欢迎来到易发表网,发表咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

功能材料论文优选九篇

时间:2023-04-01 10:30:25

功能材料论文

功能材料论文第1篇

关键词:梯度功能材料,复合材料,研究进展

Abstract:Thispaperintroducestheconcept,types,capability,preparationmethodsoffunctionallygradedmaterials.Baseduponanalysisofthepresentapplicationsituationsandprospectofthiskindofmaterialssomeproblemsexistedarepresented.ThecurrentstatusoftheresearchofFGMarediscussedandananticipationofitsfuturedevelopmentisalsopresent.

Keywords:FGM;composite;theAdvance

0引言

信息、能源、材料是现代科学技术和社会发展的三大支柱。现代高科技的竞争在很大程度上依赖于材料科学的发展。对材料,特别是对高性能材料的认识水平、掌握和应用能力,直接体现国家的科学技术水平和经济实力,也是一个国家综合国力和社会文明进步速度的标志。因此,新材料的开发与研究是材料科学发展的先导,是21世纪高科技领域的基石。

近年来,材料科学获得了突飞猛进的发展[1]。究其原因,一方面是各个学科的交叉渗透引入了新理论、新方法及新的实验技术;另一方面是实际应用的迫切需要对材料提出了新的要求。而FGM即是为解决实际生产应用问题而产生的一种新型复合材料,这种材料对新一代航天飞行器突破“小型化”,“轻质化”,“高性能化”和“多功能化”具有举足轻重的作用[2],并且它也可广泛用于其它领域,所以它是近年来在材料科学中涌现出的研究热点之一。

1FGM概念的提出

当代航天飞机等高新技术的发展,对材料性能的要求越来越苛刻。例如:当航天飞机往返大气层,飞行速度超过25个马赫数,其表面温度高达2000℃。而其燃烧室内燃烧气体温度可超过2000℃,燃烧室的热流量大于5MW/m2,其空气入口的前端热通量达5MW/m2.对于如此大的热量必须采取冷却措施,一般将用作燃料的液氢作为强制冷却的冷却剂,此时燃烧室内外要承受高达1000K以上的温差,传统的单相均匀材料已无能为力[1]。若采用多相复合材料,如金属基陶瓷涂层材料,由于各相的热胀系数和热应力的差别较大,很容易在相界处出现涂层剥落[3]或龟裂[1]现象,其关键在于基底和涂层间存在有一个物理性能突变的界面。为解决此类极端条件下常规耐热材料的不足,日本学者新野正之、平井敏雄和渡边龙三人于1987年首次提出了梯度功能材料的概念[1],即以连续变化的组分梯度来代替突变界面,消除物理性能的突变,使热应力降至最小[3]。

随着研究的不断深入,梯度功能材料的概念也得到了发展。目前梯度功能材料(FGM)是指以计算机辅助材料设计为基础,采用先进复合技术,使构成材料的要素(组成、结构)沿厚度方向有一侧向另一侧成连续变化,从而使材料的性质和功能呈梯度变化的新型材料[4]。

2FGM的特性和分类

2.1FGM的特殊性能

由于FGM的材料组分是在一定的空间方向上连续变化的特点如图2,因此它能有效地克服传统复合材料的不足[5]。正如Erdogan在其论文[6]中指出的与传统复合材料相比FGM有如下优势:

1)将FGM用作界面层来连接不相容的两种材料,可以大大地提高粘结强度;

2)将FGM用作涂层和界面层可以减小残余应力和热应力;

3)将FGM用作涂层和界面层可以消除连接材料中界面交叉点以及应力自由端点的应力奇异性;

4)用FGM代替传统的均匀材料涂层,既可以增强连接强度也可以减小裂纹驱动力。

2.2FGM的分类

根据不同的分类标准FGM有多种分类方式。根据材料的组合方式,FGM分为金属/陶瓷,陶瓷/陶瓷,陶瓷/塑料等多种组合方式的材料[1];根据其组成变化FGM分为梯度功能整体型(组成从一侧到另一侧呈梯度渐变的结构材料),梯度功能涂敷型(在基体材料上形成组成渐变的涂层),梯度功能连接型(连接两个基体间的界面层呈梯度变化)[1];根据不同的梯度性质变化分为密度FGM,成分FGM,光学FGM,精细FGM等[4];根据不同的应用领域有可分为耐热FGM,生物、化学工程FGM,电子工程FGM等[7]。

3FGM的应用

FGM最初是从航天领域发展起来的。随着FGM研究的不断深入,人们发现利用组分、结构、性能梯度的变化,可制备出具有声、光、电、磁等特性的FGM,并可望应用于许多领域。

功能

应用领域材料组合

缓和热应

力功能及

结合功能

航天飞机的超耐热材料

陶瓷引擎

耐磨耗损性机械部件

耐热性机械部件

耐蚀性机械部件

加工工具

运动用具:建材陶瓷金属

陶瓷金属

塑料金属

异种金属

异种陶瓷

金刚石金属

碳纤维金属塑料

核功能

原子炉构造材料

核融合炉内壁材料

放射性遮避材料轻元素高强度材料

耐热材料遮避材料

耐热材料遮避材料

生物相溶性

及医学功能

人工牙齿牙根

人工骨

人工关节

人工内脏器官:人工血管

补助感觉器官

生命科学磷灰石氧化铝

磷灰石金属

磷灰石塑料

异种塑料

硅芯片塑料

电磁功能

电磁功能陶瓷过滤器

超声波振动子

IC

磁盘

磁头

电磁铁

长寿命加热器

超导材料

电磁屏避材料

高密度封装基板压电陶瓷塑料

压电陶瓷塑料

硅化合物半导体

多层磁性薄膜

金属铁磁体

金属铁磁体

金属陶瓷

金属超导陶瓷

塑料导电性材料

陶瓷陶瓷

光学功能防反射膜

光纤;透镜;波选择器

多色发光元件

玻璃激光透明材料玻璃

折射率不同的材料

不同的化合物半导体

稀土类元素玻璃

能源转化功能

MHD发电

电极;池内壁

热电变换发电

燃料电池

地热发电

太阳电池陶瓷高熔点金属

金属陶瓷

金属硅化物

陶瓷固体电解质

金属陶瓷

电池硅、锗及其化合物

4FGM的研究

FGM研究内容包括材料设计、材料制备和材料性能评价。

4.1FGM设计

FGM设计是一个逆向设计过程[7]。

首先确定材料的最终结构和应用条件,然后从FGM设计数据库中选择满足使用条件的材料组合、过渡组份的性能及微观结构,以及制备和评价方法,最后基于上述结构和材料组合选择,根据假定的组成成份分布函数,计算出体系的温度分布和热应力分布。如果调整假定的组成成份分布函数,就有可能计算出FGM体系中最佳的温度分布和热应力分布,此时的组成分布函数即最佳设计参数。

FGM设计主要构成要素有三:

1)确定结构形状,热—力学边界条件和成分分布函数;

2)确定各种物性数据和复合材料热物性参数模型;

3)采用适当的数学—力学计算方法,包括有限元方法计算FGM的应力分布,采用通用的和自行开发的软件进行计算机辅助设计。

FGM设计的特点是与材料的制备工艺紧密结合,借助于计算机辅助设计系统,得出最优的设计方案。

4.2FGM的制备

FGM制备研究的主要目标是通过合适的手段,实现FGM组成成份、微观结构能够按设计分布,从而实现FGM的设计性能。可分为粉末致密法:如粉末冶金法(PM),自蔓延高温合成法(SHS);涂层法:如等离子喷涂法,激光熔覆法,电沉积法,气相沉积包含物理气相沉积(PVD)和化学相沉积(CVD);形变与马氏体相变[10、14]。

4.2.1粉末冶金法(PM)

PM法是先将原料粉末按设计的梯度成分成形,然后烧结。通过控制和调节原料粉末的粒度分布和烧结收缩的均匀性,可获得热应力缓和的FGM。粉末冶金法可靠性高,适用于制造形状比较简单的FGM部件,但工艺比较复杂,制备的FGM有一定的孔隙率,尺寸受模具限制[7]。常用的烧结法有常压烧结、热压烧结、热等静压烧结及反应烧结等。这种工艺比较适合制备大体积的材料。PM法具有设备简单、易于操作和成本低等优点,但要对保温温度、保温时间和冷却速度进行严格控制。国内外利用粉末冶金方法已制备出的FGM有:MgC/Ni、ZrO2/W、Al2O3/ZrO2[8]、Al2O3-W-Ni-Cr、WC-Co、WC-Ni等[7]。

4.2.2自蔓延燃烧高温合成法(Self-propagatingHigh-temperatureSynthesis简称SHS或CombustionSynthesis)

SHS法是前苏联科学家Merzhanov等在1967年研究Ti和B的燃烧反应时,发现的一种合成材料的新技术。其原理是利用外部能量加热局部粉体引燃化学反应,此后化学反应在自身放热的支持下,自动持续地蔓延下去,利用反应热将粉末烧结成材,最后合成新的化合物。其反应示意图如图6所示[16]:

SHS法具有产物纯度高、效率高、成本低、工艺相对简单的特点。并且适合制造大尺寸和形状复杂的FGM。但SHS法仅适合存在高放热反应的材料体系,金属与陶瓷的发热量差异大,烧结程度不同,较难控制,因而影响材料的致密度,孔隙率较大,机械强度较低。目前利用SHS法己制备出Al/TiB2,Cu/TiB2、Ni/TiC[8]、Nb-N、Ti-Al等系功能梯度材料[7、11]。

4.2.3喷涂法

喷涂法主要是指等离子体喷涂工艺,适用于形状复杂的材料和部件的制备。通常,将金属和陶瓷的原料粉末分别通过不同的管道输送到等离子喷枪内,并在熔化的状态下将它喷镀在基体的表面上形成梯度功能材料涂层。可以通过计算机程序控制粉料的输送速度和流量来得到设计所要求的梯度分布函数。这种工艺已经被广泛地用来制备耐热合金发动机叶片的热障涂层上,其成分是部分稳定氧化锆(PSZ)陶瓷和NiCrAlY合金[9]。

4.2.3.1等离子喷涂法(PS)

PS法的原理是等离子气体被电子加热离解成电子和离子的平衡混合物,形成等离子体,其温度高达1500K,同时处于高度压缩状态,所具有的能量极大。等离子体通过喷嘴时急剧膨胀形成亚音速或超音速的等离子流,速度可高达1.5km/s。原料粉末送至等离子射流中,粉末颗粒被加热熔化,有时还会与等离子体发生复杂的冶金化学反应,随后被雾化成细小的熔滴,喷射在基底上,快速冷却固结,形成沉积层。喷涂过程中改变陶瓷与金属的送粉比例,调节等离子射流的温度及流速,即可调整成分与组织,获得梯度涂层[8、11]。该法的优点是可以方便的控制粉末成分的组成,沉积效率高,无需烧结,不受基体面积大小的限制,比较容易得到大面积的块材[10],但梯度涂层与基

体间的结合强度不高,并存在涂层组织不均匀,空洞疏松,表面粗糙等缺陷。采用此法己制备出TiB2-Ni、TiC-Ni、TiB2-Cu、Ti-Al[7]、NiCrAl/MgO-ZrO2、NiCrAl/Al2O3/ZrO2、NiCrAlY/ZrO2[10]系功能梯度材料

4.2.3.2激光熔覆法

激光熔覆法是将预先设计好组分配比的混合粉末A放置在基底B上,然后以高功率的激光入射至A并使之熔化,便会产生用B合金化的A薄涂层,并焊接到B基底表面上,形成第一包覆层。改变注入粉末的组成配比,在上述覆层熔覆的同时注入,在垂直覆层方向上形成组分的变化。重复以上过程,就可以获得任意多层的FGM。用Ti-A1合金熔覆Ti用颗粒陶瓷增强剂熔覆金属获得了梯度多层结构。梯度的变化可以通过控制初始涂层A的数量和厚度,以及熔区的深度来获得,熔区的深度本身由激光的功率和移动速度来控制。该工艺可以显著改善基体材料表面的耐磨、耐蚀、耐热及电气特性和生物活性等性能,但由于激光温度过高,涂层表面有时会出现裂纹或孔洞,并且陶瓷颗粒与金属往往发生化学反应[10]。采用此法可制备Ti-Al、WC-Ni、Al-SiC系梯度功能材料[7]。

4.2.3.3热喷射沉积[10]

与等离子喷涂有些相关的一种工艺是热喷涂。用这种工艺把先前熔化的金属射流雾化,并喷涂到基底上凝固,因此,建立起一层快速凝固的材料。通过将增强粒子注射到金属流束中,这种工艺已被推广到制造复合材料中。陶瓷增强颗粒,典型的如SiC或Al2O3,一般保持固态,混入金属液滴而被涂覆在基底,形成近致密的复合材料。在喷涂沉积过程中,通过连续地改变增强颗粒的馈送速率,热喷涂沉积已被推广产生梯度6061铝合金/SiC复合材料。可以使用热等静压工序以消除梯度复合材料中的孔隙。

4.2.3.4电沉积法

电沉积法是一种低温下制备FGM的化学方法。该法利用电镀的原理,将所选材料的悬浮液置于两电极间的外场中,通过注入另一相的悬浮液使之混合,并通过控制镀液流速、电流密度或粒子浓度,在电场作用下电荷的悬浮颗粒在电极上沉积下来,最后得到FGM膜或材料[8]。所用的基体材料可以是金属、塑料、陶瓷或玻璃,涂层的主要材料为TiO2-Ni,Cu-Ni,SiC-Cu,Cu-Al2O3等。此法可以在固体基体材料的表面获得金属、合金或陶瓷的沉积层,以改变固体材料的表面特性,提高材料表面的耐磨损性、耐腐蚀性或使材料表面具有特殊的电磁功能、光学功能、热物理性能,该工艺由于对镀层材料的物理力学性能破坏小、设备简单、操作方便、成型压力和温度低,精度易控制,生产成本低廉等显著优点而备受材料研究者的关注。但该法只适合于制造薄箔型功能梯度材料。[8、10]

4.2.3.5气相沉积法

气相沉积是利用具有活性的气态物质在基体表面成膜的技术。通过控制弥散相浓度,在厚度方向上实现组分的梯度化,适合于制备薄膜型及平板型FGM[8]。该法可以制备大尺寸的功能梯度材料,但合成速度低,一般不能制备出大厚度的梯度膜,与基体结合强度低、设备比较复杂。采用此法己制备出Si-C、Ti-C、Cr-CrN、Si-C-TiC、Ti-TiN、Ti-TiC、Cr-CrN系功能梯度材料。气相沉积按机理的不同分为物理气相沉积(PVD)和化学气相沉积(CVD)两类。

化学气相沉积法(CVD)是将两相气相均质源输送到反应器中进行均匀混合,在热基板上发生化学反应并使反映产物沉积在基板上。通过控制反应气体的压力、组成及反应温度,精确地控制材料的组成、结构和形态,并能使其组成、结构和形态从一种组分到另一种组分连续变化,可得到按设计要求的FGM。另外,该法无须烧结即可制备出致密而性能优异的FGM,因而受到人们的重视。主要使用的材料是C-C、C-SiC、Ti-C等系[8、10]。CVD的制备过程包括:气相反应物的形成;气相反应物传输到沉积区域;固体产物从气相中沉积与衬底[12]。

物理气相沉积法(PVD)是通过加热固相源物质,使其蒸发为气相,然后沉积于基材上,形成约100μm厚度的致密薄膜。加热金属的方法有电阻加热、电子束轰击、离子溅射等。PVD法的特点是沉积温度低,对基体热影响小,但沉积速度慢。日本科技厅金属材料研究所用该法制备出Ti/TiN、Ti/TiC、Cr/CrN系的FGM[7~8、10~11]

4.2.4形变与马氏体相变[8]

通过伴随的应变变化,马氏体相变能在所选择的材料中提供一个附加的被称作“相变塑性”的变形机制。借助这种机制在恒温下形成的马氏体量随材料中的应力和变形量的增加而增加。因此,在合适的温度范围内,可以通过施加应变(或等价应力)梯度,在这种材料中产生应力诱发马氏体体积分数梯度。这一方法在顺磁奥氏体18-8不锈钢(Fe-18%,Cr-8%Ni)试样内部获得了铁磁马氏体α体积分数的连续变化。这种工艺虽然明显局限于一定的材料范围,但能提供一个简单的方法,可以一步生产含有饱和磁化强度连续变化的材料,这种材料对于位置测量装置的制造有潜在的应用前景。

4.3FGM的特性评价

功能梯度材料的特征评价是为了进一步优化成分设计,为成分设计数据库提供实验数据,目前已开发出局部热应力试验评价、热屏蔽性能评价和热性能测定、机械强度测定等四个方面。这些评价技术还停留在功能梯度材料物性值试验测定等基础性的工作上[7]。目前,对热压力缓和型的FGM主要就其隔热性能、热疲劳功能、耐热冲击特性、热压力缓和性能以及机械性能进行评价[8]。目前,日本、美国正致力于建立统一的标准特征评价体系[7~8]。

5FGM的研究发展方向

5.1存在的问题

作为一种新型功能材料,梯度功能材料范围广泛,性能特殊,用途各异。尚存在一些问题需要进一步的研究和解决,主要表现在以下一些方面[5、13]:

1)梯度材料设计的数据库(包括材料体系、物性参数、材料制备和性能评价等)还需要补充、收集、归纳、整理和完善;

2)尚需要进一步研究和探索统一的、准确的材料物理性质模型,揭示出梯度材料物理性能与成分分布,微观结构以及制备条件的定量关系,为准确、可靠地预测梯度材料物理性能奠定基础;

3)随着梯度材料除热应力缓和以外用途的日益增加,必须研究更多的物性模型和设计体系,为梯度材料在多方面研究和应用开辟道路;

4)尚需完善连续介质理论、量子(离散)理论、渗流理论及微观结构模型,并借助计算机模拟对材料性能进行理论预测,尤其需要研究材料的晶面(或界面)。

5)已制备的梯度功能材料样品的体积小、结构简单,还不具有较多的实用价值;

6)成本高。

5.2FGM制备技术总的研究趋势[13、15、19-

20]

1)开发的低成本、自动化程度高、操作简便的制备技术;

2)开发大尺寸和复杂形状的FGM制备技术;

3)开发更精确控制梯度组成的制备技术(高性能材料复合技术);

4)深入研究各种先进的制备工艺机理,特别是其中的光、电、磁特性。

5.3对FGM的性能评价进行研究[2、13]

有必要从以下5个方面进行研究:

1)热稳定性,即在温度梯度下成分分布随时间变化关系问题;

2)热绝缘性能;

3)热疲劳、热冲击和抗震性;

4)抗极端环境变化能力;

5)其他性能评价,如热电性能、压电性能、光学性能和磁学性能等

6结束语

FGM的出现标志着现代材料的设计思想进入了高性能新型材料的开发阶段[8]。FGM的研究和开发应用已成为当前材料科学的前沿课题。目前正在向多学科交叉,多产业结合,国际化合作的方向发展。

参考文献:

[1]杨瑞成,丁旭,陈奎等.材料科学与材料世界[M].北京:化学工业出版社,2006.

[2]李永,宋健,张志民等.梯度功能力学[M].北京:清华大学出版社.2003.

[3]王豫,姚凯伦.功能梯度材料研究的现状与将来发展[J].物理,2000,29(4):206-211.

[4]曾黎明.功能复合材料及其应用[M].北京:化学工业出版社,2007.

[5]高晓霞,姜晓红,田东艳等。功能梯度材料研究的进展综述[J].山西建筑,2006,32(5):143-144.

[6]Erdogan,F.Fracturemechanicsoffunctionallygradedmaterials[J].Compos.Engng,1995(5):753-770.

[7]李智慧,何小凤,李运刚等.功能梯度材料的研究现状[J].河北理工学院学报,2007,29(1):45-50.

[8]李杨,雷发茂,姚敏,李庆文等.梯度功能材料的研究进展[J].菏泽学院学报,2007,29(5):51-55.

[9]林峰.梯度功能材料的研究与应用[J].广东技术师范学院学报,2006,6:1-4.

[10]庞建超,高福宝,曹晓明.功能梯度材料的发展与制备方法的研究[J].金属制品,2005,31(4):4-9.

[11]戈晓岚,赵茂程.工程材料[M].南京:东南大学出版社,2004.

[12]唐小真.材料化学导论[M].北京:高等教育出版社,2007.

[13]李进,田兴华.功能梯度材料的研究现状及应用[J].宁夏工程技术,2007,6(1):80-83.

[14]戴起勋,赵玉涛.材料科学研究方法[M].北京:国防工业出版社,2005.

[15]邵立勤.新材料领域未来发展方向[J].新材料产业,2004,1:25-30.

[16]自蔓延高温合成法.材料工艺及应用/jxzy/jlkj/data/clkxygcgl/clgy/clgy16.htm

[17]远立贤.金属/陶瓷功能梯度涂层工艺的应用现状./articleview/2006-6-6/article_view_405.htm.

[18]工程材料./zskj/3021/gccl/CH2/2.6.4.htm.

功能材料论文第2篇

关键词:纳米涂层;场发射;电子强关联;软凝聚态物质

2003年在国际和中国都发生了具有突发性的灾难事件,但中国的GDP仍以9.1%的高速度在增长,达到了人民币11.6万亿元,其中第二产业贡献4万多亿元。中国现今的第二产业主要领域是冶金、制造和信息,在世界的地位是大加工厂,也是大市场。在国际竞争中所以有优势是中国的劳动力廉价,这个优势我们能保持多久?我们还注意到与化工有关的产品中,我们的生产效率是国际发达国家的5%,能耗是3倍,环境的破坏是9倍。这就是我们所付出的代价。不论形势如何严峻,21世纪是中华民族振兴的机遇期,制造业绝对是一个极其重要的领域,是个急速发展变化的领域。2003年3月国际真空学会执委会在北京举行,会议上讨论了将原来的冶金专委会改名为“表面工程专委会”,当时也考虑了另一个名字“涂层专委会”,我想用涂层材料更合适,含有继承性和变革性。20世纪70年代曾经说成是塑料年代,此后塑料科技和工业迅速崛起,极大地改变了人类社会。继而是信息时代,通信网、计算机网、万维网、智能网,信息流,日新月异地改变着人类的生活和观念。我们这个时代是高速发展的时代,技术和观念都在与时俱进地改变着。

本世纪初兴起了纳米科技,促进其到来的是由于微电子小型化的发展趋势,推动科技发展进入纳米时代[1],不仅电子学将进入纳电子学领域,物理学进入介观物理领域,各类科技,包括生物医学等都在探索纳米结构与特性。涂层和表面改性越来越多地增加了纳米科技的内容,这是一种低维材料的制造和加工科技,将是制造技术的主流,将迅速地改变传统制造技术的方法、理论和观念,作为现今国际上的制造大国,世界加工厂,我们更应该注意研究制造技术的发展和未来。

1突破传统制造技术的观念

纳米科技研究的内容主要是在原子、分子尺度上构造材料和器件,测量表征其结构和特性,探索、发现新现象、新规律和应用领域。与我们熟悉传统的相比,纳米材料和器件具有显著的维数效应和尺寸效应。近几年来,在纳米材料制造方面做了大量的研究工作,在纳米粒子粉材的制造,以及材料结构和特性测量、表征上取得了显著成果[2~7]。接下来深入到纳米线、纳米管和纳米带的研究[8~14],出现了一些成功有效的制造方法,发现了一些惊人的结构和特性。在此基础上,发展了纳米复合材料的研究,展现了非常有希望的应用前景[15~17]。近来人们在纳米科技初期成果的基础上挑战某些产品的传统加工技术,比如Al组件的快速加工。

T.B.Sercombe等人报道了快速加工铝(Al)组件的新方法[18],这个方法的主要特征是用快速成型技术先形成树脂键合件,然后在氮气氛中分解其键和第二次渗入铝合金。在热处理过程中,铝与氮反应形成氮化铝骨架,在渗透过程中得到刚体结构。与传统制造工艺相比,这个过程是简单的快速的,可以制造任何复杂组件,包括聚合物、陶瓷、金属。图1是过程示意和原型样品,(a)是尼龙巾镶嵌铝粒子的SEM像,中心有结构细节的是Mg粒子,白色是Al粒子,加入少量的Mg是为还原氧化铝,它将不是铸件中的成分。在尼龙被烧去时,这个结构基本保持不变。(b)是氮化物骨架,围绕Al粒子的一些环状结构的光学显微镜像,再渗入Al时将形成密实结构。(c)是烧结的氮化铝和渗铝组件,小柱的厚为0.5mm其密度和强度都达到了传统铸造技术的水平。他们还制作了公斤重量多种结构的样品。这是一种冶金技术的探索,开辟了一种新的冶金和制造技术途径。

2纳米材料的完美定律

描述材料结构的常用术语是原子结构和电子结构。原子结构的主要参量是晶格常数、键长、键角;电子结构的主要参量是能带、量子态、分布函数。对于我们熟悉的宏观体系,这些参量多是确定的常数,但对于纳米体系,多数参量随着原子数量的改变而变化。这是纳米材料和器件的典型特征,它决定了纳米材料的多样性。其中有个重要规律,我们称之为纳米材料的完美定律,用简单语言表述:“存在是完美的,完美的才能存在”。它包括了纳米晶粒的魔数规则,即含有13、55、147…等数量原子的原子团是稳定的,对于富勒烯碳60和碳70存在的几率最大,而对于碳59或碳71等结构体系根本不存在。这就是为什么斯莫利(Smmolley)他们当初能在大量的富勒烯中首先发现碳60和碳70,从而获得了诺贝尔奖。对于一维纳米结构,包括纳米管和纳米线,存在类似的规则。可以模型上认为是由壳层构成的,每个壳层中更精细的结构称为股,每一股是一条原子链,中心为1股包裹壳层为7股的表示为7-1结构,再外壳层为11股的,表示为11-7-1结构,等等,构成最稳定的结构,这是一维纳米结构的魔数规则。对二维纳米膜存在类似的缺陷熔化规则,即不容许存在很多缺陷,一旦超过临界值,缺陷自发产生,完全破坏二维晶态结构。上述这些低维结构特征是完美定律的具体表述,进步普遍表述理论是正在研究中的课题。

完美定律是我们讨论涂层材料的出发点,因为纳米材料有更多的人造品格,是大自然很少存在或者不存在的,需要人工大量制造。在制造过程中,方法简单、产额高、成本低是最有竞争力的。可以想象,制造成本很高的材料和器件能有市场,一定是不计成本的特殊需要,有政治背景或短期的社会需求。因此在我们探索纳米材料制造时,首先考虑的应是满足完美定律的技术,如用甲烷电弧法制备纳米金刚石粉技术[1],电化学沉积法制备金属纳米线阵列技术[19],以及电炉烧结法制造氧化物纳米带技术[20]等等。

3涂层纳米材料将给我们带来什么?

涂层纳米材料是纳米科技领域具有代表的材料,或是低维纳米材料的有序堆积结构,或者是低维纳米材料填充的复合结构。两者都比传统材料有惊人的结构和特性。如新型高效光电池[21]、各向异性结构材料[19]、新型面光源材料[22]等,这里举例介绍基于热电效应的新型纳米热电变换材料。

热电效应器件的代表是热电偶,即利用不同导体接触的温差电现象进行温度测量的器件。基于热电效应可以制成两类器件:热产生电和电产生温差。前者可以用于制造焦电器件,即用热直接发电,如将焦电材料涂于内燃机缸表面,利用缸体温度高于环境几百度的温差发电,将余热变作电能回收。后者可以做成电致冷器件。这类的直接热电变换器件具有无污染,没有活动部件,长寿命,高可靠性等优点,但块体材料制成器件的效率低,限制了它的应用。纳米科技兴起以后,人们探索利用纳米晶或纳米线结构能否解决热电效应的效率问题。认为用量子点超晶格材料有希望显著提高热电器件的效率,这是由于纳米材料显著的能级分裂,有利于载流子的共振输运和降低晶格热传导,从而提高了器件的效率。T.C.Harman等人[23]报告了量子点超晶格结构的热-电效应器件,他们制备了PbSeTe/PbTe量子点超晶格(QDSL)结构,用其制造了热电器件(Thermo-electrics,TE),图2(a)是纳米超晶格TE致冷器件的结构和电路图,(b)电流-温度曲线。将TE超晶格材料,其宽11mm,长5mm,厚0.104mm,n-型的TE片,一端置于热槽,另一端置于冷槽,为了减小冷槽热传导而形成这同结接触,用一根细金属线与热槽连接。当如图2(a)所示加电流源时,将致冷降温。对于这种纳米线超晶格结构,由于量子限制效应,发生间隔很大的能级分裂,从而得到很高的热电转换效率。图2(b)是TE器件的电流-温度曲线,实验点标明为热与冷端温差(T)与电流(I)关系,电流坐标表示相应通过器件的电流。■为热端温度Th与电流I的关系,其温度对于流过器件的电流不敏感。为冷端温度Tc与电流I的关系,其温度对于电流是敏感的。图中A是测得的最大温差,43.7K,B是块体(Bi,Sb)2(Se,Te)3固溶合金TE材料最大温差,30.8K。从图中可以看出,在较大电流时,冷端温度趋于饱和。采用这种致冷器件由室温降至一般冰箱的冷冻温度是可能的。

电热效应的逆过程的应用就是焦电器件,即利用热源与环境的温差发电。对于内燃机、锅炉、致冷器高温热端等设备的热壁,涂上超晶格纳米结构涂层,利用剩余热能发电,将是人们利用纳米材料和组装技术研究的重要课题。

类似面致冷、取暖,面光源,面环境监测等涂层功能材料,将给家电产业带来革命性的影响,将会极大地改变人类的生活方式和观念。

4含铁碳纳米管薄膜场发射

碳纳米管阵列或含碳纳米管涂层场发射被广泛研究,以其为场发射阴极做成了平板显示器。研究结果表明碳管的前端有较强的场发射能力,因此碳管涂层膜中多数碳管是平放在基底上的,场电子发射能力很差。我们制备了含有铁(Fe)纳米粒子的碳纳米管,它的侧向有更大的场发射能力,有利于用涂层法制造平板场发射阴极。图3(a)是含铁粒子碳纳米的TEM像,碳管外形发生显著改变。(b)是碳管场发射I-V特性曲线,I是CVD生长的竖直排列碳纳米管的场发射曲线,II是含铁粒子碳纳米管竖直阵列的场发射曲线,III是含粒子碳纳米管躺在基底上的场发射曲线,有最强的场发射能力。根据此结果,将含铁的碳纳米管用作涂层场发射阴极,有利于研制平板显示器。

5电子强关联体系和软凝聚态物质

上面所讲到的涂层纳米功能材料和器件是当今国际上研究的热门课题,会很快取得重要成果,甚至有新产品进入市场。当我们在讨论这个纳米科技中的重要方向时,不能不考虑更深层的理论问题和更长远的发展前景。这就涉及到物理学的重要理论问题,即电子强关联体系(electronstrongcorrelationsystem)与软凝聚态物质(softcondensationmatter)。

在量子力学出现之前,金属材料电导的来源是个谜,20世纪初量子力学诞生后,解决了金属导电问题。基于Bloch假设:晶体中原子的外层电子,适应晶格周期调整它们的波长,在整个晶体中传播;电子-电子间没有相互作用。这是量子力学的简化模型,没有考虑电子间的相互作用,特别是在局域态电子的强相互作用。2003年又有人提出了金属导电问题,Phillips和他的同事以“难以琢磨的Bose金属”为题重新讨论了金属导电问题[24]。当计入电子间的相互作用时,可能产生的多体态,超导和巨磁阻就是这种状态。晶体中的缺陷破坏了完善导体,导致电子局域化。电子与核作用的等效结果表现为电子间的吸引作用,导致电荷载流子为Cooper对。但这个对的形成,不是超导的充分条件。当所有Cooper对都成为单量子态时,才能观察到超导性。这样,对于费米子由于包利(Paulii)不相容原则,不可能产生宏观上的单量子态。Cooper对的旋转半径小于通常两个电子相互作用的空间,成为Bose子。宏观上呈现单量子态,Bose子的相干防止了局域量子化。在局域化电子范围内,超导性可能认为是玻色-爱因斯坦凝聚,这个观点现今被很多人接受。从20世纪初至今,对于基本粒子的量子统计有两种,一是Fermi统计,遵从Paulii不相容原理,即每个能量量子态上只能容纳自旋不同的2个电子,而Bose子则不受这个限制。在凝聚态物质中有两个基态:即共有化Bose子呈现超导态,局域化Bose子呈现绝缘态。然而,在几个薄合金膜的实验中,观察到金属相,破坏了超导体和绝缘体之间直接转换。经分析认为这是玻色金属态,参与导电的是Bose子。推断这个金属相可能是涡流玻璃态,这个现象在铜氧化物超导体中得到了验证。

软凝聚态物质研究的对象是原子、分子间不仅存在短程作用力,而且存在长程作用力,表观上呈现的粘稠物质形态,称为软凝聚态。至今,人类对于晶体和原子存在强相互作用的固体已经知道得相当透彻了,但对软凝聚态的很多科学问题还没有深入研究,21世纪以来,引起了科学家的极大兴趣。软凝聚态物质包括流体、离子液体、复合流体、液晶、固体电解、离子导体、有机粘稠体、有机柔性材料、有机复合体,以及生物活体功能材料等。这其中的液晶由于在显示器件上的很大市场需求,是被研究得相当清楚的一种。其他软凝聚态结构和特性的科学问题和应用前景是目前被关注的研究课题。这其中主要有:微流体阀和泵、纳米模板、纳米阵列透镜、有机半导体、有机陶瓷、流体类导体、表面敏感材料、亲水疏水表面、有机晶体、生物材料(人造骨和牙齿)、柔性集成器件,以及他们的复合,统称为分子调控材料(materialsofmolecularmanipulation)。其主要特征是原子结构的多变性和柔性,研究材料的设计、制造、结构和特性的测量、表征,追求特殊功能;理论上探讨原子结构的稳定体系,光、电、热、机械特性,以及载流子及其输运。关于软凝聚态物质,有些早已为人类所用,电解液、液晶等,但对其理论研究处于初期阶段。科学的发展和应用的需求促进深入的理论研究,判断体系稳定存在的依据是自由能最小,体系自由能可表示为F=E-TS,其中S是熵。对于软凝聚态物质体系,S是重要参量。其中更多的缺陷,原子、分子运动的复杂行为,更多的电子强关联,不再是单粒子统计所能描述,需要研究粒子间存在相互作用的统计理论。多样性是这个体系的突出特征,因此其理论涉及广泛、复杂问题。

物理学是探索物态结构与特性的基础学科,是认识自然和发展科技的基础,其中以原子间有较强作用的稠密物质体系为主要研究对象的凝聚态物理近些年有了迅速进展,研究范围不断扩大,从固体结构、相变、光电磁特性扩展到液晶、复杂流体、聚合物和生物体结构等。几乎每一二十年就有新物质状态被发现,促进了人类对自然的认识和对其规律把握能力,推动了科学和技术的发展。21世纪仍有一些老的科学问题需要深入研究,一些新科学问题已提到人们的面前。特别是低维量子限域体系和极端条件下的基本物理问题。20世纪80年代出现的介观物理,后来发展成为纳米科技所涉及的学科领域。与宏观体系和原子体系相比,低维量子限域体系,还有很多物理问题有待解决,人们熟悉的宏观体系得到的规则和结论有些不再有效,适用于低维量子限域体系的处理方法和理论需要探索,特别是将涉及到多层次多系统问题的描述和表征,将会有更多的新现象、新效应、新规律被发现。在纳米尺度,研究原子、分子组装、测量、表征,涉及有机材料、无机/有机复合材料和生物材料,这将大大的扩展了物理学研究的范围和深度。涉及的重大科学前沿问题和重点发展方向有①强关联和软凝聚态物质,及其他新奇特性凝聚态物质;②低维量子限域体系的结构和量子特性,包括纳米尺度功能材料和器件结构和特性;③粒子物理,描述物质微观结构和基本相互作用的粒子物理标准模型和有关问题,以及复杂系统物理;④极端条件下的物理问题,探索高能过程、核结构、等离子体、新物理现象和核物质新形态等;⑤生命活动中的物理问题,物理学的基本规律、概念、技术引入生命科学中,研究生物大分子体系特征、DNA、蛋白质结构和功能等,其研究关键将在于定量化和系统性,必然是多学科的交叉发展,成为未来科学的重要领域。

6结论

本文讨论了纳米线涂层的结构和特性,重点是纳米线的复合涂层和其电学特性、光电特性。其中包括制造技术新观念,纳米材料的完美定律,纳米涂层的热-电效应,碳纳米管的侧向场发射,以及电子强关联体系和软凝聚态物质,展示了涂层科学与技术的发展前景。

参考文献:

[1]薛增泉,纳米科技探索[M].北京:清华大学出版社,2002.

[2]Pavlova-VerevkinaOB,Kul’kovaNV,PolitovaED,etal.COLLLOIDJ+2003,65(2):226.

[3]DattaMS,TINDIANIMETALS2002,55(6):531.

[4]YamaguchiY,JJPNSOCTRIBOLOGIS2003,48(5):363.

[5]HayashiN,SakamotoI,ToriyamaT,etal.SURFCOATTECH2003,169:540.

[6]PocsikI,VeresM,FuleM,eta1.VACUUM2003,7l(1-2):171.

[7]FanQP,WangX,LiYD,CHINESEJINORGCHEM2003,19(5):521.

[8]ArakiH,FukuokaA,SakamotoY,etal.JMOLCATALA-CHEM2003,199(1-2):95.

[9]BottiS,CiardiR,CHEMPHYSLETT2003,37l(3-4):394.

[10]TianML,WangJU,KurtzJ,etal.NANOLETT2003,3(7):919.

[11]RajeshB,ThampiKR,BonardJM,etal.JPHYSCHEMB2003,107(12):2701.

[12]FuRW,DresselhausMs,DresselhausG,etal.JNONCRYSTSOLIDS2003,318(3):223.

[13]KimTW,KawazoeT,SOLIDSTATECOMMUN2003,127(1):24.

[14]NguyenP,NgHT,KongJ,etal.NANOLETT2003,3(7):925.

[15]LiQ,WangCR,APPLPHYS.LETT2003,83(2):359.

[16]ChenYF,KoHJ,HongSK,YaoT,APPLlEDPHYSICSLETTERS,2000,76(5):559.

[17]JinBJ,BaeSH,LeeSY,ImS,MATERIALSSCIENCEANDENGINEERINGB,2000,(71):301.

[18]T.B.SercombeandG.B.Schaffer,SCIENCE,2003,301:1225.

[19]薛增泉,等.新型纳米功能材料[J].真空,2004,41(1):1-7.

[20]Z.W.Pan,Z.R.Dai,Z.L.Wang,SCIENCE,200l,(291):1947.

[21]W.U.Huynh,J.J.Dittmer,A.P.Alivisatos,SCIENCE,2000,(295):2425.

[22]P.Nguyen,H.T.Kongetal.NANO.LETT.2003,(3):925.

功能材料论文第3篇

传统生态浮床存在的不足包括:①植物根系悬浮在水体中无法从底泥中获取足够的微量元素而影响其生长效果;或悬浮的根系容易被水体中草食类动物吞噬;②低温下植物枯萎后整个生态浮床系统无任何净化效果,更有甚者会产生二次污染[2];③仅有植物根系少量的生物膜和植物同化作用以致浮床净化效果相对低下。为此国内外进行诸多探索,并取得良好的效果。(1)强化浮床系统内的微生物。为了提高传统生态浮床的净化效果,业内人士进行了大量的探索。孙连鹏等[3]将固定化反硝化细胞应用到生态浮床的脱氮过程,使生态浮床系统脱氮效果大大提高;李淼等[4]将离子束辐照定向诱变技术应用于生态浮床除磷脱氮过程中,并取得了良好的效果;李先宁等[5]将滤食性动物和人工合成生物载体加入生态浮床系统中,利用滤食性动物的滤食能力提高水体的可生化性和人工材质生物载体富集微生物达到联合修复富营养化水体,取得了良好的效果。(2)强化水体的复氧过程。水体复氧过程是水体自净发生的主要成因之一。操家顺等[6]构建生物膜和浮床植物复合技术浮床,并设置了一定间距以形成大气复氧区,强化了待修复水体的复氧过程,从而提高了水体的修复效果。章永泰等[7]利用风力发电技术强化浮床系统水下曝气和水下照明,强化了水下生态系统的氧化能力和浮游植物的光合作用,从而提高水体修复效果。基于生态浮床实用性和成本低廉性原则以及各种强化手段中的共性部件(生物膜载体),业内人士均认为:人工合成生物载体加入生态浮床系统(组合式生态浮床)中是最可行、最低廉、最广泛的技术,故而被广泛研究和采用。

2组合式生态浮床和净化效果

将生物载体引入到传统生态浮床中而组建组合式生态浮床,通过提高浮床系统中微生物量和生态浮床的辐射“场强”使其净化效果得到了极大的提升[8,9]。其作用原理是:通过在不同材质生物载体上富集极其复杂的、大量的生物膜系统,提高组合式生态浮床系统内的生物量、生物种类以及系统的“生物场强”[10],提高组合式生态浮床的净化效果。而且生物载体的应用可以避免冬季低温条件下因植物枯萎而出现无净化效果的情况,因为低温条件下生物载体上的微生物虽生物净化效果差,但是仍然会有一定净化效果。

2.1传统的组合式生态浮床存在的弊端生物载体是组合式生态浮床系统的重要组成部分,最原始的形式就是将人工合成生物载体悬挂在生态浮床的底部,仅仅就是为了提高生态浮床的生物持有量和净化效果以及生物场强,并取得了良好的效果。但是这种生态浮床系统,植物根系和生物载体相互独立,并无耦合效应,植物和生物载体之间并没有很好的配合。另外也有将生物载体作为生物膜附着体和植物根系基质,植物根系和生物载体相互作用、相互依赖,生物载体为根系提供保护和承受部分污染负荷,而根系为生物载体上的微生物提供氧气。而生物载体和植物根系自身的净化效果仍然在发挥优势,而且耦合了两者的优势。

2.2新型组合式生态浮床的净化效果和现状本课题组经过大量的实验研究认为,将生物载体不悬挂于浮床底部而是作为植物生长基质,即实现生物载体和植物根系“亲密接触”而形成湿地型新型组合式生态浮床,其净化效果和管理维护会更好些。而且业内人士对生物载体作为浮床基质时的效果也进行一定的探索研究。

2.2.1无机型生物载体在生态浮床中的应用徐丽花等[11]研究了沸石、沸石-石灰石、石灰石3种生物载体系统的水质净化能力,结果表明:沸石、沸石-石灰石和石灰石系统的TN平均去除率分别为68%、78.3%、60.9%。沸石-石灰石系统的去除率最高,这是由于沸石和石灰石发生了协同作用,沸石吸附NH+4-N,石灰石促进了硝化作用,使得系统对TN的去除效果好于其生物载体单独使用时的效果。熊聚兵等[12]利用泥炭、石英砂等为植物生物载体强化脱氮过程,研究发现泥炭可提供碳源有利于脱氮,该系统中的NH+4-N、NO-3-N、NO-2-N和TN的去除率分别为98.05%、98.83%、95.60%、92.41%,而石英砂提供过滤补充脱氮,两者结合的去除效果明显高于任一者的单独去除效果。无机生物载体在组合式生态浮床中具有较好的处理效果,但因其密度较大,在实际景观水体修复中需要浮体较多,增加处理成本,降低其推广效能。

2.2.2人工合成生物载体在生态浮床中的应用人工合成生物载体因其稳定性强、坚固耐用、能够有效抵挡水流冲击,在组合式生态浮床生物载体中被广泛应用。虞中杰等[13]通过构建美人蕉竹制框架下加挂球形生物载体的方式,该系统对TP、NH+4-N、NO-3-N和CODMn的去除率分别达到74.3%、76.6%、63.6%和67.5%。这得益于人工合成的球形生物载体表面易于附着微生物,有利于强化水体中污染物的降解。张雁秋等[14]以传统生态浮床为对比照组,以空心塑料生物载体作为基质和生物载体组建的组合式生态浮床系统为实验组。初始进水的TN、NH+4-N、NO-3-N是17、6、11mg/L时,该组合式生态浮床的最终TN、NH+4-N、NO-3-N的质量浓度分别为(1.05±0.20)、(0.38±0.18)、(0.17±0.03)mg/L,而传统生态浮床的最终TN、NH+4-N、NO-3-N的质量浓度分别为(5.23±1.12)、(0.29±0.11)、(4.19±2.08)mg/L,显示出良好的脱氮效果,并使硝态氮浓度保持较低浓度。

2.2.3天然纤维素物质生物载体在生态浮床中的应用玉米秸、稻草、油菜秸、麦秸等农作物秸秆和竹丝、树皮等植物茎秆类的废弃物均可以作为生物载体原料。而且用植物纤维素物质作生物载体的较其他人合成的生物载体更容易降解,使用一定时间会自行分解,比人工称合成的生物载体容易形成载体污泥更利于保护环境[15]。本课题组对植物纤维素物质进行预处理后作为组合式生态浮床的生物载体,既能合理利用秸秆资源,拓宽秸秆的利用价值,又能有效修复水体和生态环境,取得良好的效果。施亮亮等[16]构建以稻草为生物载体和植物生长基质,以美人蕉和菖蒲为植物的复合组合式生态浮床为实验组,以人工合成填料为基质的组合式生态浮床为对照组。添加稻草为生物载体的组合式生态浮床在去除污染物方面明显优于以人工合成填料为基质的组合式生态浮床。笔者在研究中发现以竹丝为生物载体的组合式生态浮床,CODMn、TN、NH+4-N和NO-3-N的平均去除率分别为63.50%、63.86%、47.80%和64.75%明显优于无生物载体组合式生态浮床的49.56%、31.29%、28.24%和43.90%,镜检发现竹丝表面具有较丰富的生物相,大量活性良好的群居钟虫、草履虫、累枝虫和鞭毛虫等,活性、数量均占优势的指示性原生动物,处理过程竹丝稳定降解,释放无机盐类和小分子有机物为微生物生长提供必需的营养成分。楼菊青等[17]发现以毛竹为原料的生物载体在膜速度、挂膜量上有较明显的优势。以上文献研究均显示了天然纤维素物质在组合式生态浮床生物载体制造领域的潜在价值,为浮床生物载体基于天然纤维素物质资源化利用的多元化发展打下坚实的基础[18]。采用天然纤维素物质不仅作为亲水性很强的生物载体,还可以作为反硝化碳源,本课题组已经通过红外光谱分析方法掌握以下信息:①可生物降解材料表面具有较丰富的亲水性基团(-OH(主要在纤维素、多糖物质中)、-CH2(主要在脂肪类物质中)、-NH2(主要为蛋白质)),可形成更为复杂的生物膜体系,更容易吸附微生物,更利于生物增殖、生物种群的多样性;②可生物降解材料使用过程中,被吸附其表面的微生物分解,形成一些可被微生物作为营养的物质,而强化微生物的生长,如果生物载体是固体碳源,释放出来的碳源有利于提高水体的脱氮效果。

3生物载体在生态浮床应用中急需解决的科学难题

3.1作为浮床基质的生物载体与植物根系交互作用机理研究作为浮床基质的生物载体与植物根系是一种相互耦合的关系,互为对方提供生长繁殖所需要的养分,在一定程度上促进提高了生态浮床系统的净化效果、净化进程和生物多样性。目前本课题组已经发现以可生物降解的稻草作为生态浮床系统中植物生长的基质时,其中水生植物(美人蕉和菖蒲)叶子呈碧绿色,而以人工合成生物载体(塑料球)为植物基质或无任何基质时,2种浮床中水生植物叶子呈浅黄色。分析认为稻草、塑料球均作为生物载体和植物基质,生长速率缓慢的硝化菌更容易附着在亲水性良好的稻草上,塑料球因其亲水性差、生物亲和性欠缺而使硝化菌增殖缓慢,稻草上大量的硝化菌就能将相对不容易被植物吸收的氨氮转化为更容易被植物吸收的硝态氮,充分的氮素使稻草基质生态浮床中的植物叶子更为翠绿,生长速率更快。即稻草基质为植物根系提供充分的养料(硝酸盐);而根系能为稻草表面微生物膜提供来自光合作用的氧气,并在稻草基质中产生脱氮所需要的好氧、缺氧环境,提高整个生态浮床的脱氮效果。但是根际微生物和生物膜相互作用、相互影响研究并没有取得很好的成果,值得深入研究。

3.2生物载体表面和植物根系表面微生物种群差异分析由于根系表面和生物载体表面存在非常大的差异,根际微生物种群类别和生物载体表面微生物类别差异、数量差异和特性差异均需要深入研究,目前很多的研究仍然处于定性分析中阶段。微生物作为生态修复和污染物去除的主体,不同生理生化特性的微生物承担着不同生物降解过程,所以掌握不同生物载体和植物根系表面微生物种群存在的差异(生长速率、呼吸类型、降解底物酶系种类、微生物种群数和数量级等),对不同污染物采取不同的不同载体和植物,或不同生物载体组合,或不同植物的多样化组合,或人工干预提供不同的环境以实现污染物去除,实现通过对微生物相关特性的强化和调控而实现微生物对污染物的降解。

3.3生物载体材质在不同污染源种类的水体修复中的选择方法生物载体作为生态浮床中重要的生物附着场所,有时也作为浮床植物的基质,其作用较大,但是随着生物载体的材质和形态等不断多样化,生物载体形态主要由从水流速度、使用方便和造景等因素考虑,对水体修复效果不会造成实质上的影响,而生物载体材质的不同对水体修复效果会产生极大的影响。传统意义上的生物载体是塑料材质,并将悬挂在生物载体框架以下,其作用原理是:在生物载体表面形成生物膜以提高生态浮床系统中微生物量达到强化生态浮床的修复效果,在其表面形成的微生物是复杂的、多样的、杂乱的丛生,并无特定的靶向污染物,在复合污染较重的现在存在一定的优势。但是塑料材质生物载体存在亲和性和亲水性差而导致微生物量少、附着困难[19]。而且对于以氮素为主要污染物且C/N低的地表水修复过程中来说并无太大的价值,因为脱氮过程中涉及硝化和反硝化过程,反硝化过程需要补充有机碳以提高脱氮效果,而塑料材料生物载体并不能提供碳源,投加液体碳源存在计量无法控制和运行管理复杂等问题,如果以人工合成高聚物作为生物载体和碳源虽然可以实现良好的脱氮过程和硝化菌群的富集,但费用过高[20,21];所以天然纤维素物质是理想的碳源、载体,不仅天然亲水性和生物亲和性可以实现生物量的最大化和挂膜的最快化,而且生物释碳按需供给和,其来自极为广泛(农业废弃物、林业废弃物等。对于磷含量相对较高的地表水体修复时,塑料材质或天然纤维素材质的生物载体应用于生态浮床中则效果较差,根据生物除磷均以排泥的方式,地表水体污染物浓度较轻,污泥量少或无污泥,无排泥也就除磷效果很低。现在一些工艺中为了提高除磷效果,采用一些孔隙多样化吸收磷或含有某些能够与磷发生化学反应的生物载体以提高除磷效果。

4展望

功能材料论文第4篇

在微流控技术中,根据微流控装置制备乳液的几何结构以及液相流体流动方向的不同,乳液有不同的产生形式,据此可以将微流控装置主要分为:同向流动型(co-flow)、T形交叉流动型(T-junctioncross-flow)和流动聚焦型(flow-focusing)。如图1(a)所示为典型的同向流动型微流控装置几何结构。在该装置中,作为分散相的内相液体(innerfluid)和作为连续相的外相液体(outerfluid)分别在内、外通道中同向流动,并在注射管锥口处相遇,此时内相液体受到与其互不相溶的外相液体的剪切力作用而在收集管中断裂成为尺寸均一的单乳液滴。典型的T形交叉流动型微流控装置几何结构,该装置中内相液体和外相液体主要呈相互垂直流动,并在T形流道的交叉口处相遇,此时内相液体受到外相液体的剪切和挤压作用而分散断裂成液滴。流动聚焦型微流控装置几何结构的典型结构,该装置中中间通道内流动的内相液体受到两侧通道中流动的外相液体的作用,并一同流向下游处紧临的缩口小孔;此时,在外相液体产生的压力和黏性应力的作用下,内相液体变为一股细小的喷射流,并在小孔下游处断裂成液滴。在上述装置中,同向流动型微流控装置几何结构主要由玻璃毛细管组装构建而成,而T形交叉流动型和流动聚焦型微流控装置几何结构则可由微加工技术[如软光刻技术(softlithography)]在聚二甲基硅氧烷(PDMS)、聚甲基丙烯酸甲酯(PMMA)、玻片等材料上构建。

上述微流控技术均能产生具有良好单分散性(一般CV值小于5%)、且尺寸可精确调控的乳液液滴。在产生乳液的过程中,液相流动的稳定性是决定乳液液滴单分散性的主要因素,而微通道的尺寸以及液相的流速则是调控乳液液滴尺寸的关键因素。除了可以控制所产生液滴的尺寸和单分散性外,微流控技术另一大优点是其良好的可升级特性,即可以通过将上述3种类型的微流控装置几何结构相互结合而实现对结构复杂的多重乳液的可控制备。Chu等通过将两个同向流动型微流控装置几何结构串联组装,得到了两级同向流动型微流控装置,以用于产生具有液滴嵌套液滴结构的双重乳液。当第一级微流控几何结构中内相液体被中间相液体剪切产生单乳液滴后,携带有该单乳液滴的中间相液体将进一步地在第二级微流控装置几何结构中被同向流动的另一股外相液体剪切,从而使得单乳液滴被封装在所形成的中间相液体液滴中,形成了双重乳液。由于微流控技术对各级液滴产生单元所产生液滴的优良控制性,使得该双重乳液也具有良好的单分散性。基于微流控装置这种优良的可升级特性,Chu等进一步组装得到了三级玻璃毛细管微流控装置,并成功可控制得了具有更多层嵌套结构的单分散三重乳液。在上述多重乳液中,乳液内部各层所含液滴的数目和尺寸均精确可控,展现出了微流控技术在可控制备多重乳液方面的巨大优势。Wang等进一步通过设计液滴产生组件、液滴汇集组件、液体提取组件等微流控功能单元用于组装微流控装置,从而可控制得了结构更加多样化,且内部可以同时包含不同组分液滴的多组分多重乳液,对上述层层嵌套式多重乳液的结构做了进一步地扩展。这些多组分多重乳液内部各层不同组分液滴的种类、尺寸、数目、比例均精确可控。其中,液滴的种类主要取决于用于产生不同液滴的液滴产生组件的数目;液滴的尺寸主要取决于通道的尺寸以及液相流速;而多重乳液内部不同液滴之间的数目和比例则取决于不同液滴的产生频率,该频率主要也是通过匹配液相流速来进行调控。微流控技术所制备出的尺寸和结构高度可控的单分散乳液液滴,为具有多样化结构的新型微颗粒功能材料的设计和制备提供了优良的模板。

2以单乳液滴为模板制备单分散功能微颗粒

以微流控技术制得的单分散乳液液滴作为合成模板,可以制备得到尺寸均一的单分散微颗粒功能材料,并且可以通过改变液滴尺寸在较宽微尺度范围内实现对微颗粒尺寸的精确调控。此外,该方法还具有很强的通用性。如以油包水型(W/O)乳液或水包油型(O/W)乳液作为模板的微流控合成方法可以分别用于不同种类的基于水溶性单体或油溶性单体的聚合物微颗粒的制备,并且可以方便地通过改变模板液滴中的组分来实现对微颗粒化学组成的调节和优化,从而实现对微颗粒功能的调控。此外,微流控技术在微通道中连续制备和操控乳液液滴的独特工艺,还使得其可以与各种设备相结合,以提供多样化的合成条件用于球形甚至非球形微颗粒的连续可控生产。

2.1球形功能微颗粒的微流控制备

Weitz研究组利用微流控技术产生的单分散W/O乳液作为模板,通过将溶解在水滴中的N-异丙基丙烯酰胺(NIPAM)单体聚合,制备得到了尺寸均一的温敏型聚(N-异丙基丙烯酰胺)(PNIPAM)水凝胶微颗粒。该温敏型PNIPAM水凝胶微颗粒具有良好的单分散性,且具有优良的温敏体积相变特性。当温度在其体积相转变温度(VPTT)(约32℃)附近变化时,该PNIPAM水凝胶微颗粒能展现出高温收缩、低温溶胀的可逆体积相变行为。类似地,Kumacheva研究组利用单分散的O/W乳液作为模板,通过紫外光照引发油滴中含有的油溶性单体聚合,制备得到了不同组分的单分散聚合物微颗粒。以上研究工作均显示出了微流控法在制备单分散微颗粒功能材料方面的优势

2.2非球形功能微颗粒的微流控制备

微颗粒材料的功能除了取决于其化学组成外,颗粒的形状也对其功能和应用前景具有很大的影响。然而,由于界面张力的作用总是使液滴尽可能地保持球形,因此传统的分批聚合方法通常难以得到尺寸均一的非球形颗粒。而微流控技术对于微通道中液滴的精确操控能力,则为可控制备单分散的非球形颗粒提供了一个优良的平台。Xu等通过设计微流控装置中通道的结构和尺寸,使得流入通道中的含有单体溶液的液滴在受限空间中变形为非球形形状,再将该变形的液滴经UV光照聚合进行原位固化后,从而制得了尺寸均一的棒状和扁平状非球形高分子聚合物微颗粒。在该方法中,由于微流控产生的单分散模板液滴的体积是一定的,因此该液滴在相同的微通道中变形后所形成的非球形液滴的形状和尺寸也是一定的,从而使得聚合后可以得到均一的非球形颗粒。此外,由于在聚合过程中单体溶液由液态转变为固态会发生一定程度的体积收缩,并且得到的固体颗粒表面仍具有一层连续相液体构成的浸润液层使之与微通道之间隔离,因此有效避免了固体微颗粒对微通道的堵塞。基于这种方法,研究者还制备得到了塞子状和圆盘状的聚合物微颗粒,以及不同形状的非球形磁性水凝胶微颗粒,展现出了微流控方法在可控制备单分散非球形微颗粒功能材料方面所具有的多样化特点。

2.3Janus形功能微颗粒的微流控制备

Janus形功能微颗粒是一种两面具有截然不同的物理或化学性质(如不同的表面浸润性、磁性、光电性质等)的颗粒,目前已在自组装研究以及乳液稳定剂和光学器件开发等方面展现出了独特的优势。微流控技术对于层流条件下运行的液滴的精确操控,使得其为Janus形微颗粒的制备提供了一个便利且易于工艺放大的优良技术平台。微流控技术用于制备Janus形微颗粒,主要是利用了两种同向流动的液相流体被剪切成为一个乳液液滴后,短时间内仍能在液滴内部相互保持层流而不至于混合这一特点。这样,利用该含有两种液相的Janus形液滴作为模板,经过快速原位聚合,便可得到两面具有不同性质的单分散Janus形微颗粒。此外,通过改变微通道形状尺寸使Janus形液滴在受限空间变形为非球形形状,还可以进一步制备得到具有非球形结构的Janus形微颗粒。

3以复乳液滴为模板制备单分散功能微颗粒

具有内部腔室结构的微颗粒功能材料由于其为物质的封装提供了一个受保护的内部空间,因此在药物传送与控释、活性物质保护、生物大分子合成、化学催化以及生化分离等领域应用非常广泛。以微流控复乳液滴,如油包水包油型(O/W/O)和水包油包水型(W/O/W)双重乳液,可以通过将其内部液滴作为微颗粒内部腔室,而将外部液层经反应后作为微颗粒壳层,从而实现对新型腔室型微颗粒的可控设计和制备。在该方法中,借助微流控技术对乳液尺寸、形状、单分散性和结构的精确控制,可以对腔室型微颗粒的壳层尺寸和厚度,以及内部腔室的尺寸和数目等进行精确调控。而O/W/O和W/O/W双重乳液的中间水层和油层使得该方法可广泛适用于多种水溶性和油溶性材料,以及可以良好分散的有机、无机纳米颗粒材料等以用于构造多样化的微颗粒。此外,O/W/O和W/O/W双重乳液的内部油滴和水滴结构还分别为油溶性和水溶性物质的封装提供了具有更好溶解性的内部环境。微流控复乳液滴能够实现对内部液滴的高封装率(约100%),这也为活性物质或药物等在制备微颗粒过程中的同步、高效率的封装提供了可能性。

3.1中空功能微颗粒的微流控制备

Zhang等利用O/W/O双重乳液作为模板,通过将具有温敏特性的NIPAM、具有葡萄糖识别特性的3-丙烯酰胺基苯硼酸,以及亲水性丙烯酸单体加入其中间水层中并由紫外光照引发聚合,再使用有机溶剂将内部油滴洗去后,制得了具有中空腔室结构的单分散葡萄糖响应型水凝胶微颗粒。该中空微颗粒的内部空腔可用于包载胰岛素,而其水凝胶壳层可在37℃条件下响应葡萄糖浓度变化以实现胰岛素的自律式控制释放。当葡萄糖浓度升高时,水凝胶壳层溶胀使得其交联网络结构的网孔变大,从而内部包载的胰岛素可以透过壳层快速扩散释放;而当葡萄糖浓度降低时,水凝胶壳层收缩使得交联网络结构的网孔变小,从而胰岛素扩散减慢、释放速率降低。这种葡萄糖响应型中空功能微颗粒为设计和开发新型自律式控释载体以用于糖尿病治疗提供了新的模型和理论指导。基于这种微流控制备方法,研究者通过灵活调节中间水层中的功能组分为其他水溶材料如N,N-甲基丙烯酸二甲氨基乙酯或者NIPAM和苯并-18-冠-6-丙烯酰胺,还成功制得了能够响应pH变化或者铅离子浓度变化以实现壳层溶胀收缩的中空水凝胶微颗粒,以期用于不同需求情况下物质的控制释放。

3.2核-壳型功能微颗粒的微流控制备

Wang等通过将均匀分散有超顺磁性Fe3O4纳米颗粒的NIPAM单体溶液作为中间水相,大豆油作为内、外油相,由微流控装置制得O/W/O双重乳液作为模板后,再由紫外光照引发其中间水层聚合,制得了具有热引发自爆突释功能的核-壳型(油核-水凝胶壳层)水凝胶微颗粒。该微颗粒的内部油核可用于封装油溶性的药物;而其PNIPAM水凝胶壳层的温敏体积相变特性以及壳层中镶嵌的超顺磁性纳米颗粒的磁响应特性,使得该微颗粒可先在外加磁场引导下定向运输到某一特定的位点,然后在升温作用下使壳层收缩从而挤压内部油核至壳层破裂,并最终将内部油核连同其中所溶解的物质一起快速突释出来,从而在短时间内达到较高的局部药物浓度。这种具有磁靶向运输和自爆式突释功能的核-壳型水凝胶微颗粒为新型药物传送系统的设计和研制提供了一种新的途径。基于这种微流控制备方法的通用性,研究者通过改变O/W/O双重乳液模板的中间水层组分以调节微颗粒壳层的功能,还成功研制出了一系列能够响应外界环境刺激如钾离子、乙醇、没食子酸乙酯等浓度变化来实现自爆式突释功能的新型微颗粒。此外,Liu等通过使用均质乳化剂制备的W/O乳液作为内部油相来构造O/W/O双重乳液,成功制备得到了内部油核中分散有水滴的自爆式水凝胶微颗粒,实现了自爆式微颗粒对水溶性药物或者纳米颗粒的封装运输。在升温条件下,微颗粒水凝胶壳层不断收缩挤压内部油滴,从而使得内部油滴连同封装有纳米颗粒的最内部水滴一并被快速释放到外部环境中,达到了很好的突释效果。除了上述自爆式核-壳型微颗粒外,研究者还利用O/W/O双重乳液研制出另一类具有突释功能的核-壳型微颗粒。Liu等通过将壳聚糖加入中间水相、交联剂对苯二甲醛加入内部油相,由微流控装置制得O/W/O双重乳液后,内相中对苯二甲醛扩散进入中间水层使壳聚糖交联形成壳层,从而制得了内含油核的核-壳型微颗粒。该微颗粒的交联壳聚糖壳层可以在较低的pH条件下降解,从而使得壳层溶解消失并将内部油核释放出来。

3.3孔-壳型功能微颗粒的微流控制备

具有封闭壳层的中空微颗粒和核-壳型微颗粒在物质封装方面展现出了高效的性能。然而,其内部所封装的物质分子通过微颗粒壳层(如上述微颗粒的水凝胶壳层)的传质往往是一个比较缓慢的过程。通过在微颗粒壳层上构造孔结构,可以促进物质分子穿过壳层的传质过程;并且,通过对孔结构进行调控,还可以进一步通过孔的尺寸和功能性控制物质的封装和控释过程,从而使微颗粒功能更加多样化。Wang等基于微流控W/O/W双重乳液,通过调节中间油层组分以控制内相水滴与外部水相之间的黏结以控制双重乳液的结构变化,并以此为模板制得到了壳层表面具有单个通孔结构的孔-壳型微颗粒。该方法中使用了光聚合树脂乙氧基化三羟甲基丙烷三丙烯酸酯(ETPTA)和有机溶剂苯甲酸苄酯(BB)的混合溶液作为中间油相,并使用聚甘油蓖麻醇酯(PGPR)作为乳化剂。由于ETPTA单体对PGPR的溶解度较差,因此降低了中间油相对PGPR的溶解能力,导致内相水滴与中间油层之间的W/O界面以及中间油层与外部水相之间的O/W界面趋向于黏结,从而使得双重乳液由核壳型可控演化成橡子型结构。通过改变中间油相中ETPTA的比例,可以控制W/O/W双重乳液的演化程度。以这些可控演化后的双重乳液作为模板,便可以制得壳层表面具有单个通孔结构,且通孔尺寸和内部空腔的结构均精确可控的孔-壳型微颗粒。此外,基于微流控技术对双重乳液内部液滴数目和尺寸的精确控制,还可以对微颗粒中孔-壳型结构的数目以及尺寸进行调控。这种具有可控孔-壳型结构的微颗粒可以用于基于尺寸匹配的“lock-key”式颗粒捕获;也可以用于从不同尺寸的混合颗粒中选择性地装载小颗粒,从而实现基于颗粒尺寸的选择性筛分

3.4多腔室型功能微颗粒的微流控制备

能够分隔封装不同组分的物质,并可以实现对所封装物质的按需释放的多腔室微颗粒,在作为传送载体用于不相容活性物质的协同运输,以及作为微反应容器用于不同反应物的微反应等方面具有重要的意义。多腔室微颗粒的传统制备方法通常是采用内含多个液滴的双重乳液作为模板进行合成,或者是逐步将一个腔室型微颗粒封装到另一个腔室型微颗粒中;但是这些方法往往工艺复杂,并且难以独立、精确地控制内部各个腔室的结构。而微流控多组分多重乳液则为多腔室功能微颗粒的设计和制备提供了独特的模板,其内部不同组分的液滴可作为独立的腔室用于不同组分物质甚至不相容物质的隔离封装。并且,通过精确控制其内部不同组分液滴的尺寸、数目和比例,可以实现对内部各个腔室的独立调控、以及对不同组分封装剂量的优化。Wang等利用内含两种不同组分油滴的O/W/O四组分双重乳液作为合成模板,通过紫外光照聚合中间水层中含有的NIPAM单体,从而一步可控制得了内含不同组分油滴且其数目和比例均精确可控的多腔室型微颗粒。当温度升至微颗粒PNIPAM壳层的VPTT以上时,微颗粒会因为壳层剧烈收缩而将内部不同组分的油滴连同所封装的物质一同释放出来。这种共封装和释放模式使得该微颗粒有望用于协同运输和释放不同组分药物或反应物以用于协同治疗或触发式按需反应。微流控多组分多重乳液能够封装不同组分液滴的特点,也为将具有不同功能的材料整合到同一个微颗粒中以获得多功能特性提供了可能。Liu等利用O/W/O四组分双重乳液作为模板成功制得了同时具有磁靶向响应特性和铅离子响应特性的多功能水凝胶微颗粒。该乳液模板的外部水滴中溶解有NIPAM和苯并-18-冠-6-丙烯酰胺单体,水滴内部封装有一个含有磁性纳米颗粒和聚苯乙烯高分子(PS)的乙酸异戊酯液滴以及一个大豆油滴。首先,磁性纳米颗粒和聚苯乙烯经乙酸异戊酯挥发后沉积下来形成固体PS磁核;然后,水滴中的单体经紫外光照聚合后形成包含有PS磁核和大豆油滴的水凝胶,再经过有机溶剂洗去大豆油核后,得到了具有PS磁核和空腔的水凝胶微颗粒。该微颗粒可以在外加磁场引导下进行定向运动,并且其水凝胶壳层可以响应外界环境中铅离子的浓度变化而发生溶胀或者收缩,从而有望用作受铅离子污染的微环境中的微型传感器或执行器。

4总结与展望

功能材料论文第5篇

关键词:《功能材料》;教学改革;创新教育

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)51-0083-02

研究生教育是我国高等教育的重要组成部分,创新能力培养是研究生教育的核心。教育部早在2003年就开始制定实施“研究生教育创新计划”,加强研究生培养体系、课程教学和教材等建设工作,逐步建立有利于培养研究生创新精神、研究能力的机制,提高研究生培养质量[1]。近年来,高校也在深入开展以提高研究生创新能力为核心的研究生教育教学改革。

课程学习是我国研究生培养过程的重要环节。教育部的《关于改进和加强研究生课程建设的意见》,强调要更好地发挥课程学习在研究生培养中的作用,研究生课程体系应以能力培养为核心,以创新能力培养为重点。因此,从培养研究生的创新能力出发,课程教学必须注重研究生创新能力的培养[2]。作为一名研究生课程授课教师,应更新教育观念和教学内容,开展教学方法改革,探索研究生课程教学的新思路[3]。本文基于研究生专业课程《功能材料》的教学实践,分别从教学内容、教学模式及考核方式等方面进行探索。

一、优化教学内容,注重创新能力培养

《功能材料》是材料科学与工程专业研究生的专业必修课之一。《功能材料》内容涵盖面广,多学科交叉融合,包括电子材料、磁性材料、声学材料、光学材料、生物材料及各种功能转换材料。高校材料类本科专业基本上会开设功能材料及相关专业课程,教学内容包括各类功能材料的组成、结构、性能及应用这条主线,但以掌握基本知识、基本理论为教学目标。目前,很多高校开设的研究生《功能材料》课程的教学大纲及教学内容,绝大部分是按照金属功能材料、无机功能材料和功能高分子材料三大类,来讲授各类功能材料的组成、结构、性能及应用等内容,只是应用部分的比重略有增加,这在教学内容上容易与本科教学内容造成重复,缺乏研究生创新能力的培养。因此,优化教学内容,讲授近年来迅速发展的新型功能材料,结合科研成果案例教学,将有助于研究生创新能力的培养。

1.由于本课程的学生是材料专业的硕士研究生,在前期已经学过如《材料科学基础》、《现代材料分析方法》、《材料结构与性能》等专业基础课程,了解和掌握有关功能材料的组成、结构、性能等基本知识。因此,研究生《功能材料》课程的教学内容应将金属功能材料、无机功能材料和功能高分子材料中的经典功能材料与当前研究热点的功能材料相结合,在简要介绍组成、结构、性能方面的基本知识的基础上,重点介绍材料选择与设计、制备技术与功能材料的性能及应用间的相互关系,强调材料的选择、设计和制备技术对功能材料实际应用的重要性。这样,课程教学内容既可引导学生把握功能材料领域的学术研究前沿,提高创新意识,同时也会兼顾功能材料的基本知识的巩固。

2.由于本课程教学课时只有32学时,在教学内容的安排上,针对当前研究热点,结合本校材料专业的研究方向,主要聚焦在新能源材料、环境材料、生物医用材料等,所以重点把新能源材料、环境材料、生物医用材料等专题分别设章进行介绍,将各专题的最新科研成果和最新进展充实到教学内容中,使学生了解科技前沿,激发学生科研创新兴趣。例如,石墨烯,由于独特的高导电、高导热、高强度、轻质等特性,在新能源、环境、生物医学等领域,有重要的应用潜力。此外,功能材料的3D打印,也是目前的研究热点。因此,在讲授石墨烯材料时,结合3D打印技术,对最新发表的关于3D打印石墨烯及器件制备的文献进行介绍,引导学生讨论石墨烯3D打印技术在电池、电容器等储能器件制造上的前景及研究思路,有助于培养学生的科研兴趣和创新能力。

二、融合多元化教学模式,启发创新思维

教学方法和手段的改革,是研究生创新能力培养的关键。良好的教学效果,不仅与教师的讲授技巧有关,更重要的是需要在教学方法和手段上进行多元化融合,激发学生学习兴趣。通过讲授功能材料领域的最新科技前沿,将学生学习功能材料的思维推向应用,把新方法、新技术、新热点、新问题等加入课程教学中,引导学生积极思考和探讨,以启发思维、训练能力。因此,为了有效达到教学目的,本课程将多种教学方法和手段进行融合探索。

1.通过科研与教学的有机结合,培养学生的创新思维和科研能力。本课程的教学团队都是科研第一线的教师,从事功能材料领域的不同研究方向的科研工作。因此,每位教师分别讲授各自擅长领域的教学内容,将各自的最新研究成果作为科研案例,穿插在教学中,丰富教学内容。而且,本校每个学期都设有材料创新讲坛,邀请国内外在功能材料领域的知名学者来校讲座。根据讲座内容,将1~2场材料创新讲座纳入本课程的教学内容,鼓励学生积极交流与讨论。将科研与教学实现有机结合,通过展示教师的科研创新成果,交流如何提出科研创新课题等,不仅会使学生接触到功能材料领域的研究前沿和热点,而且也会激发学生的科研兴趣,引导他们在学习过程中勤于思考,启发科研创新思维,为创新能力和科研能力的培养创造良好氛围。

2.开展以研究热点为主题的课堂讨论。通常,学生对热点问题和最新研究成果比较关注和感兴趣。教师在讲授每个专题时,都要适当引入本专题方向的研究热点和最新研究成果,进行课堂讨论。教师在上一堂课结束时,将讨论主题布置给学生,让学生对讨论主题提前搜寻资料,有所准备,训练学生的自主学习能力。通过专题的课堂讨论,培养学生独立思考、分析问题及交流、表达等能力。

3.培养学生自学能力及文献综述能力。自学能力的培养,对提高学生独立思考和创新能力非常重要。研究生可以通过课程学习、导师指导等环节提高分析、解决问题的能力,但在独立开展科研及学习新知识时,往往需要自学。由于本课程的教学内容安排是在课堂教学过程中,重点讲授材料选择与设计、制备技术与应用的相互关系及最新科研成果,其他关于材料结构和性能等知识需要通过自学完成。此外,类似专题的课堂讨论等教学互动环节,需要学生通过课后进行文献检索和自学文献、资料等来完成。文献综述能力是研究生创新思维和科研能力培养的重要方面。通过文献综述,学生可以全面了解和掌握某个研究领域或研究方向的现状,思考发展趋势,是开展科学研究最为重要的一步。因此,本课程在学期末设置文献综述环节,布置文献综述任务,要求学生通过文献查找、阅读、总结、撰写等完成综述小论文,培养自学与文献综述能力。

4.全英语教学,培养学生外语学术交流能力。目前,教育部积极鼓励教师开展双语和全英语教学活动,培养学生运用外语的能力,提高国际化教学质量[4]。研究生是开展创新研究的主体之一,了解与把握研究领域的发展,需要通过阅读大量外文文献和资料,而且,国际学术交流也是提高科研创新能力的途径之一。

在国内研究生的培养过程中,学生在外语读写方面的训练较多,而听说能力相对较弱。因此,为培养学生的全英语学术交流与表达能力,本课程采用全英语教学。全部制作英语PPT课件,讲授过程中采取预先发给学生课件和外文资料,让学生能够课前预习,熟悉课堂教学内容及生疏的专业词汇,避免学生在课堂上跟不上教师全英语讲授的节奏。但对比较难理解的知识点,适当辅以中文讲解。在课堂提问及课堂讨论环节,鼓励学生采用英语回答和讨论,训练英语表达能力,培养学生的英语学术交流能力。

三、完善课程教学考核方式,引导学生创新能力的培养

本课程比较注重学生创新思维和创新能力的培养,传统的闭卷考核方式显然不适合研究生的培养。为此,课程教学考核方式应将教学过程中的提问、专题讨论等过程性评价与期末文献综述评价相结合,把撰写文献综述、汇报答辩与交流讨论作为考核的重要形式。特别是期末文献综述评价,在教学过程中,列出若干热点问题,由学生自主进行文献检索、阅读资料,撰写综述。期末采用英语多媒体答辩方式对文献综述进行汇报,全面训练文献查阅、归纳总结、文字与口头表达及英语学术交流能力,加强学生的创新能力培养。

忽视课程教学环节中研究生创新意识与创新能力的训练,是导致研究生创新能力不足的一个重要原因。专业课教学是创新人才培养的主渠道之一,对创新能力的培养至关重要。因此,本课程在教学内容、教学模式和教学评价方式等方面进行探索,以引导学生自主学习,加强创新意识和创新能力的培养。同时,提高课程教学质量,教师要不断学习,提高自身创新能力,在科研第一线开展创新科学研究,让科研反哺教学。

参考文献:

[1]张来斌.认清形势,把握关键,大力推进研究生教育改革创新[J].学位与研究生教育,2010,(1):58-60.

[2]朱钰方,朱敏,何星.研究生“生物材料学”课程教学改革初探[J].上海理工大学学报(社会科学版),2014,36(4):387-390.

功能材料论文第6篇

关键词:光电材料导论 教学内容 教学方法 课程考核

中图分类号:TN204 文献标识码:A 文章编号:1674-098X(2014)04(a)-0128-01

《光电材料导论》是我校无机非金属材料专业2013年开设的专业课程。开设这门课程的原因是:(1)国家在十二五规划中提出了重点发展的七大战略性新兴产业,其中之一的的新材料产业包含了功能材料,而光电材料是功能材料的一种;(2)我校的无机非金属材料教研室的很多老师从事光电材料相关的研究,具备开设这门课程的师资力量。所以在课程的教学内容的选材方面,我们会着重从这两个方面考虑。而教学方法会利用现在的多媒体技术,与传统的板书相结合,让学生更加形象生动的加深对知识的理解[1]。

1 教学内容的选材

在教学内容的选材方面,我们综合考虑了以下几个因素:

首先,学生必须能够有所学,开设一门课程才是有意义的。光电材料是功能材料的一种,为了便于学生循序渐进地吸收理解光电材料的专业知识点,教学内容分成三个方面:光功能材料、电功能材料、光电材料及器件。首先,讲解光功能材料和电功能材料方面的知识点,在具有这些知识的基础上,再讲解光电材料及器件方面的知识,学生们就比较容易理解。

其次,我们结合现在的就业情况及研究热点。我们设置的教学内容,既考虑了学生们以后的就业,也考虑到想进一步深造读研究生的学生们的研究工作。光功能材料方面的教学内容包含了激光材料、发光材料、红外材料及光纤材料。电功能材料方面的教学内容包含了导电材料、半导体材料、介电材料、铁电材料及超导材料,其实半导体材料也是一种导电材料,之所以把半导体材料单独作为一个章节,是因为半导体材料是太阳能电池和LED照明灯的核心材料,这也是为后面的光电材料及器件的讲解做铺垫。光电材料及器件方面的教学内容包含了光电子发射材料、光电导材料、透明导电薄膜材料、光伏材料与太阳能电池及光电显示材料。

2 教学方法的探索

光电材料的内容更新很快,现在的学生不仅应该掌握传统基础的材料知识,更应该掌握最新的知识点,更应该了解光电材料的最新研究进展,而使用多媒体教学能够及时地更新课件的内容,使得教学内容能够跟上最新的研究成果[2],也能让学生及时了解学习最新的材料知识。

多媒体教学还有助于激发学生学习的兴趣[3],因为它在视觉上能够让学生很直观的学习知识,比如:太阳能电池的工作原理,我们可以在Powerpoint(PPT)上给出太阳能电池工作原理图,然后再对照图给学生详细讲解其原理,学生将更深刻的理解其原理。再比如,在讲解光纤的传输原理时,可以通过多媒体技术使用动画,让学生很直观地了解光纤的原理。

但是多媒体教学应该和传统的板书结合起来,因为有些知识仅仅通过多媒体展示,学生可能比较难理解,还需要老师再次将其中的重点和难点板书出来详细讲解,同时也可以加深同学的印象。

同时,我们在整个的教学过程中,采用的是启发式及提问式的教学方法。通过对学生进行提问,启发学生自主思考,加深学生对知识点的理解。

3 课程考核方式的选择

课程考核的成绩包含两个方面,一个是平时成绩的考核,一个是期末成绩的考核。

平时成绩的考核,我们通过上课提问、课后习题、出勤率等方面进行考核。上课提问可以考查学生对上节课内容的掌握程度,还可以考查学生是否认真听讲、是否认真思考问题。课后习题包括两个方面,一个是对课上内容的考查,帮助学生巩固课上知识,另一个是对课外知识的拓展,督促学生课后查阅文献,培养学生的学习能力。

期末成绩的考核,我们采用撰写科技论文的形式进行考核。《光电材料导论》开设在大四上学期,总共24个课时。因为光电材料的内容更新比较快,而教学课时比较有限,通过撰写科技论文的形式,既可以督促学生去更全面的了解光电材料最新的研究进展,又可以锻炼学生查阅文献的能力,培养学生总结文献的能力,有利于大四学生在下学期更快进入本科毕业论文的工作。

4 需要改进的地方

作为本专业开设的新课,在教学的探索与实践过程中,肯定存在一些不足,有很多地方需要我们去反省和改进。我们自己对此进行了总结,具体包括以下三个方面:

(1)在多媒体教学过程中,我们不仅只是使用了PPT这个软件,还应该引入视频,比如,在讲解使用直拉法制备单晶硅时,就可以引入一段视频,让学生更直观地了解使用直拉法是如何制备单晶硅的。

(2)在教学的过程中,我们还应该出示实物,让学生能够直接接触,加深印象。可以出示实物包括光纤、发光二极管LED,单晶硅片和多晶硅片(这时,还可以教学生从宏观上如何分辨单晶硅片和非晶硅片)、ITO玻璃、闪锌矿及纤锌矿结构模型等,不但增强生学习光电材料的兴趣,而且让他们对光电材料实体有直接的感性认识[4]。

(3)在教学过程中,我们还应该加入两个学时的讨论课,老师布置一个题目,让学生课后准备,几个学生一组,进行资料搜集与整理,然后让一个学生做代表,在讨论课上做PPT报告,其他组的学生进行提问,作报告的学生做解答。同时这个也要纳入平时成绩中,占总成绩的20%。

5 结语

本文从教学内容、教学方法及课程考核等三个方面对我校无机非金属材料专业新开设的《光电材料导论》课程教学进行了思考、初步探索与实践。在教学内容方面,我们结合了现在的就业情况及研究热点,既考虑了学生们以后的就业问题,也考虑到想进一步深造读研究生的学生们的研究工作。在教学方法方面,我们利用多媒体技术与板书结合,同时还采用了启发式与提问式的教学方法。在课程考核方面,包含平时成绩的考核和期末成绩的考核,通过了上课提问、课后习题、出勤率等方面进行平时成绩的考核;采用了撰写科技论文的形式进行了期末成绩的考核。同时,我们还总结了课程教学中还需要改进的地方,希望在以后的教学中能够取得更好的效果。

参考文献

[1] 段海宝.关于新型功能材料课程教学的思考[J].中国教育技术装备,2012(33).

[2] 王俊,飞,苏娟,等.浅析多媒体在《功能材料》课程教学中的应用[J].内蒙古农业大学学报(社会科学版),2013(1).

功能材料论文第7篇

关键词:无机功能材料;教学;改革

中图分类号:G642.0;G642.3;TB34 文献标志码:A 文章编号:1674-9324(2013)05-0072-02 华南农业大学材料化学专业的培养目标是立足广东,面向珠江三角洲,培养掌握现代化学与材料学基础的基本理论和研究方法,具备新材料研究和技术开发能力,能在化学、材料科学与工程及其相关领域,从事新材料的设计、检测、研究、开发和管理等工作的高素质复合型人才。无机功能材料是具有特殊电、磁、光、声、热、化学以及生物功能的新型材料,既是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,又在农业、化工和建材等传统产业的改造方面起着重要作用。无机功能材料是华南农业大学材料化学专业的一门重要的专业课程。本文结合教学实际,从教学内容的更新、教学方法的探索和考核方式的改革等方面进行了有益的探索和实践,取得了较好的效果。

一、加强教学内容改革与优化,建立教学新体系

无机功能材料课程内容包括无机材料概论、晶态与非晶态结构、超导材料、压电材料、介电材料、半导体材料、红外材料、光导材料、变色材料、磁性材料、特种玻璃、生物功能材料、多孔材料等内容。在十多年教学中,通过精选教学内容,加强教学内容改革与优化,以“制备—结构—特性—应用”为主线,注重教学内容与学科发展前沿、现代生活和生产实际相结合,体现了授课内容的先进性、趣味性和实用性,提高了学生学习兴趣。

1.教学内容与学科发展前沿结合,体现先进性。紧跟学科发展前沿、瞄准研究热点是更新课堂教学内容的有效途径。在授课过程中,注重从国际和国内学术期刊中获得无机功能材料研究的相关信息,把研究热点与最具代表性的研究成果制成课件,展示给学生,使学生及时了解到最新的前沿知识,接触学术前沿领域,激发学生的求知欲望[1,2]。例如,在讲授压电陶瓷材料时,首先讲授传统的压电陶瓷,以PZT为基的二元系、三元系铅基压电陶瓷的制备、性能以及在国民经济和现代科学技术等方面应用;其次向学生介绍这类压电陶瓷中大量的铅在制备、使用和废弃处理过程中都会污染环境;最后介绍当前无铅压电陶瓷研究进展,包括BaTiO3基、BNT基和铌酸盐系等无铅压电陶瓷。讲授无机超导材料时,先介绍物质磁性的分类、磁性材料种类、特性和应用,再介绍当前磁性材料科学的研究热点——磁性半导体、分子基磁体以及同时具有铁电和铁磁双重性质的磁电复合材料。在讲授无机多孔材料时,介绍2012年发表在《Nature Materials》上的吸附二氧化碳的新材料NOTT-202a的结构、特性和应用前景[3]。通过学科研究前沿知识的讲授,体现了教学内容的先进性。

2.教学内容与现代生活实际结合,体现实用性。无机功能材料在日常生活中应用广泛。在课堂教学中,将教学内容与现代生活实际相结合,提高了学生的兴趣。例如热致变色材料是一种能对外界环境变化产生响应的新型智能材料,其中的无机低温热变色材料具有随温度变化颜色改变的特性,可将在商标、封签和票据上作特殊的标记进行化学防伪,用于冷冻食品、蔬菜和水果等各类食品适宜保存温度的指示,制作热变色家具、茶具和玩具,用于绘画、美术作品和广告中产生一些奇特的效果等[4]。变温磁性材料与家用电饭锅,压电材料与煤气灶和倒车报警器,变色玻璃与太阳镜,气敏陶瓷与煤气报警器,荧光材料与彩色电视机,红外材料与节水龙头,形状记忆合金与儿童矫牙,多孔材料与饮水机,无机纳米抗菌材料与保健鞋垫,超导材料与磁悬浮列车,吸波材料与隐身飞机,泡沫玻璃与新型节能建筑材料等知识的介绍,使学生感受到无机功能材料在生活中无处不在。这种理论联系生活实际的教学,增强理论课的实用性和趣味性。

二、加强教学方法和手段的更新,增强课堂教学效果

1.讲授与讨论相结合。在教师讲授的同时,开展课堂讨论式教学,既可以培养学生学习的主动性和分析问题的能力,又可以培养学生的创造性思维,从而有效地提高课堂教学质量[5,6]。本课程在教学过程中根据选课学生人数安排讨论课次数,采用方式为:首先教师提出若干个课题,如金刚砂的制备、结构和应用,无机超导体的种类、结构和应用,宝石中的化学以及气敏陶瓷的种类、特性和应用等;其次学生自由组合成2~3人小组,查阅文献和制作PPT;最后每个小组推荐一名成员上台讲授。从实施效果来看,这种课堂讨论教学改变了传统的以教师讲授为主和学生被动接受的教学模式,增强了学生学习的主动性,提高了学生查阅文献、PPT制作、语言表达和综合分析问题的能力,促进了教与学之间的互动,活跃了课堂教学气氛。

2.传统授课方式与现代教育手段相结合。将多媒体引入传统的课堂教学,是对传统的教学方式的继承、扬弃和补充,将抽象的知识直观化和形象化,激发了学生的学习兴趣,调动了学生学习的积极性[5]。例如在讲授超导材料时,先让学生观看磁悬浮现象的视频,通过提出问题“为什么磁性圆片在低温下会在金属圆片的上方悬浮起来?”引入讲授内容——超导材料,然后从超导现象,超导特性,超导材料的种类、结构及其在输电、电机、交通运输、微电子、电子计算机、生物工程、医疗和军事等领域应用进行讲授。在讲授发光材料时,先利用中山大学部级精品课程《综合化学实验》网络资源,让学生观看“化学发光材料制备”视频,了解化学发光材料制备过程、结构表征的方法和手段,观察发光现象。在讲授激光材料和压电陶瓷前,播放一段激光雕刻机制作葫芦工艺品和压电陶瓷的有关应用的视频。在讲授激光产生的机理时,采用动画展现“三能级系统”、“四能级系统”、粒子数反转和激光形成的过程。这种讲授与动画和视频的有机结合,收到良好的教学效果。

3.理论教学与实践教学相结合。近几年来,通过以下四个方面的实现理论教学与实践教学的有机结合:(1)设置无机功能材料课程的实验。实验教学是学生创新意识和创新能力培养的重要手段与途径[7],利用华南农业大学省级化学实验教学示范中心的有利条件,开设了溶胶—凝胶法制备纳米BaTiO3陶瓷粉体,微波辐射法合成磷酸锌,稀土发光材料的制备与发光性能等实验项目,提高了学生的实验技能。(2)组织学生参观相关企业。与深圳宝嘉能源有限公司,中山东晨磁性电子制品有限公司,佛山安亿纳米材料有限公司、东莞长发光电科技有限公司和广州台实防水补强有限公司等10余家企业建立了长期的产学研合作关系,通过组织学生参观,了解镍锌软磁铁氧体材料及器件、锂离子电池等无机功能材料的生产工艺和过程,增加了感性认识,加深了对理论知识的理解。(3)鼓励学生参与教师研究课题。近几年来,学生参与教师主持的含氮共轭聚合物与无机半导体杂化光催化剂的设计、制备与催化机理研究,双功能光转换剂的制备及其在棚膜中的应用研究,一维二氧化钛纳米管装载恩诺沙星纳米囊研制及缓释特性研究,季鏻盐类复合抗菌材料的制备和性能等多项省、部级及以上科研项目。学生通过参与教师的科研,了解无机功能材料研究的发展动态,开阔知识视野,增强学习和研究的兴趣。(4)指导学生申报大学生科技创新项目。课外创新活动是培养大学生创新能力的有效途径[8],近几年来,材料化学专业的学生获得了碳纳米管/聚N-异丙基丙烯酰胺智能复合材料的制备与性能研究,橄榄石纳米LiFePO4正极材料的模板法制备及性能研究,稀性二氧化钛纳米管的制备及其对农药降解的研究,水热法制备钬掺杂二氧化钛纳米管及其光催化性能研究,GeS簇/MOFs复合多孔纳米材料可见光催化还原CO2和H2O合成甲醇的研究,金属氧化物改性多孔碳球的制备、表征及其用于直接甲醇燃料电池的研究和竹炭为模板制备纳米钛酸锂负极材料及其性能研究等科技创新项目,增强了学生的创新意识,提高了分析问题和解决问题的能力。

三、加强考核方式的改革,体现考核客观性和公正性

为了体现客观性和和公平性,无机功能材料课程考核采取平时考核和期末考试结合办法。平时成绩占总评成绩的40%,主要考查平时作业、课堂教学参与、小论文撰写、PPT制作和课堂讨论讲授效果等。期末考试成绩总评成60%,题型包括单项选择、不定项选择题、填空题、专业名词英汉互译和简答题。其中前三项主要考核学生对无机功能材料基本知识的掌握情况,后二者考核学生运用知识的能力。

综上所述,通过10多年的探索和实践,无机功能材料的课堂教学取得了良好的效果。从学生评教结果看,2008~2012年得分均92分以上,位居学院专业课前列。学生主持与课程相关的大学生科技创新项目24项,公开发表相关学术论文50余篇,其中SCI和EI收录32篇。在今后的工作中,将不断深化课堂教学改革,加强实践环节教学,使无机功能材料课程的教学在培养适应珠江三角洲经济发展的材料化学方面高素质复合型人才发挥更大作用。

参考文献:

[1]赵北君,朱世富,何知宇,等.“现代材料制备科学与技术”课程教学培养创新意识的尝试[J].高等理科教育,2008,(6):77-79.

[2]王艳荣.《无机材料科学基础》教学实践与改革探讨[J].高教论坛,2007,(2):128-129.

[3]YANG Sihai,LIN Xiang,L.William,et al.A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide[J].Nature Materials,2012,11(8):710-716.

[4]王海滨,刘树信,霍冀川.无机热致变色材料的研究及应用进展[J].中国陶瓷,2006,42(4):11-13.

[5]程顺有.实施启发式教学培养学生创新能力——以专业基础课程的“课堂讨论”为例[J].高等理科教育,2004,(3):87-90.

[6]王果.问题讨论式课堂教学法的探索与实践[J].高等农业教育,2008,(2):60-62.

[7]陈德碧,杨帆.应用型人才培养的实验教学改革实践[J].实验科学与技术,2010,8(4):42-43,133.

[8]黄朝晖,刘艳改,房明浩,等.基于大学生科技创新能力提高的材料专业教学优化实践[J].中国地质教育,2009,(1):124-126.

功能材料论文第8篇

那么,有什么秘诀可以避免这种尴尬的局面出现呢?行之有效的办法就是处理好论点与论据的关系,即在写作议论文时,选用的论据材料与原来提供的材料(或从中提炼出来的论点)具有同质性。

所谓同质性,即要求所选论据材料的要素与原材料(或论点)所具备的要素相同、一致。那么,应该怎样做,作文论据材料才与所供材料(或论点)同质呢?

一、弱水三千只取一瓢――紧扣论点要素筛选材料作论据

可作论据的材料成千上万,也千姿百态。筛选论据材料不能被材料的万紫千红所迷惑,一定要弄清材料的实质,紧扣论点,按论点的要素去筛选与原材料(或论点)同质的论据材料。

例如,要论证“勤能补拙”这一论点,那么在筛选论据材料时,就必须针对这一论点所限定的以下三个要素:1.要有“拙”;2.要有“勤”;3.要有“勤”补了“拙”,出了成果,取得了成功。此三要素缺少其中任何一个,就是不符合该论点所限定的要素,论据材料就难以证明论点。

有学生选了这样一个论据材料:“王羲之经常在自己的衣服上写字,将衣服划破,终于成为一个有名的书法家。”这个论据材料中,王羲之确实“勤”,也取得了成功,但与补拙毫不沾边,因为王羲之并不拙。那么,这个论据材料的要素与论点的要素就不一致,选用它用来论证论点是不恰当的。

不妨换个例子看看:“古雅典的德摩斯梯尼小时候口吃,为了弥补这一缺陷,他坚持每天早上含沙练唱,最终改掉了口吃的毛病,成为一位驰名世界的古雅典最具雄辩力的演说家。”德摩斯梯尼天天口含沙粒练习是“勤”,有口吃的毛病是“拙”,经过刻苦努力最终改掉了毛病,取得了事业的成功,是“勤”补了“拙”。与论点的要素相同,很好地体现了同质性的要求,能有力地论证论点。

二、到什么山唱什么歌――有侧重点地叙述用作论据的材料

筛选出具备同质性的论据材料后,接下来就是如何叙述这个论据材料了。那么,该怎样叙述才能体现同质性呢?总的原则就是到什么山唱什么歌。

再以上面的例子来说,下面的一则论据材料就叙述得很好:“传说古时候有个叫德摩斯梯尼的演说家,因小时候口吃,所以登台演讲时常被雄辩的对手压倒(写拙)。可是他毫不气馁,为了克服此弱点,他每天口含石子,面朝大海朗诵,不管春夏秋冬,坚持五十年如一日,连爬山跑步也都坚持演说(写勤)。最后,他终于成为全希腊最有名气的大演说家(写勤补了拙)。”这段话中的第一句叙其“拙”,第二句叙其“勤奋苦练”,第三句叙其“勤”补了“拙”,取得了成功。论据材料的叙述完全针对着“勤能补拙”这一论点所限定的要素,体现出同质性,因此,有力地论证了论点。

而另一个学生在论证“勤能补拙”这一论点时,这样写到:“勤能补拙,就是说,做任何事情都要刻苦勤奋,只有这样才能取得好的成绩,达到理想的彼岸,事实不也正是如此吗?大发明家爱迪生为了寻找一种能作为灯丝的物质,经常夜以继日地工作,进行了上千次的试验,经过无数次的失败后,他仍锲而不舍地探索,终于发现了能使灯泡持续发光的物质――钨丝。”

功能材料论文第9篇

英文名称:Journal of Functional Materials

主管单位:重庆仪表材料研究所

主办单位:国家仪表功能材料工程技术研究中心;重庆仪表材料研究所;中国仪器仪表学会仪表材料学会

出版周期:月刊

出版地址:重庆市

种:中文

本:大16开

国际刊号:1001-9731

国内刊号:50-1099/TH

邮发代号:78-6

发行范围:国内外统一发行

创刊时间:1970

期刊收录:

CA 化学文摘(美)(2009)

CBST 科学技术文献速报(日)(2009)

EI 工程索引(美)(2009)

中国科学引文数据库(CSCD―2008)

核心期刊:

中文核心期刊(2008)

中文核心期刊(2004)

中文核心期刊(2000)

中文核心期刊(1996)

期刊荣誉:

中科双效期刊

联系方式

期刊简介