时间:2023-04-19 16:54:47
引言:易发表网凭借丰富的文秘实践,为您精心挑选了九篇信用风险论文范例。如需获取更多原创内容,可随时联系我们的客服老师。
传统的信息不确定和不对称的问题,使得投资人对企业价值评估不准确,进而要求高的风险溢价。从根本上讲,债券市场同股票市场一样,受宏观经济面如货币政策、市场信心等市场信息因素的影响。Galai以宏观市场的定价行为作为衡量信息不对称的程度,说明了信息不对称情况下,存在信用利差进而影响企业债券估价。Moerman通过研究发现,二级市场中买卖价差与债券的利率利差存在正相关关系,买卖价差与债券的期限呈现正相关的关系。从宏观角度讲,能够影响企业债券价值的因素有市场利率、票面利率、交易量、债券剩余期限、通货膨胀率等。以大数据的视角可以将这些因素统归于“利率”,因为宏观经济的各种指标最终都会以利率的形势表现出来。另外,从微观风险信息的角度出发,内部的经营问题也可能会迫使企业在债券到期无力偿还,导致投资者面临违约风险。Duffie以不完全的会计信息作为指标,提出会计信息不完整会使投资者错误的评估公司的实际价值,结果是要求公司产生高的风险溢价。Hong(2000)认为公司历史越悠久就能越好的提供更多的有价值的信息,从而降低了这种信息不确定性,降低风险溢价。微观层面影响的企业债券价值的信息,其实是对企业的运营状况、财务状况等的一个反应,都体现对公司“信用”的评级。以“利率”和“信用”为给定关键字后,利用大数据搜索技术,从而找到更多企业信息,对企业债券评估具有很高的价值,运用数据挖掘技术有可以从大量的信息中提出影响企业价值的因素,这样可以有效的解决以往的信息不确定和信息不对称的问题。
二、大数据挖掘技术在债券信用风险估计中的应用
大数据下,我们面对的是多种多样纷繁复杂的数据,关于企业的信息有些是我们需要的,但是很大一部分是无关联的数据,所以采取新型的数据挖掘技术,找到哪些因素能够影响企业价值才是最关键的。数据挖掘就是大量的数据中,找到其中隐含的、我们看不见的、有价值的信息。数据挖掘技术有很多种,比较常见的有关联规则、神经网络、决策树等方法。这些方法中很多可以运用到债券估价模型上。在当下流行的关联分析算法中,比较有影响力的是Apriori算法。该算法通过多次循环提取,尽可能减小候选集的规模,最终形成强关联集合。这种关联规则可以应用到对影响企业债券信息的初期处理之中,找出哪些因素能够对债券价值有影响,通过关联规则可以实现数据的初期整合,删除无影响的信息。决策树是一种预测分类方法,其目的是对数据集训集进行分类,找出有价值的,隐含的信息。J.R.Quinlan提出的ID3算法根据信息增益最大化为主要属性设置决策树的节点,然后在各支树上采用递归算法建立分支树。决策树可以用于对企业价值信息进行分类估价,建立信用风险模型。通过决策树对信息的分类,达到评价企业信用风险等级评价的目的。神经网络算法是模拟人体细胞间的神经元,通过训练实现分级、聚合等多种数据挖掘目标。神经网络技术在债券市场的研究也日趋成熟,Coasts讲神经网络应用于公司财务状况评价,发现利用神经网络预测正确率在93%。所以,利用神经网络数据挖掘可以根据提取、筛选、分类后的数据进行债券价格的预测。通过以上3种数据挖掘技术在债券市场上的应用,可以很好的分析企业价值信息。关联分析可以对找出相关信息,决策树可以对信息进行分类,神经网络可以对债券价值做一个很好的预测。
三、总结
信用风险,也称违约风险,一般是指借款人到期不能或不愿履行还贷付息协议而使银行面临贷款损失的可能性。信用风险是指信贷资金安全系数的不确定性,表现为企业由于各种原因,不愿意或无力偿还银行贷款本息,使银行贷款无法回收,形成呆帐的可能性(Murphy,2003)。具体的讲,信用风险可以分为两种情况:一是借款人或债务人没有能力或者没有意愿履行还款义务而给债权人造成损失的可能性;另一个是指由于债务人信用等级或信贷资产评级的下调、信贷利差的扩大导致资产的经济价值或者市值下降的可能性。前者主要着眼于贷款是否违约,称为违约风险。信用风险根据其定义,具有如下特征。
第一,非系统性与系统性。借款人的还款能力和还款意愿受多种因素的影响,一方面债务人自身的财务状况、投资策略和经营能力等因素决定了其能否按期履约还款。而另一方面,除了借款人自身的非系统风险之外,系统风险的也会对债务人违约产生影响,包括宏观经济状况、行业发展状态和政策法律等因素。
第二,道德风险与信息不对称对信用风险的形成具有重要作用。债权人与债务人的信用交易通常是在信息不对称的条件下进行的。债权人经常对债务人的信息掌握缺乏或者掌握错误信息,在信息掌握失衡的情况下,债务人为了实现自身的利益最大化,道德风险发生的可能性变大,即产生违约倾向,最终形成信用风险。
第三,信用风险收益的非对称性。信用风险收益的分布具有典型的非对称性,信用风险分布的偏峰厚尾特征决定了简单的应用均值和方差来衡量风险的大小是不充分的。
第四,信用风险作用于银行信贷经营的全过程,只有及时、准确地发现信用风险的诱导因素并系统、连续地掌握信用风险的特征、大小、属性及变动趋势,才能防范和化解风险。
二、信用风险四个量化因子
第一,违约概率(ProbabilityofDefault,PD),是指银行的交易对手(债务人)在未来一段时间内发生违约的可能性。对违约概率进行量化,需要我们对违约进行具体的界定。长期以来对违约的定义没有一个统一的标准,不同的用途有时会采取的不同的违约定义。新巴塞尔协议提供了违约的参考定义,违约是指以下两种情况的一种或者两者同时出现:一是银行认定除非采取追索措施,如变现抵质押品(如果存在的话),借款人可能不能全额偿还对银行集团的债务;二是借款人对银行集团的实质性信贷债务逾期90天以上。对于“不能全额偿还”,新协议又进行了六点详细阐述:一是银行停止对贷款表内计息,即借款人的贷款转为表外计息;二是由于信贷质量大幅下降,银行核销了贷款或计提了专项准备;三是银行将借款人贷款出售并相应承担了较大经济损失;四是银行同意对借款人进行消极债务重组而发生本金、利息或费用等较大规模的减免或推迟偿还造成债务规模的减少;五是就借款人对银行集团债务而言,银行将债务人列为破产或类似状况;六是借款人破产或申请破产或处于类似保护状态,由此不能履行或需要延期履行银行集团债务。
第二,违约损失率(LossGivenDefault,LGD),是指债务人一旦违约将给银行(债权人)造成的损失数额占风险暴露的百分比,它衡量了损失的严重程度,并且有违约损失率=1-回收率。对违约损失率进行量化需要我们对损失进行具体的界定。损失的界定即损失计算的范围,对此银行业实际业务中缺乏统一定义,往往根据具体目的和需要确定,一般损失的内容包括以下几个方面:本金的损失、利息的损失、违约债务持有成本和清收费用(如托收费、律师诉讼费)等。
第三,违约风险暴露(ExposureAtDefault,EAD),也称违约敞口,指信用暴露中面临违约风险的部分。关于违约敞口最重要的一点是它是未来的敞口,即在将来面临信用风险的头寸规模。由于提款和还款的方式不同,加上存在其他不确定性因素,在贷款到期之前信用敞口经常随着时间的推移而改变。
第四,有效期限(Maturity,M),是指当前与贷款或债券到期偿还日的时间间隔。向企业放贷对银行来说是一种投资行为,与其他形式的投资一样,银行这一投资的收益受其时间价值的影响。贷款的期限越长,债务在到期之前面临的不确定性越大,风险自然也就越大。在最新的巴塞尔新资本协议中,明确的提到了期限的处理问题。
三、信用风险损失的计量
对信用风险的四个量化因子进行研究,主要目的是对信用风险可能带来的损失进行计量。对信用风险损失的计量标准有两种方法,一是基于违约式模型下的损失,即债务人已发生的违约行为而给债权人(这里主要说的是商业银行)带来的损失;二是盯市模型下的损失,即除了违约行为之外,债务人信用等级的降低或资信质量的恶化导致的潜在损失,这是因为即使在借款人信用状况恶化的情况下并没有发生违约,但是信用资产的经济价值也会因借款人信誉发生变化而受到影响。目前,对于信用风险损失的计量主要考虑预期损失、非预期损失和损失不足三种情况。
1、预期损失(EL)。预期损失是银行在经营活动中可以预期到的损失。银行在事前计提损失准备金来抵御预期损失,或者在贷款定价时将预期损失作为成本(如通过贷款利率)予以考虑。预期损失是损失的期望水平,没有考虑不确定性因素的影响。因此银行须将预期损失视为经营的成本,在贷款的定价或事前损失拨备中予以考虑。预期信用风险损失率等于违约损失率和违约概率的积。进行违约概率和违约损失率测度,可以有效提升信用风险管理水平。
2、非预期损失(UL)。又称意外损失,非预期损失是指因经济环境或市场状况异常波动等非预期事件造成的实际损失对预期损失的偏离。如果组合损失分布服从正态分布,预期损失和非预期损失的分布将与组合信用损失分布一致,因为已知一阶矩和二阶矩即可确定正态分布,那么非预期损失一般可以用预期损失的标准差来描述。但信用风险的损失分布并不服从正态分布,而是具有明显的有偏和非对称性特征。此时非预期损失对应于在险价值(VaR)与期望损失之差。
3、损失不足(ES)。意外损失不包括极端事件,极端事件指VaR置信水平以外的概率发生的损失,尽管股市崩盘、金融危机发生的概率很小,但是其造成的损失是投资者不能忽视的,而一般的统计规律不能估计极端损失,这需要采用压力检测分析这一问题,相应的提出了极值理论和一致性风险度量。损失不足即是度量超出VaR置信水平下最严重损失的平均值,它能够满足对极端损失的关注,在连续分布下,还满足次可加性、齐次性、单调性和无风险条件四个公理,是一致性风险度量手段。
四、经济资本与经风险调整收益率
以经营信贷资产为主要业务的商业银行,始终面临着风险和潜在损失问题,为了抵御这些损失的影响,银行必须配备一定的准备或者资本,又因其行业的特殊性,其资产资本构成与一般工商企业有较大的差异,银行的资本仅占其资产总额的很小一部分,同时银行除了自身主动提取风险准备以外,还要满足外部监管当局的资本要求。
第一,经济资本(EC)。经济资本是银行内部用以缓冲风险损失的权益资本。巴塞尔资本协议将经济资本笼统的定义为银行等金融机构在经营过程中所必须持有能够覆盖所有可能风险的资本数量,经济资本的数量由金融机构自己估计。经济资本的概念与在险价值(ValueatRisk,记为VaR)的概念实际上一致的。在险价值刻画了损失分布的尾部风险,其定义是在一定时期内,在某一置信水平下,投资组合的最大可能损失。事实上,银行内部测算的经济资本与外部监管当局所要求的监管资本常常是不一致的,这种不一致既可能是经济资本高于监管资本,也可能是经济资本低于监管资本。经济资本是银行内部为抵御风险而主动配备的资本,实际上是指所“需要的”资本或“应该有的”资本,不是银行已经拥有的资本,它不同于帐面资本和监管资本。虽然经济资本与监管资本都起到风险缓冲的作用,但前者是由银行管理者从内部来认定和安排的缓冲,它实际上反映了股东价值最大化对银行管理的要求;而后者则是银行业监管部门从行业监管的角度对银行资本金水平所做的要求。在风险定价方面,监管资本无法有效的区分暴露的风险差异,而经济资本做到了这一点,经济资本对风险的敏感性显著高于监管资本对风险的敏感性。所以,从理论上经营稳健的银行需要动态监测监管资本和经济资本,并保证经济资本大于等于监管资本。当经济资本高于监管要求的资本时,银行为了提高资本金的利用效率,会将超额的部分通过资本充足率的杠杆效应,扩大信贷投放;或者通过增加表外业务实现资本金的投资收益。最终使经济资本与监管资本趋于一致。当银行内部计算的经济资本要求,大大低于监管所规定的监管资本要求时,银行就会倾向于监管资本套利。监管资本套利的主要做法是通过资产证券化或其他金融创新工具将低风险资产从信贷组合中稀释出去,而从中获得收益。
第二,经风险调整收益率(RAROC)定义为净收益减去预期损失后与经济资本的比。该定义与资产组合理论中的风险收益比率即Sharp比率相似。银行除了重视估计风险潜在损失和进行经济资本配置以外,对银行的收益能力也十分重视。20世纪70年代末,美国信孚银行提出了RAROC,目的是为了度量银行信贷资产组合的风险和计算在特定损失率下为限制风险暴露必须的股权数量。后来许多大银行在此基础上纷纷对RAROC模型进行开发,从而逐渐改变了传统的以资产收益率和资本收益率为中心的业绩考核和管理体系,将风险因素充分考虑到银行的经营业务考核中。20世纪90年代,这项技术在不断完善的同时在国际上大银行间得到了广泛的推广,并逐渐成为当今金融理论界和实践中公认的最核心、最有效的经营业绩考核管理方法。我国银行业监管管理委员会在《商业银行市场风险管理指引》中指出,银行是经营特殊商品和服务的高风险企业,必须将风险因素引入到经营管理和绩效衡量中。实践表明,银行业要实施全面风险管理,就必须以经济资本为基础,建立一套有效的风险调整后的资本收益率管理体系。
【参考文献】
[1]MurphyA.:AnempiricalanalysisofthestructureofcreditriskpremiumsintheEurobondmarket[J].JournalofInternationalMoneyandFinance,2003(22).
[2]Stiglitz,J.E.,A.Weiss:CreditRationinginMarketswithImperfectInformation[J].TheAmericanEconomicReview,1981(71).
[3]李志辉:中国银行业风险控制和资本充足性管制研究[M].中国金融出版社,2007.
[4]孟庆福:信用风险管理[M].经济科学出版社,2006.
[5]叶蜀君:信用风险度量与管理[M].首都经济贸易大学出版社,2008.
从客户角度来看,诚信意识和信用观念淡薄是导致信用卡产业信用风险的主要原因。我国经济发展逐步驶向快车道的同时,社会思想道德领域的建设却显得较为滞后。在市场交易的过程中,一些人缺乏诚信意识和信用观念,只关注经济利益。他们只看到了透支消费带来的诱惑,却缺乏主动定期偿还透支消费的责任感,合同意识和履约意愿十分淡薄,常常延迟还款或不予还款。甚至一些客户受经济利益的驱使,法律意识淡薄,在办理信用卡之初的目的就是向发卡机构骗取透支额度,若信用卡发卡机构没能及时辨别,就会造成损失。在申请办理信用卡的客户中,部分客户对使用信用卡进行透支消费后的还款风险没有足够清醒的认识,将信用卡业务简单地理解为透支消费。一些信用卡持卡客户,在办理信用卡业务时只看到了使用信用卡“先消费、后还款”的便捷,却没有认真考虑自己的财务状况。为了获得更高的信用额度,一些客户申请时不惜夸大自己的个人收入,甚至制作虚假的资金证明。当透支额超出自身还款能力时,一些信用卡客户只好通过在不同银行办理多张信用卡,相互还款以求度日,这种做法将风险最终转嫁到信用卡发卡机构。传统理论对于信用卡客户信用问题的解决主要依赖于政府和市场两个主体,即通过政府的计划、指令、法律法规以及市场供求关系和优胜劣汰来建立对信用卡客户的选择、规范和淘汰机制。但是这种机制所能发挥作用的前提是交易双方信息对称以及理性的完全契约条件。在实际生活中,这种理想状态是不存在的,这就需要人们在不完全契约条件下实现信用卡产业信用风险的最小化。
2第三配置的内涵和特征
第三配置是指由市场和政府之外的第三种力量实施的资源配置,是除市场调节和政府调节之外的配置力量之和。它具有丰富的内涵,其主要内容大体包括以下三个方面:(1)社会精神力量,是支撑人们行动的精神动力源泉,来源于社会意识、精神世界的力量,如世界观、价值体系、道德观念、、思想意识等。(2)社会制度力量,是规范人们行为的潜意识规则,包括成文的社会正式制度如乡规民约、社团规章、协会章程等,以及不成文的社会非正式制度如习俗、惯例、社会规范、行为模式等。(3)社会组织力量,是以组织形式存在的第三配置力量,包括非政府、非营利性的社会团体、民间组织、行业协会、慈善机构等。这三种力量在形成机制、表现形式、约束力大小等方面既有区别又有交叉,它们的关系是辩证统一的。其中世界观和意识形态是一种相对隐性和软性的东西,而习俗、惯例、章程等则相对来说更为显性和硬性,约束力也相对更强。同时,这三种力量存在一定程度的交叉。非政府、非营利性的社会团体、民间组织、行业协会、慈善机构等,往往通过制订规章制度的方式来协调成员的行为,进行利益分配。相对于政府配置和市场配置,第三配置具有自发性、非强制性、广泛性、隐蔽性、实施成本低、高路径依赖性、一定程度的封闭性等特点。
3第三配置在信用卡产业信用风险控制中的必要性
信用卡产业所代表的信用关系体系是我国市场经济安全有效运转的一个重要环节。建立一种可靠的信用关系,并非简单地制作或发放一张信用卡就可以实现。信用关系的背后实际上是一种制度性契约和长期习俗的混合体,也是一种信用文化和有保障支付历史记录的体现。如前所述,只有在信息完全的情况下,社会契约才能是实现完全契约的效果,在现实不完全契约的条件下,我国需要做两方面工作,一是有必要不断健全和完善个人征信体系,二是在此基础上通过第三配置进一步完善信用卡产业的信用文化。第三配置通常在特殊类型的社会网络关系中起重要作用,比如,亲缘关系、地缘关系、私人交往圈、民间组织网络等,即往往存在于特殊意义的人际关系中。这种特性恰好与我国的信用卡产业发展路径相契合。首先,信用卡产业发展源起于人类信用关系网络。它的产生与发展都以社会网络的结构性变动为前提。在我国现代化转型过程中,社会的信任结构正从特殊信任向普遍信任发展,从而为信用卡提供了发展的土壤。
其次,信用卡产业的分配现状并不完全是市场竞争的结果。作为一种社会资本的产物,它的分配体系受到了社会结构的制约。只有当一个人或者一个阶层在社会结构中获取了相应的认同时才能够便捷地得到信用卡。最后,信用卡产业受控于社会结构与文化。信用卡作为货币支付的一种方式,与普通现金支付之间存在用途与意义的区别。信用卡在我国发展初期就被消费文化定义为“高端货币”,界定了它的文化内涵与使用领域,而传统文化则使人们对这种容易导致“负债”的货币保持警惕。文化的二重性塑造了我国特殊的信用卡产业特性。
4相关建议
在市场经济条件下,经济活动越频繁,对信用的要求越高;社会的信用道德程度越高,信用卡产业的经济运作成本就越低,所以,信用对信用卡产业来说不仅是一种社会规范,更是一种资源。从资源的配置视角看,资源的配置除了传统的市场和政府以外,还存在第三配置,即由社会公共组织或社会公共道德协调机制等方面的配置力量所进行的补充性配置,我国信用卡产业信用风险控制应重视这种良性补充。
(1)积极培育和发展相关专业化的组织,加强信用宣传。如推动诚信建设有关的社会性组织等,它们既不从属于政府,更不屈从于市场,它们的功能主要在于进一步规范和推动相关的行为,以保证信用卡产业信用风险控制在持续和健康的轨道内运行,并选择适合我国国情的信用培育模式。同时,要做到信息公开、透明,以加强相关组织的公信力建设。
(2)重视信用理念的培育和信用文化建设,继承和弘扬中华民族的传统美德和诚信价值观,通过社会价值观的支持使信用成为一种大众文化。借助观念培育、制度激励、道德教化、榜样示范和舆论评价等力量,推进信用传统在信用卡产业实践层面的现代转化。
(3)营造有利于信用卡产业发展的良好信用氛围。以信用建设为主要内容的第三配置在信用卡产业发展中要想发挥越来越重要的作用,政府和社会各界需要对此给予更多的支持和关注,除了在政策等方面予以支持外,还要通过一定的物质支持和精神鼓励,对为此做出贡献的个人和其他社会团体给予更多的鼓励,在全社会营造有利于信用卡产业发展的良好信用氛围。
(4)结合信用卡产业现状对第三配置内容进行重新设计。针对当前的信用卡产业中的信用问题,一方面要在客户中引导他们对现实信用制度的正确理解;另一方面,要提出切实可行的改革措施,在治理消极现象的同时使这些措施被公众所认同。
论文关键词:银行间市场;信用风险;风险管理
全球金融危机对金融机构风险管理理念的最大影响之一就是对交易对手信用风险的重视。金融机构评估对手方信用风险的方法、模型合理与否,关系到评估结果的优劣。本文概要阐述了银行信用风险计量方面的相关理论依据和基本做法。并对银行间市场完善授信管理提出了具体建议。
一、信用风险评估理论
银行等金融机构信用风险评估方法大致有统计模型、CAMEL模型和专家判断模型等三种理论依据:
(一)统计模型
利用统计模型进行信用评估的前提条件是有足够的数据积累,一般至少需要连续3年的相关数据。
1.违约概率(ProbabilityofDefauh,PD)理论
违约概率是预计债务人不能偿还到期债务(违约)的可能性。评估结果与违约率的对应关系是国际公认的事后检验评级机构评估质量标准的一项最重要的标尺。在商业银行信用风险管理中,违约概率是指借款人在未来一定时期内不能按合同要求偿还银行贷款本息或履行相关义务的可能性。如何准确、有效地计算违约概率对商业银行信用风险管理十分重要。不同评级机构所设定的违约定义可能不同,所反映同一等级的质量也因此而不同。只有违约定义相同的评级机构,其评级结果才可以进行比较。有了对应违约率的资信等级才能真正成为决策的依据。商业银行违约概率常用的测度方法主要有两种:基于内部信用评级历史资料的测度方法;基于期权定价理论的测度方法。
2.违约损失率(LossGivenDefault,LGD)理论
违约损失率是指债务人一旦违约将给债权人造成的损失数额占风险暴露(债权)的百分比,即损失的严重程度。在竞争日益激烈、风险日益加大和创新日新月异的市场环境中,银行对资产风险的量化和管理显得越来越重要。传统的信用风险评估方法因过于简单、缺乏现代金融理论基础等原因已经不能适应金融市场和银行监管的需要。以独立身份服务于全社会公众投资者、以公开上市债券为主的外部信用评级对银行内部以信贷资产为主、与银行自身有着特定联系的资产组合的适用性也越来越小。因此,银行开始开发类似外部信用评级但又反映内部管理需要的内部信用评级系统,以适应上述市场和内部管理发展的需要。随着银行内部评级体系的发展,越来越多的银行认识到LGD在全面衡量信用风险方面的重要作用,评级体系的结构开始由只注重评估违约率的单维评级体系向既重违约率又重违约损失率的多维评级体系发展。历史数据平均值法是目前银行业应用最广泛最传统的方法,新巴塞尔资本协定的许多规定也采用这种方法,这种方法以其简单易操作而获得欢迎。
(二)CAMEL模型
CAMEL评级体系是目前美国金融管理当局对商业银行及其他金融机构的业务经营、信用状况等进行的一整套规范化、制度化和指标化的综合等级评定制度。其有五项考核指标,即资本充足性(CapitalAde.quacy)、资产质量(AssetQuality)、管理水平(Manage—ment)、盈利水平(Earnings)和流动性(Liquidity)。当前国际上对商业银行评级考察的主要内容基本上未跳出美国“骆驼”评级的框架。“骆驼”评级体系的特点是单项评分与整体评分相结合、定性分析与定量分析相结合,以评级风险管理能力为导向.充分考虑到银行的规模、复杂程度和风险层次,是分析银行运作是否健康的最有效的基础分析模型。在具体CAMEL模型的指标及其权重选取及校验过程中,大多采用了回归分析、主成分分析等统计方法。
(三)专家判断模型
银行信用评估的起点是对其财务实力的综合判断。应从定量定性两个角度综合评估。经营战略、管理能力、经营范围、公司治理、监管情况、经营环境、行业前景等要素,无法通过确切数量加以计算,而专家打分卡是一种更加偏向于定性的模型。在缺乏外在基准值,如信用等级、违约和损失数据等的情况下,开发专家判断模型是一种较好的选择。专家判断模型的特点是:符合Basel要求.具有透明度和一致性:专家打分卡建模时间短,所需数据不需要特别的多:专家打分卡可充分利用评估人员的经验。
二、信用风险评估的通常做法
(一)信用风险评估的基本思路
评估方法应充分考虑风险元素的定量和定性两个方面,引入大量的精确分析法,并尽可能地运用统计技术。另一方面,不浪费定性参数的判别能力,并用以优化计量模型的预测效能。除CAMEL要素外,还需考虑更多更深入的风险因素。评估要素主要包括品牌价值、风险定位、监管环境、营运环境、财务基本面。
(二)信用风险评估模型的构造
数据准备是模型开发和验证的基础,建模数据应正确反映交易对手的风险特征以及评级框架。定义数据采集模板。收集、清洗和分析模型开发和验证所需要的样本数据集。影响交易对手违约风险要素主要有非系统性因素和系统性因素。非系统性因素是指与单个交易对手相关的特定风险因素,包括财务风险、资本充足率、资产质量、管理能力、基本信息等。系统性因素是指与所有交易对手相关的共同风险因素.如宏观经济政策、货币政策、商业周期等。既要考虑交易对手目前的风险特征,又要考虑经济衰退、行业发生不利变化对交易对手还款能力和还款意愿的影响.并通过压力测试反映交易对手的风险敏感性
(三)变量选择方法
1.层次分析法
层次分析法(Theanlaytichierarchyprocess)简称AHP:它是一种定性和定量相结合、系统化、层次化的分析方法。层次分析法不仅适用于存在不确定性和主观信息的情况,还允许以合乎逻辑的方式运用经验、洞察力和直觉。层次分析法的内容包括:指标体系构建及层次划分;构造成对比较矩阵;相对优势排序;比较矩阵一致性检验。
2.主成分分析法
主成分分析法也称主分量分析,旨在利用降维的思想,通过原始变量的线性组合把多指标转化为少数几个综合指标。在保留原始变量主要信息的前提下起到降维与简化问题的作用,使得在研究复杂问题时更容易抓住主要矛盾。通过主成分分析可以从多个原始指标的复杂关系中找出一些主要成分,揭示原始变量的内在联系,得出关键指标(即主成分)。
3.专家判断
关键指标权重和取值标准设定是通过专家在定量分析的基础上共同讨论确定,取值标准是建立指标业绩表现同分数之间的映射关系。取值标准的设定应能够正确区分风险,取值标准应根据宏观经济周期、行业特点和周期定期调整,从而反映风险的变化。
(四)模型校验修改
模型构造完成后.需要相应财务数据的不断校验修改。财务数据可直接向对应机构索取,也可通过第三方数据提供商获得。直接获取数据的方式准确性较高,但需对应机构积极配合.且需大量的人力物力用于数据录入、核对和计算。通过第三方数据提供商获取数据效率高,但需支付一定费用,且面临数据不全、数据转换计算等问题。在违约概率模型的开发过程中,通常遇到模型赖以建造的数据样本中的违约率不能完全反映出总的违约经历,需进行模型的压力测试,确保模型在各种情况下都能获得合理的结果.并对模型进行动态调整。
(五)引进或自主开发授信评估系统
根据完善授信评估模型,撰写授信评估系统业务需求书.引进或自主开发授信评估系统,提高授信评估效率。授信评估系统还应与会员历史数据库、限额管理系统、会员历史违约或逾期等信息库无缝连接,避免各个环节的操作风险。
三、对银行间市场完善授信评估的启示
(一)完善授信评估可积极推动银行间市场业务发展
银行间市场会员信用评估水平的提高。可有效防范银行间市场系统性风险。为防范交易对手信用风险,市场成员需及时、合理、有效地对相应会员银行或做市商进行信用评估,并根据会员或做市商资信状况的变化进行动态调整,为其设置信用限额。
(二)引进成熟的授信评估方法、模型和流程
根据巴塞尔协议的有关监管要求,国内大中型银行都已经或正在国际先进授信评估机构的帮助下,开发PD或LGD评估模型。银行间市场参与者应学习借鉴国内外先进的授信评估方法和模型。在消化吸收先进经验的基础上,选择国际先进咨询机构作为顾问,构建授信评估方法和模型。
(三)引进或自主开发授信评估系统
为防止操作风险,提高授信评估工作效率,实现授信评估与机构内部相关系统的连接,银行间市场参与者需根据授信评估方法、模型、授信资料清单、分析报告模板、建议授信计算公式等内容。撰写系统开发业务需求书,或引进先进的授信评估系统并进行客户化改造.或选择系统开发商进行自主开发授信管理系统。
根据物流金融的运作特点,可将其风险来源归纳为来自融资企业、抵押物以及第三方物流企业三大方面。借鉴Altman,Haldeman和Narayanan(1977)提出的第二代“ZETA计分模型”中企业信用评价指标体系[3],将来自融资企业的风险细化为中小企业营运能力w1、盈利能力w2、偿债能力w3、及信用记录w4四大方面的十个具体指标,分别为w11持续经营、w12资产回报率、w13存货周转率、w21连续盈利、w22税后利润率、w23销售利润率、w31稳定存货、w32资产负债率、w33速冻比率、w41履约率。我国现阶段的物流金融业务主要集中于基于权利质押以及基于存货质押两种,因此质押物本身的质量也直接关系其风险大小。指标包括:所有权w51、市场性质w61、保险率w71三方面。作为重要参与方的物流企业为实现其对质押物的有效监管,企业规模w81及企业信誉w91也即成为影响物流金融风险的重要指标。
2基于BP神经网络和证据理论的评价方法
2.1BP神经网络的基本原理
BP神经网络,是由Rumelhart和McCelland等人(1986)提出的。其基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层通过隐含层传向输出层。若输出层的实际输出与期望输出不符,则转入误差的反向传播阶段,并将误差分摊给各层的所有单元。正向传播与误差反向传播周而复始,一直到网络输出的误差减少到可接受的程度,或预先设定的次数为止。
2.2证据理论的基本原理
①定义1:设为一个互斥又可穷举的元素的集合,称作识别框架,基本信任分配函数m是一个集合2到[0,1]的映射,A表现识别框架的任一子集,记作A哿,式中:m(A)称为时间A的基本信任分配函数,它表示证据对A的信任程度。②Dempter合成法则:假定识别框架下的两个证据E1和E2,其相应的基本信任函数为m1和m2,焦元分别为Ai和Bj,则m(A)=m1(A)茌m2(A)2.3信用风险评估算法为了保证神经网络的收敛和稳定性,本论文中将15个指标分为四组,建立4个神经网络NN1,NN2,NN3和NN4。神经网络的输出设计为(0.1,0.1,0.9)T、(0.1,0.9,0.1)T、(0.9,0.1,0.1)T,表示的信用风险级别分别为高风险、中度风险、低风险,记为A1,A2,A3。将输出归一化,得到向量(a′i1,a′i2,a′i3)T,记作V′i。令mi(Ai)=a′il,i∈{1,2,3,4},l∈{1,2,3},表示由NNi得到的对信用风险级别Ai的基本信任度,即针对事件Ai的证据。之后,再将4个证据利用DS证据理论融合。就可以对信用风险进行评估,最初最终决策。
3应用实例
本次数据采集共发出问卷200份,收回135份,有效问卷92份。将前91组数据分别训练神经网络。再将余下1个样本输入训练好的神经网络,归一化处理输出结果即得该证据对该命题的基本概率分配,而后利用DS证据理论将其融合得到最终优化结果。
4结论
1.1评价指标体系内容
针对我国民营企业自身特征,在构建企业信用风险评价指标体系的过程中要充分对企业素质进行分析,对企业整体经济发展情况、经营范围与产品销售与盈利水平等进行综合评价,同时也包括对企业综合管理情况的评估,如企业职工能力、领导管理能力以及企业内部文化结构等;要对企业资金信用进行评估,通过对企业资产结构、资金链运行以及资产质量的分析,进行量化财务指标考察,充分反映企业资金自有率和流动比率,对信贷情况、贷款承付率等全面评估;对企业的经营水平与经济效益进行综合评价,包括对产品生产、销售、开发、费用核算以及纳税与利润多方面情况考察;另外,对企业发展情景的分析,要对民营企业进行近期考察,对目标实现情况以及长远规划等全面分析,并对企业的行业地位以及多元化市场竞争力进行分析,对其目标的制定与措施的落实以及长远发展趋势进行分析。
1.2指标体系构建原则
为避免民营企业信用风险评价指标的选择存在随意性,要遵循全面性原则、科学性原则、公正性原则、通用性原则、可获得性原则。民营企业风险评估直接关系到企业长远发展趋势,一旦出现评估偏差将会影响企业信用状况,给企业带来风险。因此,风险评估指标体系的构建要全面体现民营企业信用状况。要积极借鉴国外信用风险评估体系构建经验,使数据结构构建更加丰富、全面、科学。只有在客观判断和评估的前提下,才能保证指标体系构建的公正性和有效性。另外,指标体系构建必须要依照国家政策和法律以及规定标准进行,避免偏离经济发展轨道,使其适用于民营企业中,被债权人和企业理解和认同。
2.基于相似度的民营企业信用风险评级方法
信用评级方法主要是指基于企业的信用状况完成的等级判定,通过进行系统分析发现,信用评价方式对于信用等级的判定具有科学性。针对民营企业的信用评估方法应用,我国多赞同美国做法,但是也有持反对意见的。认为通过定量方式分析量化评估指标具有客观性。而通过定性分析则相对比较主观,需要进行相应的主观判断,可以说,采用定量分析相对于定性具有一定的进步性特征。本文中对两者之间的关系与作用并不做机械性判断,而是根据实际需要选择定量或者是定性分析。
2.1定性评估方法
根据分析人员的差异性特征可以进行以下几个方面的分类:首先,个性特征分析方法:个人可以通过三种方式进行分析,也就是根据因果性原理完成对以表现出来的信用情况以及经济指标变化情况进行判断,形成信用状况信息。这个过程中也可以采用对比类推法,通过结合类推原理将信用状况与相类似的状况之间相互结合,形成对未来一段时间范围内企业信用状况的评估。其次,集体分析方法:采用个人因素分析方法会受到个人知识结构等多方面因素的限制,因此具有局限性。集中个人形成专业性判断能够极大提升信用评估的质量与效果。这项评估方式主要采用的是集体讨论方式进行信用评估。最后,专家调查方法:这项评估需要借助于具有专业性能力的专家,通过进行咨询完成相关信用问题的解决。因为专家的专业性能力相对更强,通过借助于他们的专业性知识与能力,可以充分解决各个方面的实际问题。
2.2信用评估定量分析
首先,比率分析:也就是采用财务分析方法,这也是信用评估当中的主要应用方式。在进行信用评估时很难通过一项数据内容完成整体评估,因此需要计算比率指标内容,这样就能够进行判断,形成科学性结果。其次,还包括趋势性分析方法、结构性分析方法以及相互对比法。以上三种指标也都是进行信用评估最为主要的使用方式。
3.实际应用研究
结合某食品企业进行实例分析,该企业成立于2000年,总投资金额为3000万余元,公司总人数达800人。主要生产的是花生系列产品,产品出口国际市场。年生产力能够达到3000吨。当前企业为了进一步实现扩大再生产,引进专业技术人才达到员工总数的41%,创新费用比重为8%,新型技术装备更新率为6%,产品销售收入比重达到原来的28%,资本积累达到4%。
4.结论
P2P网络借贷作为新生事物,吸引了众多研究者的关注,国内外学者对其进行了大量的研究,从最初的P2P网络借贷起源与现状、特征、经营模式,到后面的积极作用与消极作用、发展趋势等方面,而近几年则将目光集中在了网络借贷的信用风险上。
(一)网络借贷信用风险分析
早期的P2P网络借贷信用风险研究表明,平台中借款者的特征差异不大,但是信用风险却很显著。Herzensteinetal.(2008)和PopeandSydnor(2011)认为,P2P网络借贷平台是由投资者个人而非借贷平台筛选确定借款人是否值得信赖,因此,更容易出现借款人通过虚假陈述骗取借款的情况,即网络借贷的风险更大[2]。Michaels(2012)通过对Prosper网站上的数据分析,发现网络借贷平台责任的缺失使网络借贷市场运行有效性下降,因而带来较大的风险[3]。Sufi(2007),MichaelKlafft(2008)认为,如同在金融市场中一样,网络借贷市场也存在信息不对称,此外,由于投资者缺乏经验,网络环境下贷款的信用风险更高[4]。Leeetal.(2012)研究韩国最大P2P平台上的“从众行为”发现,“从众行为”导致网络借贷信用风险加大,即信息不对称现象非常严重,往往还会导致道德风险[5]。在国内,近几年来由于网络借贷平台资质良莠不齐,发展模式并不规范,带来很大的信用风险[6]。陈初(2010)也认为,P2P平台可能泄露重要的信息,加之贷款用途难以核实,信用风险很大[7]。由于网络借贷平台作为交易平台,实行的是无担保无抵押,缺乏担保的P2P借贷会使债权人的风险增加[8]。
(二)网络借贷信用风险管理
信用风险管理就是通过有效的方法对信用风险进行分析、防范和控制,使风险贷款安全化,确保本息的收回。借贷平台信用风险管理水平决定了自身的生存和发展,也对金融体系的稳定与发展产生巨大影响。国外的信用风险管理体系发展较早,在实践和理论上已经形成相应的体系,不少学者的研究主要集中在如何使投资人更好地掌握借款人诚信信息以及怎样通过借贷平台自身机制有效缓解信息不对称等方面。FreedmanandJin(2008)发现,虽然投资者由于信息不对称问题面临着逆向选择的风险,但网站上提供的资料信息可以在一定程度上帮助识别潜在的信用风险[9]。Linetal.(2009)也指出社会互动作为一种软信息资源,能够一定程度上降低信息不对称和道德风险[10]。HarpreetSingha(2009)使用决策树对不同期限、风险配置的投资进行研究,认为目前主要是通过多样化投资来降低信用风险[11]。国内的P2P网络借贷模式尚处于起步阶段,信用风险管理体系不健全,大多数平台只是依据自身情况建立了基于专家判断法的信用评分模型,但由于此模型的预测能力没有通过系统验证,在实际业务中的应用实效大打折扣[12]。可见在我国个人信用体系缺失的情况下,国内网络借贷平台的信用评级对信用风险控制的作用并不大[8]。此外,李悦雷(2013)认为借贷中人际关系的应用能降低金融交易的风险和成本[13]。陈初(2010)则认为可把从事网络借贷业务的网站界定为民间借贷中介组织,即可将网络借贷纳入相关的监管系统[7]。综上所述,学者主要是基于理论对P2P网络借贷信用风险进行分析,或者定性分析当前P2P网络借贷的信用风险管理,而对网络借贷平台信用风险影响因素的实证研究较为缺乏。因此,本文拟从P2P网络借贷平台的内部视角,运用平台具体数据,对网络借贷信用风险的影响因素进行实证,分析网络借贷平台的信用风险管理体系是否能有效控制信用风险,并提出控制网络借贷信用风险的政策建议。
二、实证分析
(一)数据选取
本文基于VBA开发环境,采用XMLHttpRe-quest方法。网络借贷平台的贷款页面URL(Uni-versalResourceLocator)具有一定的规律,即每笔贷款都按照借款时间通过编号排列顺序,URL的结尾都是以贷款编号结束,我们正好利用这一特点,通过固定编号获取大量贷款数据。将需要的贷款编号列入Excel中的第一列,然后利用VBA函数读取编号对应的网页。将网页转换为文本格式以后,由于需要的数据都出现在页面的特定位置上,VBA函数通过定位关键字,将对应变量的具体数据采集到Excel表格对应的其他列中。通过不断地读取对应网址页面,本文对拍拍贷编号为220000~319999以及人人贷中编号为120000~179999的借款数据和相应的借款人信息进行以下收集。主要从人口特征、信用变量、历史表现和借款信息四个方面选取网络借贷信用风险影响因素的变量(见表1),即:从拍拍贷及人人贷网站平台上提取的数据,删除一些缺失数据以及审核未通过数据,从拍拍贷网站得到了61944组有效数据,其中存在信用风险的用户数据共有3360组,违约率达到了5.42%;从人人贷网站得到了59972组有效数据,提取其中存在信用风险的数据810组,违约率为1.35%。对数据中借款人的基本人口特征进行初步分析,结果如表2、3所示。从表2、3的数据可以初步判断,具有信用风险的借款人性别主要以男性为主,无论是占样本比率还是占逾期比率,男性借款人逾期概率都要远远高于女性;年龄方面,26~31岁的逾期人数占到总逾期人数的比率明显高于其他年龄段,且随着年龄的增加,违约概率呈明显降低趋势。
(二)模型选择
①类似于二元选择模型,假设潜在变量y与解释变量x存在线性关系y*i=x*iβ+u*i,i=1,2,3,…,N,其中ui是独立同分布的随机干扰。总共有M+1个等级,观测到yi位各个等级的概率为:P(yi=0)=F(c1-x′iβ),P(yi=1)=F(c2-x'iβ)-F(c1-x′iβ),…,P(yi=M)=1-F(cM-x'iβ)。模型采用极大似然法估计,其中,c1,c2,…,cM是M的临界值,作为参数和回归系数一起估计。
(三)实证研究
从结果可以看出,除了age不够显著(P值<10%,呈负相关)以外,剩下的变量fail、gender、credit、success、rate和time对于信用风险的影响都很显著(P值<5%,呈正相关)。正如Iyeretal.(2009)发现的,信用变量、历史信用等对信用风险有相关影响[14]。而FreedmanandJin(2008)也发现,高利率的借款人通常具有较高的信用风险[9]。人人贷中gender、success不够显著,可能是因为人人贷网站中具有信用风险的用户较少,人口特征和历史表现无法在一定程度上反映信用风险。排序选择模型是概率模型,由于有多个等级,图2为观测到的属于各个等级的概率预测,每个观测都是对应信用风险等级的概率预测,并且概率之和为1。从图2看出,基本各个风险的概率处于稳定。以上分别从人口特征、信用变量、历史表现和借款信息四个方面对信用风险的影响进行了研究,结果发现:1.人口特征(age、gender)对信用风险的影响都较为显著,说明人口特征对网络借贷过程中的信用风险具有一定的影响。从表2和3中也可以看出,在具有信用风险的借款人中,男性的比率远远高于女性。由于P2P网络借贷依托于互联网,参与用户体现出年龄较小的趋势,但是年轻的用户经济基础较为薄弱,经济来源也不太稳定,往往容易出现资金短缺的情况,信用风险较高;年龄较大的用户社会资源丰富,经济来源也较为稳定,信用风险就相对较低。2.信用变量(credit)中,认证等级是网站对用户各项资料进行评分,然后加总起来得到的信用评级。理论上,认证等级越高信用风险就越低,但实证结果显示,认证等级与信用风险正相关。网站上的认证分仅仅只是对一些基础信息打出的分数,如身份证、学历、视频等认证,但平台往往无法保证其真实性,所以,网站由于自身能力有限而无法达到控制信用风险的预期效果,即平台的信用等级评分对用户避免信用风险起到的作用不大,有时还导致一些反效果。3.历史表现(success、fail)中,失败和成功的次数都是用户在平台的活跃程度。成功的次数越高,说明在此次借款之前,借款人都按时完成还款,即信用等级很高,但对某些人来说,成功的次数只是为了提高自己的信用,最终借到需要的金额,所以与信用风险呈正相关。失败的次数多,说明借款人的信息无法给投资者安全感,即被大多数投资者认为具有较高的信用风险,在借款成功后出现违约的可能性更大,即失败次数与信用风险负相关。4.借款信息(rate、time)中,优质的借款者往往难以提供足够高的收益率,即利率与信用风险呈正相关。还款期限也和风险呈正相关关系,在网络借贷平台上的借贷行为,由于没有人际关系作为潜在的信用保障,一笔投资无疑是时间越短,所要面临的信用风险就越小。时间越长,投资者的相对风险就越大,因此,时间成为正向影响信用风险的显著因素。从以上的数据分析以及实证中发现,网站对于借款人的信用评分对信用风险管理并没有起到实质性作用,评分高的用户依然具有较高的信用风险。网站为满足借款人的资金安全性要求,在借款满额后进行内部审核,但是内部审核主要也是以信用评分为基础,对防止信用风险效果不大。出现逾期现象后,平台对借款人实行本金保障制度,但在监管缺失的情况下,由于没有特定的维权部门,逾期还款的追讨难度很大,而风险储备池的资金有限,加大了平台的经营风险,所以,单靠平台本身无法对信用风险进行有效管理。
三、结论与政策建议
用logistic回归模型对客户信用风险进行预警,主要包括两部分内容,一是对样本财务指标数据进行因子分析,筛选出logistic回归的关键自变量,二是建立logistic回归模型,用于对客户违约情况进行风险预警。
(一)样本选取与简单描述性统计。本文数据来源于国内某商业银行的信贷系统,以2006年的化工业为例,从中选择了2457个小微企业非上市公司样本,其中48个违约样本,2409个非违约样本。对于样本公司,本文从偿债能力、盈利能力、营运能力、成长能力、现金流量以及规模等六个方面,选取了15个财务指标,对小微企业非上市公司的经营现状进行因子分析,从中找出最能反映公司经营特点的少数公共因子,进而为后续的Logistic模型风险预警提供解释变量。选取的15个财务指标如表1所示:在选取样本时,本文首先运用SPSS16.0软件对数据进行了异常值剔除处理,步骤如下:首先对选定的15个财务指标进行标准化,除指标量纲的差异,然后将每个指标的标准化值的绝对值大于或等于3的样本视为异常值加以剔除;对剔除后的样本,重复进行指标标准化处理、检验异常值、剔除异常值,直至无异常数据为止。本文重复了5次异常值剔除处理,最终筛选出2457个合格样本,用于因子分析。下表2为数据的简单描述性统计量。
(二)因子分析1.因子分析的适用性检验。因子分析要求变量间具有相关性,本文在进行因子分析前,主要采用KMO检验和巴特利特球度检验方法对变量进行相关性检验。表3为运用SPSS16.0软件运行得出的检验结果。从表中可以看出KMO检验统计量的值等于0.633,其大于0.5,证明适合作因子分析。同时巴特利特球度检验值为27600,其相伴概率为0.000,在5%的显著性水平下极其显著,说明相关系数矩阵不是单位阵,即变量间存在相关性,适合作因子分析。2.确定因子数目。构造因子变量首先要确定因子数目,本文采用特征值大于1的标准提取公因子,同时通过碎石图直观判断公因子数目。首先,运用SPSS16.0软件运行得出因子分析的特征根和方差贡献率,如下表4。表4中,三部分分别为初始因子、因子提取后以及经过方差最大旋转后的相关系数矩阵的特征根、方差贡献率以及累计方差贡献率。从第三部分可以看出,依据特征值大于1的标准,共提取6个主因子,且前6个主因子的方差贡献率依次为21.501%、17.884%、11.366%、10.71%、10.509%、8.762%,累计方差贡献率大于80%,说明前6个主因子可以解释变量的大部分信息,从而把前6个公因子作为评价样本公司的综合指标,降低了公司综合评价的指标维度,为后续Logistic回归提供了解释变量。其次,建立碎石图判断因子数目。首先将特征根从大到小排序,序号相应为1,2,…,15。以横轴表示序号,纵轴表示特征值,构造出碎石图1。观察碎石图发现,特征值大于1的因子有6个,分别为F1,F2,…,Fn,这与表3-4确定的因子数目一致。3.估计因子载荷矩阵。运用SPSS16.0软件运行得出初始因子载荷矩阵,由于无法确定公共因子的经济意义,使用方差最大化旋转法对初始因子载荷矩阵进行旋转,可得到旋转后的因子载荷矩阵,如表5所示。通过旋转,各个公因子有了较为明确的经济含义:第一个公共因子F1,其在指标X5(总资产报酬率)、X6(净资产收益率)、X7(息税前利润/总资产)、X8(息税前利润/主营业务收入净额)上有较大载荷,命名为“盈利能力因子”。第二个公共因子F2,其在指标X1(资产负债率)、X2(产权比率)、X3(流动性比率)上有较大载荷,命名为“偿债能力因子”。第三个公共因子F3,其在指标X11(所有者权益增长率)、X12(总资产增长率)、X14(现金流量比率)上有较大载荷,命名为“成长能力因子”。第四个公共因子F4,其在指标X13(现金比率)、X4(速动比率)上有较大载荷,命名为“现金流量因子”。第五个公共因子F5,其在指标X9(总资产周转率)、X15(总资产)上有较大载荷,命名为“总资产营运能力因子”。第六个公共因子F6,其在指标X10(应收账款周转率)上有较大载荷,命名为“应收账款周转率因子”。4.计算因子得分。表6是通过主成分回归方法估计出的因子得分系数,用表中各公共因子对应的得分系数分别乘以各变量标准化值即可得到各公因子对应的得分序列。
(三)Logistic实证分析1.建立Logistic回归方程。设被解释变量y为0-1型随机变量,当样本违约时y取1,非违约时y取0,另以6个公共因子F1,F2,…,F6作为解释变量,建立Logistic回归模型,回归方程的形式如下:2.Logistic模型参数估计。运用SPSS16.0软件对因变量Y和自变量F进行Logistic回归建模,选择逐步向前回归分析法,筛选出回归系数比较显著的自变量进入模型,剔除回归系数比较显著的自变量进入模型,剔除回归系数不显著的自变量。本文参数估计结果中已剔除回归系数不显著的因子F2,F3和F6,保留了因子F1、F4和F5,最终获得的参数估计结果如下表7所示:表7中,Wald统计量用来检验回归系数是否显著,Sig是Wald统计量的相伴概率,结果显示因子F1,F4和F5的Wald值、Sig值在1%的显著性水平下极其显著,说明模型拟合较成功。3.Logistic回归违约率()判别分析。判别分析的目的是为了检验模型建立的准确性,为风险预警做准备。具体方法为运用已建立的Logistic回归方程(3.3),得出各样本的违约概率值,以违约概率0.5为判别临界点,>0.5计入违约组,<0.5计为非违约组,运用SPSS16.0软件运行得出模型违约组和非违约组的判别结果如下表8所示。上表显示,Logistic模型总的判别准确率为98%,其中非违约组2409个样本全部判别为非违约,判别准确率100%;而违约组48个违约样本全部错判为非违约,判别准确率0%。由于通过估计违约概率来识别违约样本的结果不理想,我们寻找其他能提高违约样本判别准确率的方法。4.Logistic回归残差(ZREi)判别分析。回归方程的残差gi是指实际观察值yi与通过回归方程估计出的回归值yi之差。残差可以分为普通残差gi、标准化残差ZREi=giσ,一般用于判断异常值,判断标准为将超过±2σ或±3σ的残差视为异常值。由于普通残差ei的方差不相等,不适合直接用来做判断,一般将普通残差标准化,使残差具有可比性,从而用标准化残差ZREi来进行判断。本文将残差异常值的判断与样本的违约性判断联系起来,进而通过识别回归残差的异常值来判断样本的违约性。运用SPSS16.0软件输出所有样本的标准化残差ZREi,将用ZREi>2和ZREi>1两个标准,分别进行违约识别,对比分析判别结果的准确率,进而选取准确率更高的判别临界点。在ZREi>2的判别标准下,判别结果为:违约组48个样本中,标准化残差值均为正值,且大于2,判为违约组,判别准确率100%;非违约组2409个样本中,标准化残差值均为负值,且绝对值小于2,全部判为非违约组,判别准确率100%。在ZREi>1的判别标准下,判别结果与ZREi>1的判别结果完全一致,违约组和非违约组的判别准确率均为100%。
(四)Logistic模型样本外预测。为了检验模型的预警能力,本文根据2006年建立的Logistic回归方程去预警2007年的客户违约情况。选取2007年化工行业的33个样本数据,其中7个违约样本、26个非违约样本。首先运用SPSS16.0软件,将33个样本的15个财务指标数据标准化,根据因子得分系数表4-7,算出每个样本的因子得分值F1、F4和F5,代入Logistic回归方程(4.5),根据y的预测值和实际值算出普通残差和标准化残差,分别运用ZREi>2和ZREi>1两个标准来进行风险预警。在ZREi>2的判别标准下,预警结果为:违约组7个样本,预警出2个违约,预警准确率28.57%;非违约组26个样本,全部预警为非违约,预警准确率100%。在ZREi>1的判别标准下,预警结果为:违约组7个样本,全部预警为违约,预警准确率100%;非违约组26个样本,预警出25个违约,预警准确率96.15%。鉴于ZREi>1的预警准确率明显高于ZREi>2的预警准确率,本文将ZREi>1作为预警样本违约的判别标准。
二、结论
关键词:信用评级风险防范议题
一、引言
新巴塞尔协议的核心内容是内部评级,包括了市场风险、信用风险和操作风险。市场风险由于数据都来之外部资本市场,而且方法成熟,需要我们自行研究的较少;操作风险的计量方法还不够成熟;信用风险,虽然方法成熟,但是需要使用内部数据,从而更多的需要我们自行开发研究,而且对于中国的银行业,传统的信贷业务仍是比重最大的业务,所以信用风险评级是目前我国银行研究的重点,也是内部评级的突破口。
信用风险评级模型的基本思想是从已有信用表现的历史数据中提炼信息,得到客户属性和行为变量与客户违约概率之间的函数关系,从而来预测未来的客户信用状况。这种函数关系,是广义上的对应关系,并不一定存在显式的表达。
尽管信用风险计量有很多领域还处于研究阶段,不过信用风险评级发展较早,从1968年奥尔特曼(Altman)引入的Z-score模型开始,到现在的logistic模型、机器学习等方法,在发达国家,不论是理论研究,还是实际应用,信用风险评级都已经相当的成熟。那么我们是否可以直接搬来使用呢?信用风险内部评级模型,方法的选择固然重要,但是好的方法并不一定对应好的结果,实际上模型表现更多的决定于问题本身情况和问题解决的处理细节。我国的银行业进行信用风险评级,虽然在技术上的有一定的“后发优势”,但是绝对不是简单的“直接拿来”。信用风险的内部评级工作需要根植于内部数据,来开发适合中国实际情况的评级模型。本文从银行内部评级的角度,对信用风险评级的若干问题进行了讨论,并提出了适当的处理方式。
二、数据特性
不同的数据特性适用不同的模型。例如,判别分析要求自变量符合多元正态分布;而Logistic回归对于数据的分布要求比较低,而且在处理纲目数据方面有着非常大的优越性。在变量不服从多元正态分布的情况下,Logistic回归优于判别回归;但是如果变量服从多元正态分布,那么线性判别规则是最优的。而机器学习类的模型,对于分布要求不高,而且处理离散变量也有明显的优势,例如决策树、神经网络。
模型没有绝对的最优,必须按照数据情况来选择合适的模型。数据情况的统计分析,是十分重要的,即使国外已经有经验表明某种模型表现优异,也有结合实际的建模数据进行分析。如果我国的数据情况与国外不同,不符合该模型的假定,该模型就不可取。
所以,建模的第一步工作就是分析数据情况,讨论各种可能模型的适用性,初步确定符合数据情况的模型框架。
三、分布的变化
既然信用评级的基本思想是从历史数据中提炼信息来预测未来的客户信用状况。那么,即使我们从历史数据中提炼出了完整的信息,如果历史数据与未来情况不同,预测的可信度也会成为问题。
一个比较典型的问题是宏观经济的变化。宏观经济的变化对于整体违约概率的影响是非常大的,如图1所示,美国历年来的公司违约情况。公司客户的评级往往主要依据公司的财务数据来得出结论,而实际上,即使是相同的财务比例,在不同的宏观经济情况下,也有不同的表现。公司类客户同样还要考虑整体行业的演变过程,根据经济学理论,行业生命周期往往经历萌芽期-扩展期-成熟期-衰退期四个周期。
在消费者评分模型中,还有一个问题是人口漂移。我国目前正处在精神文明和物质文明高速发展的阶段,人口特性变化很快,如打工族的出现、贷款购房的增加、家用轿车消费增加等。这些变化会导致潜在信用消费人群和信用观念的变化。这种随着经济环境、人口结构和生活方式的变迁使样本人群的范围和特质发生变化,一般被称为人口漂移。人口漂移会使原有评分标准下的评价结果与现实情况不符,这时就应适当的调整权值修正人口漂移带来的偏差,并不断更新作为训练样本的数据。
在宏观经济的变化引起的违约概率的整体变化,需要建立宏观经济模型来调整客户评级;而类似人口漂移等问题,数据结构都已经发生了变化,需要经常的更新训练样本,升级评级模型。评级模型有个别模型本身对于分布变化的这类问题有一定的解决能力,例如最近邻法,它可以直接加入新的申请者或删除老的用户的方式动态升级系统,从而克服人口漂移带来的问题。
四、拒绝推断
当我们使用训练样本进行模型研究的时候,所有训练样本都是已经有信用表现的客户,即都是曾经被授信的客户,而申请被拒绝的客户不在其列。但是当我们使用模型的时候,却面对了所有的可能客户(即包括了按照以前的标准被授信或者被拒绝的客户),既然我们模型从来就不认识被拒绝客户,又如何对他们作出判断呢?所谓“拒绝推断”(refusereference)是指如何从被拒绝的申请人中鉴别出应向其授信的申请人的问题。模型开发者面临的情况。
在完全不准确(近乎随机)的信用评分的情况下,跃为较为精确的评级模型,“拒绝推断”造成的影响不是很严重。当然实际情况不会如此,即使是简单的专家选择,也会使得训练样本有偏。而开始使用模型后,由于人口漂移等诸多因素,原有的信用评级模型随着时间的流逝而渐渐失效,从而需要不断地更新。“拒绝推断”是信用操作中无法回避的重要问题,目前主要的解决有部分接受法、混合分解法等。
1.部分接受法
这是一种解决这类问题的较理想的方法,但是却不会受到经营者的欢迎。部分接受法就是在未被授信的客户集中进行随机的取样,批准他们的贷款申请,然后观察其以后的行为。这些申请者,被赋以相应的权重,然后和那些通过原有规则获得批准的客户(或者是它们当中的随机取样)联系在一起,这将会带来完全随机的人群样本,可以用来创建新的评级模型。但是经营者往往不愿意这样做,他们的理由就是既然那些客户已经被认为是没有好的信用质量,批准他们的信用申请会带来损失。但是,如果授信方接收了当中一些人的申请,那么就可以通过建立更加具有预测能力的模型再长期获利。在任何情况下,授信方的利润都不会因为这些取样而受到太大的影响,因为这些取样都是经过仔细挑选的。关于部分接受法的研究还需要更加广泛的工作,不过有一点可以肯定的是,这个方法需要前台经营部门和风险管理部门的通力合作和预先的计划。
2.混合分解法
这是一种在没有任何关于人群信息的情况下,估计两种人群比例的方法。使用这种方法的前提是关于好坏人群的性质分布的假设。特别是,必须假设知道这些分布就等同于知道一些参数的值,而这些值是可以通过数据估计的。这种方法的关键就在于将假定的优质客户分布与假定的劣质客户分布的加权平均作为观察值的分布与整体样本分布的匹配。如此得到的整体样本分布称为“混合分布”。
这一方法可以让人们能够利用已知分布的一些优异性质,但它的弊端也很明显,就是关于好坏分布的假设必须是准确的。不幸的是,信用数据的特征非常复杂,想准确的得到它的分布往往是很困难的。
五、数据真实性
这是一个比较有中国特色的问题,虽然发达国家也有财务欺诈,但是绝对没有中国的严重。由于制度的缺失,或者制度执行的乏力,在中国,即使是会计师事务所审计出来的数据可能也是不可靠的。所以反财务欺诈,对于模型开发者是面临的严峻问题。但是模型开发者能做的只能是发现在统计意义上或者逻辑关系上出现的异常现象。
六、数据缺失
我国银行建立评级模型,面临最为严重的问题是数据缺失。在数据缺失非常严重的情况,建立一个优秀的模型几乎是不可能的,所以在此讨论在能建模的前提下,数据缺失问题如何处理。
如果一个变量缺失一定比例(例如50%)以上,只有放弃该变量;如果从经济学含义上,该变量确实非常重要,那么只有通过专家的经验来寻找可替代的变量(或者变量组合)。例如,家庭地址的所属区可能是十分重要的变量,但是并没有被记录,或者建模人员无法从家庭地址中提炼出区域,那么可以通过邮政编码和电话号码结合表征区域变量。
在数据缺失不是很严重的情况下,我们可以采用缺值替代的方法,例如均值替代、同类均值替代等,或者在不影响数据量的前提下也可以直接删除数据缺失的记录。
以上讨论的都还是完全随机缺失,这类缺失是完全随机发生的,不影响样本的无偏性。但是缺失更常见的随机缺失和非随机缺失,所谓随机缺失是指该变量的数据缺失与其他变量有关,例如财务数据缺失情况与企业的大小有关;非随机缺失是该变量的缺失与本身取值有关,如高收入人群的不原意提供家庭收入,财务情况差的公司不提供财务报表。
对于随机缺失和非随机缺失,删除记录是不合适的,随机缺失可以通过已知变量对缺失值进行估计;而非随机缺失还没有很好的解决办法。总结而言,缺值问题还是一个需要深入研究的问题。
七、过度拟合
由于样本中存在噪音,所以模型的拟合优度只能达到一定程度,这是理论能达到的最优拟合度。有些时候,当模型把噪音当成了信息进行拟合,使得拟合优度超过了理论的最优拟合度,过度拟合的模型实际上包含了错误的信息,预测能力很差。如图3是一个过度拟合的简单例子,对于图中的点,我们通过线性拟合和非线性拟合得到拟合曲线a和b,显然的曲线b的拟合优度要高于曲线a,但是如果本质上y和x之间是线性关系,那么非线性拟合的模型假设是错误的,较高的拟合优度实际上是过度拟合造成的。
过度拟合可以通过评价样本等方法来解决,如图4,当训练不断进行,训练样本的误判率不断降低,而评价样本则呈现先降后升的情况,那么当评价样本的误判率到最低时,我们就应该停止训练。
八、指标选取中一些问题
信用评级在我国还处于起步阶段,而发达国家已建立起一套相当完备的标准,在很多方面我们可以借鉴已有成果,但我国的文化习惯和道德标准与发达国家之间存在很大差异,在选取指标时应注意国情和评估的具体目的。具体评价指标的选取各国具有不同,如美国法律不允许将性别、年龄等个人属性作为指标列入消费者信用评估体系,但这显然是非常重要的指标,而且我国目前没有这样的法律规定;德国将是否服兵役作为一项重要指标;意大利将出生省份和婚约中对共同财产的要求作为重要指标;而日本则将供职公司是否上市以及公司的雇员数作为重要指标。