现高职人才培养目标和市场需求的有效衔接,迫切需要进行课程改革。要实现新一轮课程改革的目标,必须推进课程教学模式的转变。课程教学模式的转变是否合理将直接影响到学生对后续课程学习效果的好坏以及综合职业能力培养质量的高低。

一、“传感器与检测技术”课程特点与授课学生现状

1.“传感器与检测技术”课程特点

“传感器与检测技术”与工程实际结合紧密,集电学、光学、化学、数学、力学、机械、工艺和加工等于一体,主要介绍各种传感器的内部结构、测量电路、应用领域以及敏感元件的工作原理、制作材料和工艺等。传感器种类繁多,原理分析枯燥难懂,测量电路和检测系统繁琐复杂是本课程的最大特点。[2]同时,一系列新型高品质的传感器不断涌现,客观要求教学内容能够与时俱进。传统的课程设置形态重理论轻实践、轻技能培养,同时理论实践分离。这种以课堂教学为主的教学方法和以理论考试为主的评价方式,日益显露其弊端。在以培养创新型人才为核心的素质教育中,如何优化教学模式,改进课程设置,加强课程的内涵建设,是“传感器与检测技术”课程亟待进行教学改革的客观要求。

2.“传感器与检测技术”授课学生现状

在新的招生政策下,高职院校新生生源起点较低,而其中文科生比例又相对上升,这些学生的理论基础较为薄弱。“传感器与检测技术”课程授课对象多为大三学生,部分学生即使有学习的欲望,也会在以教师为中心的灌输式教学模式下将原有的自信心摧毁,逐渐养成不爱问、不想问,甚至不知道问“为什么”的学习习惯。学生在校期间难以练就一身过硬技能,这也就导致大量毕业生不能及时找到理想工作,而与此同时企业又难以聘用到急需技能型人才的对立局面的存在。在新的教育形式下,认真探究“传感器与检测技术”课程的教学改革以改进教学方法和模式,激发学生的好奇心和求知欲,以提高新形势下学生竞争能力,就显得尤为重要。

二、学做合一教学模式的设计与实施

1.学做合一教学模式的设计

随着高职教育教学方法的研究逐渐深入,教学方法必须以培养高技能应用型人才为切入点也得到了职教界的共识,广大教学工作者亦在积极探寻教学方法改革。[3]项目式教学是当前职业教育中一种比较有效的教学方法,也是当前职业教育教学改革的基本取向。

“传感器与检测技术”课程教学内容的设计需要根据专业培养方案,同时参照相关的职业资格标准、行业标准,结合课程综合性强、实践性强、更新快的特点,充分利用学生的可塑性,在基于工作过程的教学过程中,精心组织典型项目。立足使学生掌握主要传感器的原理、特性,掌握各种应用条件下传感器的选用原则和应用电路设计的教学目标,合理设计教学情境。学生是整个教学过程的主体,学生在做中学,在学中做,进而将求知、做事和技能有机结合,将学和做有效合一。

2.学做合一教学模式的实施

以工作任务为驱动,在课程教学实施过程中,充分考虑工作过程特点和教学过程特点两者的有机结合,教学过程精心设计4个典型项目和3个教学情境。

(1)典型项目设计。典型项目设计如表1所示。

结合当前学情精心设计和组织项目,项目验收要求采用阶梯方式,使得每位学生都能“做”起来,并在做的过程中有所收获。例如,表1所示项目一以温湿度监控报警器为载体,开始项目设计之前,给学生明确验收要求,包括基本要求和进阶要求。基本要求需要做到:传感器合理选型;感测温、湿度实现超过阈值报警功能。进阶要求依次为:数码管显示温、湿度值,蜂鸣器报警;液晶屏显示温、湿度值,蜂鸣器报警;液晶屏显示温、湿度值,语音模块报警;无线监控。基础较薄弱的学生可以选择完成最基本要求的内容,在有事可做的过程中他们会逐渐体会到成就感,进而建立起学习的自信心;基础相对较强的学生也不会闲着,他们可以选择要求相对较高的内容,甚至发挥自己创造性思维,自主设计和制作产品,借此学会合作,学会交流,掌握技能。在这一过程中,学生自由组合,5人为1小组,小组内再各有分工,通过小组间的设计比赛、焊接比赛、功效比赛、组间评议等方式,学习温度传感器和湿度传感器的相关知识点。

(2)教学情境设计。根据职业技能标准,课程教学过程设计3个教学情境。

1)以压电式手电筒、压电式野营点火器为实例,带动学生思考其功能实现机理,引导学生学习压电式传感器的工作原理,依托多媒体课件丰富的动态效果帮助学生较感性地认识压电效应以及压电式传感器在交通监测、刀具切削监测、触摸键盘等典型电路中的应用。

2)以转速测量仪为实例,调动学生积极参与讨论,引导学生学习霍尔传感器的检测方法、电路设计以及典型应用。

3)以红外自动干手器和条形码扫描笔为实例,引导学生认识莫尔条纹,掌握光电传感器的工作原理,以及光纤传感器对诸如CO等敏感气体的监测作用。

涉及传感器工作原理及其测量电路等理论知识的讲解时,以回溯的方式引导学生结合已经掌握的传感器类型,对“要实现这一功能能否用其他传感器来替代现有传感器”展开讨论,并从中做出各类传感器的优劣对比。在这一过程中,教学内容被转换为个体的学习任务,学生不再是单纯的接受者,借助无限的思考空间,学生自身的创新能力和动手实践能力得到充分的锻炼与提高。

三、结论

高职教育以培养高技能应用型人才为目标,特别强调理论联系实践。“传感器与检测技术”在近几年的课程教学中,立足当前学情,改革教学模式,将知识传授、实践能力培养、综合素质教育融为一体,实现了以学生为主体的“学”与“做”的有效统一。新材料、新效应、新工艺的问世不断促进着传感器市场的发展,“传感器与检测技术”课程教学不仅要适应需求的变化,更要有一定的前瞻性。因此需要不断探索行之有效的教学方法,以实现学生在校所学与就业岗位的无缝对接。

参考文献:

[1]张宣妮.基于“做中学,学中做”的传感器教学模式探究[J].高教论坛,2011,(2):70-71.

传感器设计论文第8篇

【关键词】温度 at89s52 nrf9e5

1 引言

由于在局部的温度通常具有不一致性,因此在检测环境温度时,传统的单一测点测量温度的方法并不能够准确说明实际的温度信息。在同一环境中,对多点进行温度测量,能够有效解决这一问题,使得温度测量更加准确。但是多点温度测量的温度测量点比较分散,如果使用传统的有线布线方式的话,则系统设计复杂,十分麻烦。本论文设计了一种基于无线传输的温度采集系统,采用了nrf9e5无线芯片,主控芯片采用的是at89s52单片机,温度测量的传感器为ds18b20[1]。

本论文首先介绍系统整体设计方案,然后分别简要介绍硬件电路设计以及部分软件程序设计。

2 系统方案

无线数据传输按照传输方式的不同,可以分为:点对点、点对多点以及多点对多点。本论文所设计的系统由主控芯片51单片机、主接收器以及多个测量终端组成。每个测量终端都是通过无线传输模块nrf9e5传递数据,进而形成无线传输的温度采集系统。系统框图如图1所示。

将相应的温度传感器分布在所要测量环境的不同位置,就能够精确评估环境温度。然后再将这些测量得到的温度经过无线通信模块发送到主控芯片上,主控芯片对数据进行处理和显示。

3 硬件电路设计

3.1 无线数据传输模块

nrf9e5具有和8051相互兼容的微控制器,但是时序和指令都与其有些差别。nrf9e5与cpu的数据交换是通过串口来进行的。

nrf9e5和其他模块通信主要是通过自身内部的并行口和内部的spi口。nrf9e5与nrf905等具有一样的功能。收发器在与微控制器进行数据交换的过程中,主要是通过片内的spi和并行口。在要传输通信的数据准备好之后,就能够产生中断,供微控制器使用。

3.2 温度测量电路

温度检测的方法有很多,比如采用热电偶等。但是本论文采用的是ds18b20温度传感器。该温度传感器采用的是one-wire总线,即只采用一根信号线与单片机进行连接。该测温传感器能够测量零下55度到125摄氏度的温度范围,同时分辨率能够达到0.5摄氏度。工作电压范围很宽,一般为3.0至5.5v。

3.3 主控芯片

本论文设计的数据采集器使用的主控芯片是at89s52单片机。msc-51单片机是八位的非常实用的单片机。本论文所使用的at89s52单片机就是基于这款单片机的。msc-51单片机的基本架构被atmel公司购买,继而在其基本内核的基础上加入了许多新的功能,同时扩展了芯片的容量以及加入flash闪存等等。51内核的单片机具有很多优点,因此无论是在工业上还是在一些电子产品上应用都很多。全球也有许多大公司对其进行扩展,加入新的功能。即使是在今天,51单片机仍然在控制系统中占据很大市场。

下面对本论文所使用的单片机作简要介绍。这款单片机具有最大能够支持的64k外部存储扩展,同时还具有8k字节的flash空间。该单片机具有4组i/o口,分别是从p0到p3,同时每组端口具有8个引脚。每个引脚除了能够作为普通的输入和输出端口外,还具有其它功能,也就是我们通常所说的引脚复用。其还具有断电保护、看门口、计时器和定时器。51单片机一般的工作电压是5v。

4 软件设计

4.1 通信协议

本系统为单点对多点的无线通信,主接收器在可靠通信范围内分别与每个数据终端通信。主接收器与每个数据终端都有一个唯一的地址,因此在通信过程中必须明确接收方的地址。系统通信协议定制如表1所示。

4.2 温度测量程序

本论文采用的温度传感器是one-wire总线的器件,与主控芯片进行一根数据线连接,就能够同时实现数据和时钟信号的双向传输。但是这样就要求主控芯片的时序必须具有严格的要求。在出厂之前,每个器件的rom上都光刻上64位的编码,这个编码地址序列是唯一的,我们可以通过这个编码地址序列来进行多

点的组网。但是本论文所设计的温度采集系统,在每一个结点只是用一个温度传感器,因此在程序中并不需要读取其rom编码。

5 总结

在实际的温度测量过程中,测量单点的温度往往并不能够准确反映实际温度信息,需要对同一环境进行多次测量,同时要对多个温度节点进行测量。但是多点温度测量的温度测量点比较分散,如果使用传统的有线布线方式的话,则系统设计复杂,十分麻烦。本论文设计了一种基于无线传输的温度采集系统,采用了nrf9e5无线芯片,主控芯片采用的是at89s52单片机,温度测量的传感器为ds18b20。本论文首先介绍系统整体设计方案,然后分别简要介绍硬件电路设计以及部分软件程序设计。

参考文献

[1]马祖长,孙怡宁,梅涛.无线传感器网络综述[j].北京:通信学报,2004,25(4):15-17.

[2]郑启忠,耿四军,朱宏辉.射频socnrf9e5及无线数据传输系统的实现[j].单片机与嵌入式系统应用,2004(8):51-54.

[3]季一锦,尹明德.一种基于nrf9e5的无线监测局域网系统的设计[j].国外电子元器件,2004,(12):22-25.

[4]盛超华,陈章龙.无线传感器网络及应用[j].微型电脑应用,2005,21(6).10-13.

传感器设计论文第9篇

【关键词】温度 at89s52 nrf9e5

1 引言

由于在局部的温度通常具有不一致性,因此在检测环境温度时,传统的单一测点测量温度的方法并不能够准确说明实际的温度信息。在同一环境中,对多点进行温度测量,能够有效解决这一问题,使得温度测量更加准确。但是多点温度测量的温度测量点比较分散,如果使用传统的有线布线方式的话,则系统设计复杂,十分麻烦。本论文设计了一种基于无线传输的温度采集系统,采用了nrf9e5无线芯片,主控芯片采用的是at89s52单片机,温度测量的传感器为ds18b20[1]。

本论文首先介绍系统整体设计方案,然后分别简要介绍硬件电路设计以及部分软件程序设计。

2 系统方案

无线数据传输按照传输方式的不同,可以分为:点对点、点对多点以及多点对多点。本论文所设计的系统由主控芯片51单片机、主接收器以及多个测量终端组成。每个测量终端都是通过无线传输模块nrf9e5传递数据,进而形成无线传输的温度采集系统。系统框图如图1所示。

将相应的温度传感器分布在所要测量环境的不同位置,就能够精确评估环境温度。然后再将这些测量得到的温度经过无线通信模块发送到主控芯片上,主控芯片对数据进行处理和显示。

3 硬件电路设计

3.1 无线数据传输模块

nrf9e5具有和8051相互兼容的微控制器,但是时序和指令都与其有些差别。nrf9e5与cpu的数据交换是通过串口来进行的。

nrf9e5和其他模块通信主要是通过自身内部的并行口和内部的spi口。nrf9e5与nrf905等具有一样的功能。收发器在与微控制器进行数据交换的过程中,主要是通过片内的spi和并行口。在要传输通信的数据准备好之后,就能够产生中断,供微控制器使用。

3.2 温度测量电路

温度检测的方法有很多,比如采用热电偶等。但是本论文采用的是ds18b20温度传感器。该温度传感器采用的是one-wire总线,即只采用一根信号线与单片机进行连接。该测温传感器能够测量零下55度到125摄氏度的温度范围,同时分辨率能够达到0.5摄氏度。工作电压范围很宽,一般为3.0至5.5v。

3.3 主控芯片

本论文设计的数据采集器使用的主控芯片是at89s52单片机。msc-51单片机是八位的非常实用的单片机。本论文所使用的at89s52单片机就是基于这款单片机的。msc-51单片机的基本架构被atmel公司购买,继而在其基本内核的基础上加入了许多新的功能,同时扩展了芯片的容量以及加入flash闪存等等。51内核的单片机具有很多优点,因此无论是在工业上还是在一些电子产品上应用都很多。全球也有许多大公司对其进行扩展,加入新的功能。即使是在今天,51单片机仍然在控制系统中占据很大市场。

下面对本论文所使用的单片机作简要介绍。这款单片机具有最大能够支持的64k外部存储扩展,同时还具有8k字节的flash空间。该单片机具有4组i/o口,分别是从p0到p3,同时每组端口具有8个引脚。每个引脚除了能够作为普通的输入和输出端口外,还具有其它功能,也就是我们通常所说的引脚复用。其还具有断电保护、看门口、计时器和定时器。51单片机一般的工作电压是5v。

4 软件设计

4.1 通信协议

本系统为单点对多点的无线通信,主接收器在可靠通信范围内分别与每个数据终端通信。主接收器与每个数据终端都有一个唯一的地址,因此在通信过程中必须明确接收方的地址。系统通信协议定制如表1所示。

4.2 温度测量程序

本论文采用的温度传感器是one-wire总线的器件,与主控芯片进行一根数据线连接,就能够同时实现数据和时钟信号的双向传输。但是这样就要求主控芯片的时序必须具有严格的要求。在出厂之前,每个器件的rom上都光刻上64位的编码,这个编码地址序列是唯一的,我们可以通过这个编码地址序列来进行多

点的组网。但是本论文所设计的温度采集系统,在每一个结点只是用一个温度传感器,因此在程序中并不需要读取其rom编码。

5 总结

在实际的温度测量过程中,测量单点的温度往往并不能够准确反映实际温度信息,需要对同一环境进行多次测量,同时要对多个温度节点进行测量。但是多点温度测量的温度测量点比较分散,如果使用传统的有线布线方式的话,则系统设计复杂,十分麻烦。本论文设计了一种基于无线传输的温度采集系统,采用了nrf9e5无线芯片,主控芯片采用的是at89s52单片机,温度测量的传感器为ds18b20。本论文首先介绍系统整体设计方案,然后分别简要介绍硬件电路设计以及部分软件程序设计。

参考文献

[1]马祖长,孙怡宁,梅涛.无线传感器网络综述[j].北京:通信学报,2004,25(4):15-17.

[2]郑启忠,耿四军,朱宏辉.射频socnrf9e5及无线数据传输系统的实现[j].单片机与嵌入式系统应用,2004(8):51-54.

[3]季一锦,尹明德.一种基于nrf9e5的无线监测局域网系统的设计[j].国外电子元器件,2004,(12):22-25.

[4]盛超华,陈章龙.无线传感器网络及应用[j].微型电脑应用,2005,21(6).10-13.