欢迎来到易发表网,发表咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

防水设计论文优选九篇

时间:2023-03-30 11:36:27

防水设计论文

防水设计论文第1篇

其一:《建规》中屋顶消防水箱的设置问题

随着消防问题越来越受到重视,建筑给排水中的消防问题也同时受到了同行们的关注,消防设计规范作为设计人员必须遵守的法律条文,也让设计人员开始更多的学习和思考,本人最近在网易给排水在线消防板块担任了版主,通过和广大同行网友的交流,发现了很多规范上面的语焉不详之处,通过讨论也难以得出明确的结论,有些问题值得拿出来与各位同行商榷,希望能够和大家交流,得到大家批评和指正,同时能够引起规范编制组各位专家的注意,在以后的规范编制修改中考虑到这些问题。

本人认为,《规范》的编制里面有个平衡性的把握问题,太粗了不易于具体的操作执行中的把握,太细了又难免有些地方不能照顾到方方面面,让一些具体有困难的设计难于真正贯彻。因为规范的条文是用来直接在设计中体现的,所以应该具有可操作性,应该十分明确,如果有些地方不能明确的,如规范修订中各方具有争议的,建议就应该提高到上一层做出上面一层应该保证到的,而不应语焉不详、含糊其辞的列出一条,这样最让设计者和审图、消防审查人员和各方人员难于把握,造成各方理解产生歧义,首先是设计人员在方案阶段就无从把握,举个例子,今天我这样认为,做好方案,消防审查某个人员认为可行,过两天时施工图做好了,审查人员换了个人,对某条规范的理解不一样,施工图的工作变化就大了,这样的事情经常发生,造成很大的浪费,非常不利于大家的工作,造成各方之间的矛盾,同时也给某些腐败环节提供机会。违反了规范编制的初衷。

现打算将平时设计中的一些问题理出,与大家一起分析探讨。限于篇幅,打算分几篇文章逐段论述,本次仅讨论一点,关于屋顶水箱设置的问题:

《建筑设计防火规范》GBJ16-87(2001版),以下简称《建规》“第8.6.3条设置常高压给水系统的建筑物,如能保证最不利点消火栓和自动喷水灭火设备等的水量和水压时,可不设消防水箱。

设置临时高压给水系统的建筑物,应设消防水箱或气压水罐、水塔,应符合下列要求:

一、应在建筑物的最高部位设置重力自流的消防水箱;

二、室内消防水箱(包括气压水罐、水塔、分区给水系统的分区水箱),应储存10min的消防用水量。当室内消防用水量不超过25L/s,经计算水箱消防储水量超过12m3时,仍可采用12m3;当室内消防用水量超过25L/s,经计算水箱消防储水量超过18m3,仍可采用18m3。

1、在以上两条中首先有关于临时高压和常高压的定义问题,临时高压大家都知道,而常高压规范在条文解释中所述的“即设有高位水池或区域高压给水系统”中的区域高压给水系统,由于没有明确的界定,所以在实际设计中难于把握,首先说区域概念的范围难于把握,到底多大才算是区域,是几栋楼还是一个小区还是几个小区抑或是一片厂区,均不得而知,所以在平时的设计中只有高位水池可以得到大家的一致认可,而区域高压的理解有很多异议,窃认为其实在满足了二级负荷的前提下,如果消防设备齐全,有独立的两路水源供水,或是一路水源但是有含室内室外消防水量的消防水池,平时有专人值班的消防泵房或是消防控制中心,即可以认为是常高压系统,因为即使消防作为重中之重,它的可靠性把握,也有一个“度”的问题,因为任何安全保险都不是绝对的,因为即使是规范定义的常高压高位水池,也有检修维护和清洗的时间。

以上是本人粗浅的看法,并不认为一定正确,但是还是认为如果无法明确那么不如不写出,至少不会造成大家在这上面费尽思量,仍然找不出统一的认识。

2、再者就是“室内消防水箱(包括气压水罐、水塔、分区给水系统的分区水箱),应储存10min的消防用水量”,这里十分钟的消防水量我们认为应该包括喷淋等其他消防设备的用水量,然而按照《自动喷水灭火系统设计规范》GB50084-2005(以下简称《喷规》)“10.3.1采用临时高压给水系统的自动喷水灭火系统,应设高位消防水箱,其储水量应符合现行有关国家标准的规定。消防水箱的供水,应满足系统最不利点处喷头的最低工作压力和喷水强度”这里面说的“系统最不利点处喷头的最低工作压力和喷水强度”到底是指最不利点一个喷头的水量还是同10.3.2中“最不利处4只喷头在最低工作压力下的10min用水量”,还是最不利处整个保护面积里面10分钟的用水量,这个问题无论在《建规》还是《喷规》或是即将出版的《建规》送审稿中均没有一个明确的说法。

举个例子,如果一栋带地下停车库的多层综合楼,有喷淋系统,采用中危Ⅱ级的喷淋强度计算,喷淋水量按照最不利点的保护面积来计算,假如水量是30l/s,具体根据喷头布置的疏密及选用管径的大小有些差异,假如室内消火栓系统水量是10ls/,如果喷淋按照整个保护面积30l/s的流量计算10分钟的水量已经是18立方了,那么由于“当室内消防用水量超过25L/s,经计算水箱消防储水量超过18m3,仍可采用18m3”无需再计算其他水量即可选取18m3水箱了,如果按照“最不利处4只喷头在最低工作压力下的10min用水量”计算那么4只喷头的水量应该在5l/s左右,即水箱需要在消火栓用水量10×10×60=6m3和下加上5×10×60=3m3的水量,为9m3,与前面所述18m3有很大的差异。

我们平时设计中认为因为少有水箱能够满足喷淋要求水头的,所以都是需要设增压系统的,所以罐里有十分钟的水量,水箱就不考虑了,但是我们注意到《喷规》10.3.2条说的“不设高位消防水箱的建筑,系统应设气压供水设备。气压供水设备的有效水容积,应按系统最不利处4只喷头在最低工作压力下的10min用水量确定。”那么其中的话严格理解是不设消防水箱时气压供水设备的有效水容积,应按系统最不利处4只喷头在最低工作压力下的10min用水量采用,然而即使采用了气压供水供水设备,在有水箱时水箱是否还应该考虑喷淋储水量,如果我们以规范字面意思理解,还是需要。

不禁要问,这是规范的原意吗?如果不是,那说明规范在这条条文的陈述上存在漏洞。

防水设计论文第2篇

1漏水原因分析

无论是原设计建造屋顶花园,或是在已建房屋的可上人屋面顶上增建屋顶花园,在建造过程中和建成后的日常使用中,均宜破坏屋顶的防水和排水系统,造成屋顶漏水。原因如下:

1.1原屋顶防水层存在缺陷

结构层和防水层即使保持原有做法,但一般还要在预制空心板上卷材防水层,因此仍不可避免在女儿墙和天沟沿口等薄弱环节处出现渗漏。特别是刚性防水屋面,最严重的问题是防水层在施工完成后可能会出现裂缝而漏水。产生裂缝的原因很多:气候变化及太阳照射引起的屋面热胀冷缩;屋面板受力后的翘曲变形;地基沉降或墙体承重后坐浆收缩等原因引起的屋面变动;屋面板除变或材料干缩变形等。

1.2建造屋顶花园时破坏了原防水层

屋顶上建造屋顶花园尚且可能漏水,而在较容易出现漏水的屋顶防水层上进行多项园林工程施工,这就更容易造成屋顶防水层破坏而导致漏水。即使不打洞穿孔或埋设固定铁件,如不精心施工,仍会破坏屋顶防水和排水构造,造成屋顶漏水。进行载植有时也会破坏防水层,比如填土时用的铲子有可能会破坏防水层。

1.3屋顶花园水源更多

各种植物的浇灌用水、水池、喷泉等水体用水也极为频繁,使屋顶又增加了产生漏水的水源。一般建筑物屋顶的排水系统,均未考虑建造屋顶花园所需的种植物渗漏水和水体工程的排水问题,特别是浇灌水和水池午污水中含有植物根叶和泥沙等杂务,会使排水口及管道堵塞,造成屋顶积水和漏水。

不论是何种因素造成漏水,人们往往归罪于屋顶花园,这就为屋顶花园的推广造成了社会阻力。因此规划设计和施工单位以及使用单位均应有足够的认识。,共同处理好屋顶花园的防水问题。

2施工要点及注意事项

2.1做防水实验和保证良好的排水系统

建造屋顶花园,必须进行二次防水处理。首先,要检查原有的防水性能:封闭出水口,再灌水,进行96小时(4天4夜)的严格闭水试验。闭水试验中,要仔细观察房间的渗漏情况,有的房屋连续闭水3天不漏,第四天才开始渗漏。若能保证96h不漏,说明屋面防水效果好。这种防水效果,也只适用于非屋顶花园的情况。防水层是保证屋顶不漏的关键技术问题,但屋顶防水和排水是一个两个方面,因此还必须处理好屋顶的排水系统。在屋顶园林工程中,种植池、水池和道路场地施工时,应遵照原屋顶排水系统,进行规划设计,不应封堵、隔绝或改变原排水口和坡度。特别是大型种植池排水层下的排水管道,要与屋顶排水口配合,注意相关的标准差,使种植池排水层下的排水管道,要与屋顶排水口配合,注意相关的标高差,使种植池内的多余灌水能顺畅排出。

2.2不损伤原防水层

实施二次防水处理,最好先取掉屋顶的架空隔热层,取隔热层时,不得撬伤原防水层。取后要清扫、冲洗干净,以增强附着力。在一般情况下,不允许在已建成的屋顶防护水层上再穿孔洞与管线和预埋铁件与埋设支柱。因此,在新建房屋的屋顶上建屋顶花园时,应由园林设计部门提供屋顶花园的有关技术资料。如将欲留孔洞和欲埋件等资料提供给结构设计单位,并由他们将有关要求反映到建筑结构的施工图中,以便建筑施工中实现屋顶花园的各项技术要求。如果在旧建筑物上增建屋顶花园,无论是那种做法的屋面防水层,均不得在屋顶上穿洞打孔、埋设铁件和支柱。即使一般设备装置也不能在屋顶上“生根”,只能采取其他措施使他们“浮摆”在屋面上。

2.3重视防水层的施工质量

目前屋顶花园的防水处理方法主要有刚、柔之分,各有特点。由于蛭石栽培对屋盖有很好的养护作用,此时屋顶防水最好采用刚性防水。宜先做涂膜防水层,再做刚性防水层,其做法可参照标准设计的构造详图。刚性防水层主要是屋面板上铺50mm厚细石混凝土,内放ф4@200双向钢筋网片1层(这种做法即成整筑层),所用混凝土中可加入适量微膨胀剂、减水剂、防水剂等,以提高其其抗裂、抗渗性能。这种防水层比较坚硬,能防止根系发达的乔灌木穿透,起到保护屋顶的作用,而且使整个屋顶有较好的整体性,不宜产生裂缝,使用寿命也较长,比柔性卷材防水层更适合建造屋顶花园。屋面四周应设置砖砌挡墙,挡墙下部设泄水孔和天沟。当种植屋面为柔性防水层时,上面还应设置1层刚性保护层。也就是说,屋面可以采用1道或多道(复合)防水设防,但最上面一道应为刚性防水层,屋面泛水的防水层高度应高出溢水口100mm。

刚性防水层因受屋顶热胀冷缩和结构楼板受力变形等影响,宜出现不规则的裂缝,而造成刚性屋顶防水的失败。为解决这个问题,除30~50㎜厚的细石混凝土中配置钢丝或钢筋网外,一般还可用设置浮筑层和分格缝等方法解决。所谓浮筑层即隔离层,将刚性防水层和结构防水层分开以适应变形的活动。构造做法是在楼板找平层上,铺1层干毡或废纸等以形成一隔离层,然后再做干性防水层。也可利用楼板上的保温隔热层或沙子灰等松散材料形成隔离层,然后再做刚性防水层。干性防水层的分格缝是根据温度伸缩和结构梁板变形等因素确定的,按一定分格预留20㎜宽的缝,为便于伸缩在缝内填充油膏胶泥。需要注意的是:由于刚性防水层的分格缝施工质量往往不宜保证,除女儿墙泛水处应严格要求做好分格缝外,屋面其余部分可不设分格缝。屋面刚性防水层最好一次全部浇捣完成,以免渗漏。防水层表面必须光洁平整,待施工完毕,刷2道防水涂料,以保证防水层的保护层设计与施工质量。要特别注意防水层的防腐蚀处理,防水层上的分格缝可用“一布四涂”盖缝,并选用耐腐蚀性能好的嵌缝油膏。不宜种植根系发达,对防水层有较强侵蚀作用的植物,如松、柏、榕树等。

2.4注意材料质量和节点构造

应选择高温不流淌、低温不碎裂、不宜老化、防水效果好的防水材料。刚性多层抹面水泥砂浆防水层宜采用标号不低于原325#的普通硅酸盐水泥和膨胀水泥,亦可采用矿渣硅酸盐水泥;砂采用粒径1~3㎜粗砂,要求砂料坚硬、粗糙、洁净;水泥浆和水泥砂浆的配合比应根据防水要求、原材料性能和施工方法确定,施工时必须严格掌握。目前一些建筑物也有柔性防水层的,屋顶花园中常有“三毡四油”或“二毡三油”,再结合聚氯乙烯胶泥或聚氯乙烯涂料处理。近年来,一些新型防水材料也开始投入使用,已投入屋顶施工的有三元乙丙卷材,使用效果不错。国外还有尝试用中空类的泡沫塑料制品作为绿化土层与屋顶之间的良好排水层和填充物,以减轻自重。有用再生橡胶打底,加上沥青防水涂料,粘贴厚3㎜玻璃纤维布作为防水层,这样更有利于快速施工。也有在防水层与石板之间设置绝缘体层(成为缓冲带),可防止向上传播的振动,并能防水、隔热,还可在绿化位置的屋顶楼板上做PUK聚氨酯涂膜防水层,预防漏水。

屋顶防水层无论采用哪种形式和材料,均构成整个屋顶的防水排水系统,一切所需要的管道、烟道、排水孔、预埋铁件及支柱等出屋顶的设施,均应在做屋顶防水层时妥善处理好其节点构造,特别要注意与土壤的连接部分和排水沟水流终止的部分。整体刚性防水层往往因这些细小的构造节点处理不当,而造成整个屋顶防水的失败。另外,按常规设置纵横分格缝,构造复杂容易渗漏。安装防水板时,当一块防水板宽度不够,需几块并排安放时,应注意板与板之间的空隙也会为根生长提供潜在的空间。

施工方法以热涂效果为佳,热涂材料加温后可渗透至缝隙。屋面的薄弱部分,如出气孔道周围、女儿墙周边,应加强处理。尤其是女儿墙周边,防水层应延伸上翻至墙上几十厘米,超过将来花坛上层的位置,否则,极宜因此渗漏。防水层的厚度、层数都应严格按照国家有关规定、规范施工、至少应是“一布两油”,即2层热涂油质材料,中间1层作“筋”的防水布料。防水处理竣工后应以高标号水泥砂浆抹面,保护防水层。应避免在潮湿条件下施工,屋面未干透也不宜施工。防水层做好后应及时养护,蓄水后不得断水。屋顶花园的各项园林工程和建筑小品只有在确认屋顶防水工程完整无损的条件下才施

3工程实例

针对屋面渗漏问题,目前有人提出了“生态种植屋面复合排水呼吸系统”的概念。采用先进的屋面生态防水换气导水技术,达到顺应自然的屋面防水的长期目标,其中心思想是“引导”,不与大自然相抗衡,而是通过导水、拍潮、换气和植被的生态循环,解决保温层内积水饱和问题以及内外温差气压问题,达到隔水、防水、美化环境的多重目标。下面通过某大厦屋顶花园对该系统的应用实例做详细说明。

该系统是在原有防水设计基础上发展起来的,如图1所示,即克服了卷材防水层的不足,又利用了种植层的隔热保温作用特点。其基理是客土层既是植被的培土层、排水层,又起到吸水、隔热和保护屋面找坡层或基层的作用。植被吸收室内排出的二氧化碳,呼出氧气,同时又有吸收客土层中的水分的作用。因为植被能吸收太阳辐射的热量,通过光合作用转化为生化能,从而改变能量存在的形式。此外其表面的反射热小,长波辐射小,冬季又有良好的保温性能,所以植被也具有良好的热工性能。通过排气,可将室内的潮湿水气以及浑浊空气向室外大气排放,所排出的较温暖且含二氧化碳的空气又有利于植被的生长,室外新鲜空气可同时从导管进入室内,由此促进空气流动,减缓室内外气压差,减少甚至不再形成冷凝水积聚现象。屋面滤水层滤下的雨水,通过区间找平层纵横交错的排水槽系统迅速排泄,不会在屋面形成积水,故无水向下渗漏。屋面水箱连通若干根支管,在客土层内分区布置,利用节水灌溉,在旱、夏季给植被层补充水分,有利于植被生长,植被生长又有利于夏季隔热、降低室温,如此形成一个大的生态循环系统。

4体会和总结

(1)建筑防水观念应该转变。首先要提高防水技术重要性的认识。目前建筑技术和装修标准在不断提高,而国内建筑防水的标准却有所下降。过去屋面防水工程构造价约占工程造价的5%~10%,而近年却降为2%左右。国外建筑防水概念已在转变,即不是只考虑一次性造价,而是综合考虑防水工程造价和使用期,并且更加强调使用功能的提高。

(2)重视防水设计与施工工艺、防水材料与结构及基层、施工时间与环境之间的匹配、协同和优化,以求得最佳的防水效应。因此,在建筑屋面的各项与屋顶防水层有关的设施时,均要在屋顶建筑结构施工图中给予表达,并有明确的防水构造做法。

(3)合理的选材是达到技术经济综合效果的关键。其主要原则是根据建筑物重要性选择其结构、地理位置、气候条件、防水等级、防水层构造、防水部位和细部构造等;根据当地的气候特征选择防水材料;根据防水材料的性能、防水等级的要求,确定防水层的厚度。现在防水材料品种繁多,产品质量差异很大。设计人员应充分了解这些材料的性能,正确的选择优质的防水材料,组成既经济合理,又能充分发挥效果的防水层。大型工程的屋面,特别是高层建筑的屋面应选用高档或中高档的防水材料,使它与建筑物的等级、标准相适应。

防水是屋顶花园安全工作的核心。防水是屋顶花园安全工作的核心。防水工程质量与设计施工和材料3方面都有密切关系。材料为基础,设计为前提,施工为关键。为了搞好屋顶花园的防水工程,我们必须选择质量可靠的防水材料,作出合理的构造,并把好施工质量关。

参考文献:

[1]戴善奎.层顶花园的设计与建造[M].石家庄:河北科学技术出版社,1999.43~44.

防水设计论文第3篇

关键词:贯流式水电站;消防总体设计;消防给水;CO2灭火系统;干粉灭火器;火灾自动报警及灭火控制系统

1.工程概况和消防总体设计方案

1.1概况及其特征。居龙滩水利枢纽工程是以发电为主,兼顾防洪和灌溉、供水、航运以及水库养殖等任务的综合利用工程。其工程规模为:水库总库容为7.76×107m3;电站总装机容量60MW。

该工程位于贡水左岸支流桃江下游赣县大田乡夏湖村境内,距赣县县城约28Km。桃江流域属副热带季风气候区,流域内各地多年平均气温19.4℃,极端最高气温41.2℃,极端最低气温-6℃,多年平均蒸发量1576.2mm。

工程是由挡水坝、溢流坝、河床式发电厂房、船筏道及升压开关站等建筑物组成。

本工程的主要消防对象是水电站建筑物及其机电设备。其中水电站建筑物的消防设计含主厂房、副厂房、主变压器场(开关站)、高压开关室、厂用屏配电室、油库、机修车间和坝区等。除检修期外,水电站及其机电设备一般都处于生产运行状态。

1.2消防设计依据和设计原则。

本工程消防设计依据国家、行业颁布的下列现行规程规范进行:

(1)水利水电工程设计防火规范(SDJ278-90)

(2)火灾自动报警系统设计规范(GB50116-98)

(3)建筑设计防火规范(GB50016-2006)

(4)自动喷水灭火系统设计规范(GB50084-2005)

(5)建筑灭火器配置设计规范(GB50140-2005)

(6)二氧化碳灭火系统设计规范(GB50193-93)(99年版)

(7)电力系统设备典型消防规程(GB5027-93)

(8)采暖通风与空气调节设计规范(GB50019-2003)

(9)水力发电厂机电设计技术规范(DL/T5186-2004)

(10)中华人民共和国消防法(1998-04-29)

(11)火灾报警控制器通用技术条件(GB4717-93)

(12)水库工程管理设计规范(SL106-96)

为贯彻“预防为主,防消结合”和确保重点、兼顾一般、便于管理、经济实用的方针,并结合居龙滩水利枢纽工程的具体情况,确定了如下基本设计原则:

在消防区内,按规范要求统一规划畅通的安全通道,设置安全出口及其标志;

以生产重要性和火灾危险性设置消防设施和器材,特殊部位按防火规范采取其它消防措施;

在电站设置消防控制中心(计算机房旁)和火灾报警系统,消防电源采用双可靠独立电源;

采取消防车、消火栓、CO2灭火和干粉灭火器四种灭火方式,消防用水取自可靠而充足的水源;

设置通风排烟系统;

选用阻燃、难燃或非燃性材料为绝缘介质的电气设备或采取其它保护措施以防止或减少火灾发生;

有火灾危险性设备之间,采用耐火材料制成的墙或门隔离,孔洞用耐火材料封堵以防止火灾的漫延与扩散。

1.3消防总体设计方案。枢纽总体配备一辆消防水车,若遇重大火灾时,则由县消防部门支援扑救。工程消防系统按其生产及防火功能要求分为主厂房、副厂房、开关站、高压开关室、油库、机修间及大坝(含启闭机室、坝区用电变房)七个区,其中主厂房、副厂房采用自动灭火与灭火器具结合的灭火方式,开关站、高压开关室、油库、机修间、大坝则采用灭火器具灭火。

为确保消防区灭火要求,本工程消防水源及电源均按双水源、双电源设置,互为备用。当其中之一停止工作时,备用水源及备用电源均能自动切换投入。二台消防水泵从上游水库取水或下游取水,水泵扬程为52m,作为消火栓消防备用水源,两台消防水泵布置在技术供水设备室;另外,由两台深井泵从水井取水给高位水池(V=100m3)供水,作为消防水源及生活用水,为保证消防水源的可靠性,应经常检查消防水泵是否能正常运转。

在主、副厂房等建筑物设计中,防火设计要求:

(1)建筑物的耐火等级为二级。

(2)重点火警防护区,按消防要求设置防火隔墙、防火门或防爆门。

(3)建筑物层间不少于两座楼梯(含爬梯)。每片消防分区不少于两个安全疏散出口通道。

(4)开关站及绝缘油库设车道,供消防车通行的消防车道宽度为5m。

2.工程消防设计

2.1生产厂房火灾危险性分类及耐火等级。厂房各主要生产场所火灾危险性分类及耐火等级要求见表1。

2.2主要场所和主要机电设备的消防设计

2.2.1主、副厂房消防。居龙滩水利枢纽工程采用灯泡贯流式机组,厂区主要由主厂房和安装间、电气副厂房、中控室、机修间和室外绝缘油库等部分组成,厂区机修门外、绝缘油库门外设室外SS100-1.6型消火栓2个、开关站设SS100-1.6型室外消火栓2个。

电站主厂房长66.70m,宽19m,高约50.0m,共分运行层(高程112.20m)、中间层(高程103.20m)、水轮机层(高程84.70m)。

运行层主要布置有调速器和油压装置等设备,在每个机组段(运行层、中间层)上游侧各设1个SN65(带报警)型消火栓箱和2个MT3型手提式CO2灭火器。

考虑发电机水喷雾灭火装置的要求,在运行层每个机组段上游侧各设一个发电机消火栓箱为发电机内部消火提供水源,手动报警装置1个,发电机内部灭火及火警装置由制造厂家设计提供。

建筑物危险性分类及耐火等级表生产场所名称火灾危险性类别耐火等级类别主厂房丁类二级透平油库丙类二级绝缘油库丙类二级户外开关站丙类二级中央控制室、微机房丙类二级坝区用电变室、厂用变室丁类二级高压开关室丁类二级电缆、电缆道丙类二级发电机设备小间、资料室丙类二级空压机及贮气罐室丁类二级水清测报站丁类二级载波通信室丁类二级大坝监测室丁类二级高压试验室丁类三级机修车间丁类三级其它戊类三级水轮廊道层主要布置有轴承回油箱,调速系统漏油箱等,每机组段拟设MT3型CO2灭火器2个,另在与该层相通的渗漏排水泵房设MT3型CO2灭火器2个,手动报警装置1个。

为扑灭厂内桥机电器设备引起的火灾,在桥机上设置MT3型CO2型灭火器2个。

电站安装间位于厂房右侧(从上游往下游看),长28m,宽19m,安装间上、下游侧各设SN65型消火栓1个和MT3型CO2灭火器4个。

空压机室设在安装间的下层,在该室油处理室上游侧设SN65消火栓1个及MT3型CO2灭火器4个,空压机室布置两个灭火器设置点。布置两个离子型感烟探测器,手动报警装置1个。

在副厂房的电缆层(高程107.70m)入口处设MT3型CO2灭火器4个,即每个进人门布置一个灭火器安置点(各2个MT3型CO2灭火器);每个入口门设自动控制防火门,手动报警装置1个;此外还配置若干个防毒面具、呼吸器,电缆穿过楼板或进入各屏柜的孔洞均须用耐火材料封堵以防止火灾漫延,耐火极限不小于1小时。结合设备与电缆布置情况,每隔一定距离集中布置MT3型CO2灭火器2个,在电缆桥架每层均敷设缆式线型感温探测器。

技术供水层位于副厂房的100.40m高程处。其门外布置MT3型CO2灭火器4个。

在高程112.20的微机房及中控室拟设置固定CO2灭火系统,采用固定管网消防,即组合分配系统,共用一套CO2储藏装置,保护这两个防护区的消防灭火系统,其设计用量按其中最大的中控室需要量设置,不考虑备用,经计算选用20个70L储存钢瓶,同时在每个地方均设置有烟温复合探测器,当感温感烟探测器同时报警时,控制器将立即停断该区风机与空调,声光报警器鸣响,提醒人员迅速撤离,延时30秒(可调)后,关闭防火门,启动灭火装置灭火,30秒全部喷完,另外门口设手动报警装置1个,进人门口设气体放气信号灯,声光报警器,布置MT3型CO2灭火器4个。

固定CO2自动灭火系统,既可在现地手动操作,也可与火灾自动报警系统相连。

2.2.2水轮发电机组消防。水轮发电机组安装在密闭的灯泡体内,其消防措施由制造厂解决,电站提供水源,相应在机组段布置发电机消火栓箱,采用固定式水喷雾灭火装置。灯泡体内同时设置感温、感烟探测装置及其控制装置,发电机内部管路设备均有机组制造商按规程规范配套供应。

2.2.3油库和机修间消防

2.2.3.1油库消防。居龙滩水利枢纽油库分为厂内透平油库和厂外绝缘油库,油库采用防火墙与其他房间分隔,油罐室设有两扇门与外界相通,出口门为向外开启的甲级防火门,油库内设有可靠的防雷接地装置和挡油槛,室内立式油罐之间间距大于2.0m。油罐与墙之间的距离大于油罐半径,油处理室与油罐室相接部位用防火墙隔开,烘箱电源开关和插座设在小间外,油库内灯具和电器设备均采用防爆的灯具和电器设备。透平油库设在安装间下面(高程103.20m),内有20m3的立式油罐2个,并设油处理室等,采用消火栓灭火,设置感烟探测器,油处理室设置手动报警装置1个。

绝缘油库布置在室外,靠近厂房公路边,发生火灾时,消防车能顺利抵达现场救火。绝缘油库内布置有15m3立式油罐2个,30m3立式油罐1个,油库设有油处理室、滤纸烘箱室。

根据有关规范,在绝缘油罐和透平油罐室各设置2台MFT35型推车式磷酸铵盐干粉灭火器和1个100×100×60cm3砂箱,每个砂箱配2把铁锹;两个油处理室各设3个MF3型磷酸铵盐干粉灭火器,同时在透平油处理室与空压机室联接处设SN65型消火栓1个,在绝缘油库室外设SS100-1.6型地面消火栓1个。

油库内防火门自动关闭,风机停止排风并可自动启动消防泵,为了预防和控制火灾,火灾报警后,并确认火灾位置后,在中控室手动关闭厂房内相应部位的排风机,此时防火阀连动关闭。火灾结束后,重新开启排风机进行排烟,然后通风系统恢复正常。

2.2.3.2机修间消防。机修间靠近安装场布置,面积为15×20m2,内设小型机修设备,机修间除设置1个SN65型消火栓外,另配MF3型磷酸铵盐干粉灭火器8个,分二个设置点,每个设置点配置4个。在机修间外设SS100-1.6型地面消火栓1个。

设置感温、感烟探测装置及手动报警装置1个,自动向消防控制中心报警。

2.2.4高压开关柜室和厂用电变消防,坝用电变消防。两个高压开关柜室共设置开关柜16面,低压开关柜室设置低压柜10面,以上两个高压开关柜室内均设置1台MTT35型推车式CO2灭火器和4只MT3型CO2灭火器并设置向外开启的防火门。

坝用电配电室、厂用变室、柴油发电机房,布置在独立的小间内,小间配置3只MT3型CO2灭火器,并配置1台MFT35推车式磷酸铵盐干粉灭火器。

同时在每个地方均设置有烟温复合探测器,另外口门设手动报警装置1个,进人门口设气体放气信号灯,声光报警器。

2.2.5主变和户外开关站消防。主变露天布置,2台主变间距离大于10米,与建筑物距离大于12米以满足防火要求,每台主变均设置可储存一台变压器油量和20min消防水量之和的事故储存坑,坑内装设金属栅格(其净距不大于40mm)并铺设粒径50~80mm,厚度为250mm的卵石层。事故时,变压器油可迅速由排油管排至设置在厂房右侧的事故集油池内。另外,每台主变附近均设置2台MFT35推车式磷酸铵盐干粉灭火器和2个砂箱(100×100×100cm3)。另设置专门房间放置灭火器具。户外开关站附近设SS100-1.6型地面消火栓2个。户外110kV开关站,设置4只MT3型CO2灭火器。

2.2.6坝区消防。坝区内溢洪道8座液压泵房,每座配置2个MF3型磷酸铵盐干粉灭火器,坝顶每50米设置SS100-1.6型地面消火栓1个,计3个。每座液压泵房设置1个感烟探测装置。

2.3消防给水设计。居龙滩水利枢纽水库水质清晰、泥沙含量较少,可以作为消防水源。设四个消防取水口,为防止取水口堵塞可以用吹扫气管供气对水泵取水口进行吹扫;根据电站所配置的消防设备供水压力及消防用水量的要求,选用二台XBD5.2/30-125-200型水泵,扬程为52m,流量为108m3/h,两台水泵互为备用;消防水泵可与火灾自动报警系统相连,以便及时发现并经确认后能尽快消灭火灾。消防水泵及附属设施均布置在技术供水设备室(高程100.40m)。另外,由两台深井泵从水井取水给高位水池(底部高程160.00米,V=100m3)供水,作为消防主水源及生活用水,消防水泵供水作为备用水源。

2.4消防电气和监测报警系统

2.4.1消防电气。本电站设专用消防动力盘,并标有明显消防标志,由双电源供电,以保证消防设备由2个可靠的电源。消防用电设备采用单独的供电回路并穿管敷设,当发生火灾时,仍能保证消防用电。

厂房内主要疏散通道、楼梯间及安全出口处,均设置火灾事故照明及疏散指示标志。正常时,事故照明由交流电源供电,交流电源失去时,通过交直流切换装置自动切换为蓄电池直流供电。疏散用的事故照明其最低照度不低于0.5lx,疏散指示灯正常时由交流电源供电,交流电源失去时,通过其自配的备用电源供电,其连续供电时间不少于20分钟。

事故照明灯和疏散指示标志灯,均设置非燃烧材料制作的保护罩。

2.4.2火灾自动报警及灭火控制系统。本电站的火灾自动报警及灭火控制系统采用控制中心报警系统的形式,电站的消防控制中心设于消防控制房。

消防控制中心内设有火灾自动报警及联动控制屏,对厂内的火灾报警设备及消防灭火设备进行集中控制,并对发电机组设备火灾报警及联动控制器进行重复显示及控制。火灾自动报警控制系统选用总线编码智能型。火灾自动报警控制屏接收来自设备火灾报警控制器、厂内各部位安装的点式感烟、感温探测器、缆式定温探测器、手动报警按钮及输入模块传送来的信号,自动或手动发出灭火指令;向控制模块发出控制信号,控制风机、防火阀、固定式CO2灭火系统等消防灭火设备的运行;同时经通信接口自动启动工业电视监控系统进行跟踪及录像,并显示、记录、打印产生报警或故障信号的时间、地点及有关火灾信息,发出声光报警。并将所有火警或故障信息经通信接口送给全厂计算机监控系统。

主要设备布置区如中控室、计算机室、1G10.5kV开关柜室、2G10.5kV开关柜室、400V厂用配电屏室、透平油库、油处理室、空压机室、高压试验室、柴油发电机房、400V大坝用电配电室、电缆层、技术、消防供水泵层等地均设置有点式感烟探测器;在主厂房运行层及安装场和中间层设置有红外光束感烟探测器;在安装有固定式CO2灭火系统的设备区(即中控室、计算机室),电缆层及电缆廊道均另外设置有点式感温探测器或缆式定温探测器。在厂内各重要通道、走廊均安装手动报警按钮及声光报警器。

上述区域,按其重要性和所配置的消防灭火设备的要求选择报警、报警及手动灭火、报警及自动灭火等不同的处理方式。

一旦发生火灾,任何一个探测器探测到火警信号,控制器发出火灾报警声光信号,通知运行值班人员,值班人员根据火灾自动报警控制屏显示的报警地址到现场证实或经工业电视监控系统证实后,即可采用干粉灭火器或手动启动消火栓、固定式CO2系统,指挥救火。固定式CO2系统的远方手动操作在火灾自动报警控制屏上进行。火灾自动报警控制屏也可以设定为自动灭火方式,如果CO2灭火保护区域内同时有感温、感烟两种类型的探测器报警或手动报警按钮按下后,经控制器分析判断后自动停断对应区域内的风机、关闭对应区域内的防火阀、投入灭火装置。无论是在手动方式还是在自动方式下,控制器在发出火警信号的同时都自动启动工业电视监控系统对相关部位进行跟踪、显示及录像,以备日后事故分析。

根据规范及电站的实际布置进行探测器、手动报警按钮的配置;根据灭火设备的自动控制要求配置联动模块。

火灾自动报警控制系统的所有线路均采用屏蔽型电缆,以防电厂的磁场引起干扰;所有线路均穿管暗敷。

防水设计论文第4篇

民用建筑的消防给水系统的设计可根据实际情况的房屋结构、楼层的高度,以及经济、合理和科学要求,按压力分为:临时高压消防给水系统、低压消防给水系统和高压消防给水系统。在低压消防给水系统中,由于自身管网的水压低于0.1MPa,在小型的民营建筑中较为适用,低压消防给水系统通常在室外应用,灭火时,需要消防车等用外力来满足水压和流量的需求。对高压消防给水系统主要通过灭火设备自动灭火,不需要直接启动消防泵及其他设备进行加压,由于市政给水压力的不足和水量达不到要求,需要配备相应的天面水池来保证高压消防给水系统的压力和水量需求。临时高压消防给水系统通常适合火灾情况,如官网内最不利点周围水量和压力无法满足当前的火情需要,可启动消防泵等设备进行加压。临时高压消防给水系统对第二种火情如管网内压力和水量都比较充足的情况下,通过起亚给水设备保证稳定输出,设置消防泵满足火情需要的水压和水量。气压给水设备的作用主要是为满足消火栓和水幕喷头的压力需要。根据消防供水的实际情况,对民用建筑的高度、供水压力流量的大小和供水的范围等,还可将消防给水系统分区域集中高压给水系统和独立高压给水系统。在区域集中的高压给水系统中,使用一定范围内、建筑比较密集区域的高压给水系统管理是比较严谨的,以便于集中应用,对辖区内的民用建筑都有消防作用,经济实惠且性价比较高。独立的高压给水系统是一种应急性的消防给水系统,是在遇到地震、自然灾害、突发性大火同时建筑群较为分散等的情况下可充分发挥的高压给水系统,相比区域集中的高压给水系统投资较大。自动喷水灭火系统是根据自动预警、控火和灭火等特定,比较适合民用建筑人员较为密集、不易疏散、外部增援灭火比较困难的情况所使用的。在使用时,应避免遇水容易爆炸或加速燃烧的物品和遇水发生强烈化学反应产生有毒物质的物品。这种自动喷水灭火系统的实际灭火效果很好、可在第一时间采取灭火措施,且具备先进的自动报警功能,造价相对较高。在民用建筑消防给水系统可用消防栓给水系统,利用建筑物的高度和室外水管网的压力、流量,以及室内消防管道的水压水量要求可分四种,如无加压泵和水箱消防栓给水系统、竖向分区消防栓给水系统、设加压泵和水箱给水系统、单设水箱消防栓给水系统。在民用建筑工程中一般消防栓超过10个,消防用水量为15L/S以上,其造价较低,但没有自动喷水灭火系统效果显著。

2民用建筑消防给排水分区的设计

民用建筑消防给排水设计要保证建筑的安全、人民财产的安全,为达到民用建筑消防的最好效果,需要对民用建筑消防给排水设计以科学设计。

2.1科学合理设计管网、消防池和消防泵及消防栓的设计要合理布置消防管网,保证供应消防用水,为消防工作做准备。在市政管网满足不了消防用水时,要有必要的设置消防水池。将各种消防用水量减掉进水管的补水量,保证消防水池有足够的消防用水,并及时得到补充。在设置水池时,不能用建筑物本身作为池壁,要另外设消防水池,保证水质、防止污染,也可在屋顶设置消防和生活两用水箱。消防水池的引入管道要在两根以上,保证消防水池的水能引入水泵间,避免出现供水隐患,有利于消防部门开展工作,保证供水安全。同时,在设置消防水池时,应保证水池容量满足火灾延续时间内的消防用水量,或者同时满足火灾延续时间内需水量和室外不足水量。消防的补水管流速在2.5m/s以下,消防水池的补水时间在48小时以内,一般设置两个消防水池,有条件的话,应增加相应的防辐射及防冻措施。消防泵房的设计应不低于二级耐火等级设计,疏散门设置在首层时应直通室外,若设置地下或楼层上,要靠近安全出口,且设计成甲级防火门。消防泵房至少应有两条以上出水管与消防给水管直接连接,且出水管需进行防超压设置,消防泵要设置备用泵。室内消火栓的供水设计要按照规定,设置在明显操作的地方,消火栓箱外面不能再有其他设置,如门和装饰等。多层民用建筑与高层公共建筑之间的同一防火分区不能用双消火栓布置形式满足粮谷水柱,非同一防火分区的消火栓不可相互借用。

2.2放水阀与稳定回流设计消防水泵的供水管,是为了能够有效的排水,方便检查和试验水泵,要设置放水阀。在排水量较小的情况下,可以直接排到泵房及水池,在排水量比较大的情况下,应该把放水阀排到消防水池内。这样对排水的正常进行,消防工作的展开都有非常大的作用。除此外,消防水泵的出水口应采取稳压回流措施。在消防使用过程中,一般会出现水量小于规定值的情况发生,在水量较小的情况下,如果不用回流措施,会引发消防管网压力过大,进而导致发生事故。所以,必须在供水管上设置稳压阀,在管网出现超压情况下,可通过回流管进行泄压,并将回流水排回消防水池。

2.3合理安排末端试水装置的设计在进行设计末端试水装置时,主要是为解决末端试水装置的排水问题,对末端试水装置的压力表和试水阀装置之后,要设置试水接头,在出水口的口径一般被忽视,给消防工作带来不便,不利于消防部门顺利开展工作,对消防末端试水装置要根据设计要求,实际情况和试水接头出水口的流量选择合适的型号产品。针对出水口直径没有明确的标准,市面上有许多消防设备制造商生产一整套完整的末端试水装置,要根据现实情况进行选择。

3结语

防水设计论文第5篇

《高规》第7.3.6规定:“室外消火栓的数量应按本规范第7.2.2条规定的室外消火栓用水量经计算确定,每个消火栓的用水量应为10-15l/s“,但是《高规》的《条文说明》是这样解释:“室外消火栓的数量应保证供应建筑物需要的灭火用水量,其中包括室内、室外两部分“,笔者认为《条文说明》的解释超越了《高规》的规定。室外消火栓是室外消防用水取水口,理应按室外管网来考虑。可以想象得到,室外管网供水流量一旦确定,即使设置再多的室外消火栓,其室外消火栓所能取到的水量的总和也就是室外管供水总量。当设计把室消防用水储存在室内消防水池时,室外管网一般就按室外消防用水量来确定,因此室外消火栓的数量应按室外消防用水量经计算来确定,但是《高规》第7.4.5.3规定“水泵接合器应设在室外便于消防车使用的地点,距室外消火栓或消防水池的距离宜为15-40米“。从这个规定可以看出,水泵接合器的15-40米范围内在一般情况下要设置室外消火栓。因此,在工程设计中,在布置水泵接合器时,要考虑其相对集中,以利于与经计算的室外消火栓数量对应,一旦设计中有较多的室内消防系统需要较多水尖接合器,且分散布置时,则需要适当增设“额外“的室外消火栓。

二、水泵接合器数量的确定

众所周知,水泵接合器的主要用途是当室内消防水泵发生故障或遇大火室内消防用水不足时,供消防车从室外消火栓取水,通过水泵接合器将水送到室内消防给水管网,供灭火使用。

《高规》7.4.5-1规定:“消防水泵接合器的数量应按室内消防用水量经计算确定,每个水泵接合器的流量应按10-15l/s计算:“这里指明水泵接合器的数量是按室内消防用水量经计算确定。笔者认为这一点不好照搬,我们从水泵接合器用途不难知道,水泵接合器是消防车从室外消火栓取水来增补室内消防用水不足的接口。如果室外消防用水量远远小于室内消防用水量时,那水泵接合器设那么多是没有意义的,笔者最近做一个工程--厦门国际会展中心,按一类高层建筑设计,室外消防用水量为30l/s。但其室内大水滴喷淋系统设计用水量为133l/s,室内水幕喷淋系统设计用水量为167l/s,室内消火栓系统设计用水量为30l/s,这些用水量按火灾延续时间计算均储存在地下水池中。按规范7.4.5-1规定,水泵接合器的数量应分别设10个,12个和2个。12个水泵接合器要12辆消防车从12个室外消火栓中取水供给,而室外的供水条件上远远达不到这个要求的,即使考虑到由消防车距离运水,那也不可保证大水滴淋系统和水幕喷淋系统的正常工作。因这两个系统要正常工作时的用水量很大,不可能在短时间内有那么多消防车远距离运水来达到同时供水,如时间过长,那这两个系统也失去作用,最后时间一长就靠消火栓来灭火,因此笔者认为应对一些灭火系统可以适当减少水泵接合器的数量,可以分别设3-5个就足够了;而对消火栓系统应重点保证,故水泵接合器的数量按室内消防用水量计算的同时应考虑室外供水能力综合确定,达到既节省投资的目的,同时又保证消防的安全可靠性。

三、消防水池容积的确定

消防水池是储存消防灭火用水的构筑物,容积的确定关系着灭火的安全性。《高规》7.3.2规定:“市政给水管道和进水管或天然水源不能满足消防用水量;市政给水管道为枝状或只有一条进水(二类居住建筑除外),只要符合上述条件之一时均应设置消防水池。“《高规》7.3.3对水池的容积作了规定:“当室外给水管网能保证室外消防用水量时,消防水池的有效容积应满足在火灾延续时间内室内消防用水量的要求;当室外给水管网不能保证室外消防用水时时,消防水池的有效容量应满足火灾延续时间以内消防用水量和室外消防用水量不足部分之和的要求。“一些地方针对这两条规定,却有不同的设计方法。

在福州地区,室内及室外消防用水量均储存了消防水池中,原因是市自来水公司无法保证市政供水的安全性,这显然会增大消防水池的容积。如每一幢高层建筑均要把室内及室外消防用水量储存在消防水池,那将会造成很大的浪费,笔者认为是不可取的。

厦门地区是当室外给水管网能保证室外消防用水时,消防水池只满足室内消防用水量。一般做法为:从市政引两根进水管构成室外环状供水,以保证室外供水的安全性,消防水池设在地下室,只考虑室内消防用水量,但不允许考虑火灾时水池的补水量(规范没有作明确规定)。故笔者认为这种做法不妥,这样导致一幢高层公共建筑地下室一般都储存了四、五百吨的消防用水,一般占地均有二百多平方米。像厦门国际会展中心,地下室储存了2600吨的消防用水,水池占地890平方米,笔者认为这种做法很不经济,仅工程造价就增上百万元;同时又增大管理的难度,如要清洗,定期换水等,又造成水资源的浪费;如果消防用水和生活用水合建水池,那必然会造成生活二次供水的水质污染。所以笔者认为既要保证消防安全,又要降低工程造价及管理方便,首先要加强自来水公司的责任度,保证城市环状供水的安全可靠性,然后适当加大高层建筑的进水管,使得进水管在保证高层建筑的室外消防用水量的同时能够在火灾时补充消防水池的水量。这样经计算可以适当减少消防水池的容积,达到经济合理。同时笔者建议邻近高层建筑共用消防水池,对这一点希望有关市政部门能够牵头,对共用水池进行合理地管理,这也需要有关部门进行合理公正的规划控制。

香港在这一点上值得我们学习,香港的建的消防水池就很小,相当于一个水泵吸水井,容量一般不超过50吨,他们只保证初期火灾的用水量,中、后期火灾的用水量直接靠市政管道的供给,大厦本身只提供提升设备及市政管道的接口,在高层建筑林立的香港就可节约了很多的建筑面积供各种用途使用,我们应向这一方面学习与借鉴。

四、消防给水系统的形式

对高层建筑消火栓给水系统形式的选择,首先我们应保证系统的安全可靠性,其次我们应尽量选用经济合理的供水形式。

按服务范围分:独立的消防给水系统和区域集中的消防给水系统笔者建议尽量采用区域集中的消防给水系统就如上述所讲:邻近高层建筑共用消防水池,但这往往得不到推广。主要原因是各开发商不能协调好,这就要求有关部门能够牵头,共同解决管理及费用的问题,使几方面都能够接受。

按高度来分:分区水和不分共给水

当消火栓栓口的静水压力不大于0.80MPa时,采用不分区给水形式,当消火栓栓口的静水压力大于0.80MPa时,采用分区给水形式。分区供水方式又包括:并联分区供水方式;串联分区供水方式;减压阀分区供水方式。

关联分区供水方式:各个分区互不干扰,自成体系,对系统更加安全可靠,但造价高,维护管理较困难。

串联分共供水方式:各区水泵压力相近或相同,不需高压泵,高压管;但水泵分散,管理困难同样造价高。

防水设计论文第6篇

关键词:超高层建筑消防给水设计供水方式杭州国际机场大厦位于庆春广场东侧,庆春东路与新塘路交叉口。工程用地面积约一万平方米,总建筑面积约7.2万平方米,地下2层,主楼为36层,建筑主要屋面高度为143.70米,其中五层和二十一层为避难层。裙房为四层,建筑高度为21.6米,一至四层为票务中心、餐饮和娱乐等综合用房。主楼五至十九层为办公,二十二层至三十五层为商务办公,三十六层为西餐厅。

1、消防用水量

本工程为高度大于100m的一类综合楼,按一类超高层建筑进行消防设计。

2、室外消防

本工程所在区域有完善的城市基础设施,有可靠的城市消防保证体系,供水可靠,水质良好。水源为城市自来水管网。从西侧市政道路和东侧新塘路市政供水干管各引一条DN200毫米的自来水管,在本大楼沿周边道路设DN200毫米的生活、消防合用的给水环管,在环管上设置地上式室外消火栓5只。

3、消火栓系统

3.1消火栓给水系统。消火栓系统分高、中、低三区,低区为地下二层~四层;中区为五层~二十层;高区为二十一层~到三十六层,每个分区均成环状管网供水。在地下二层设有消防水池和生活、消防合用泵房。消防水池分两格,通过消防水泵吸水总管连通,储存有540m3消防用水量。在地下二层消防泵房内设置高、中区各两台,均为一用一备。低区消火栓系统由中区给水泵出水环管用消防专用减压阀减压至0.45MPa供给;中区由中区消火栓给水泵直接供给。

为保证高区消防给水安全,降低消防管道承压,在二十一层避难层设中间转输消防水箱66m3(兼作中、低区消火栓系统稳压水箱)。为保证中区最不利点消火栓静水压力不低于0.15MPa,在二十一层避难层设有中、低区增压稳压设备。高区消火栓系统由地下二层高区消火栓给水泵供水至中间转输水箱,再由中间转输泵串联供水,在屋顶设18m3消防水箱一座,并设有高区增压稳压设备。

3.2消火栓布置

大楼各层均设有室内消火栓(带灭火器箱组合式消防柜),其布置保证同层任何部位均有两股充实水柱同时到达,每股充实水柱不小于13米。每根消防立管流量按不小于15L/S计。各消火栓箱内设有启泵按钮及自救式消防卷盘,每只消火栓箱内配备DN65单口消火栓,25m衬胶水龙带,Φ19水枪,小口径消防水喉及软管。为保证消火栓栓口压力不大于0.50MPa,在5F~11,21~29F采用减压稳压式消火栓。在室外分高区和中低区共设置6套水泵接合器。

4、自动喷水灭火系统

4.1自喷系统喷水强度

本工程自动喷水灭火系统为湿式系统。地下两层停车库按中危险级II级设计,喷水强度为8L/min.m2,作用面积160m2;地上部分均按中危险级I级设计,喷水强度为6L/min.m2,作用面积160m2,火灾延续时间为1小时。

4.2自喷给水系统

自喷系统分高低两区,低区为地下二层~十三层;高区为十四层~三十六层。自喷系统和消火栓系统共用消防水池,中间转输水箱及屋顶消防水箱。在地下二层泵房内分别设高区和低区自喷泵各两台,均为一用一备。在地下二层水泵房内设湿式报警阀五套,由低区自喷给水泵出水环管分组减压供水。在二十一层避难层设有中间消防转输水箱和自喷转输泵,并设有湿式报警阀3套,由高区自喷转输泵出水环管分组减压供水。在屋顶设有高区自喷增压、稳压设备一套,满足三十六层最不利点喷头工作压力不小于0.05Mpa.分高低区在室外共设置4套自喷系统水泵接合器。高区自喷系统中,在二十一层避难层水泵房内设自喷水泵接合器接力泵两台,两用。

4.3喷头布置

本大楼办公、走道、会议室、避难层等公共场所及地下车库、自行车库,除建筑面积小于5M2的卫生间及不宜用水扑救的部位外,均设有自动喷水灭火系统。每层每个防火分区的供水干管上均设有信号阀和水流指示器,并在管道末端设有放水阀。喷头采用玻璃球闭式喷头,喷头动作温度,厨房为93℃,其余为68℃。

有关问题的探讨

供水方式选择,超高层建筑消防主要是以自救为主,系统运行需安全,可靠稳定。供水方式的选择是超高层消防水系统的关键,有串联和并联两种。

串联供水方式,在地下室设消防水池和消防高、低区给水泵,并在中间避难层设中间转输水箱和转输泵。串联供水方式是通过在地下消防水池,消防泵和中间转输水箱,转输泵联合向高区供水,保证了高区消防的安全,可靠。在地下消防泵有故障时,还可由消防车通过水泵接合器向中间转输水箱供水,再由转输泵向高区供水。串联方式占用避难层面积,水泵台数较多,控制复杂。并联供水方式,在地下室设消防水池和消防高、低给水泵,直接分区供水,系统控制简单,不占用避难层建筑面积,但高区消防水泵及出水管长期承受高压,管道配件及阀门容易损坏,系统运行不稳定,安全,可靠性较差。本工程采用串联供水方式。防超压措施《高规》规定:“临时高压给水系统的每个消火栓箱应设置直接启动消防水泵的按钮,并应设有保护按钮的设施”,以便迅速远距离启动消防泵(设计中采用破玻按钮)。

火灾发生时,在击碎破玻按钮后尚未动用水枪灭火这段时间,消防管网压力剧增,将产生严重超压现象,有可能引起管网爆裂,整个消火栓系统就会瘫痪,后果不堪设想。本设计采用了破玻按钮+压力监控启动水泵,在消防系统设置压力监控装置,并与消防稳压设施结合在一起,当系统压力下降到某一设定值时,压力开关动作,该信号与破玻按钮都动作时,消防泵启动。本设计中采用了新型专用消防水泵(恒压切线泵),该水泵Q-H曲线几乎为水平线,可以很好的解决小流量时超压问题。在水泵出水管上的止回阀后设置泄压阀,实践证明泄压阀反应灵敏,准确、可靠,可以有效防止因超压而造成的损害。泄压阀的口径直接影响水泵的工况点及其实际扬程和流量,因此,一般情况泄压阀的口径比水泵出口水管小一级。

在地下二层消防水泵出水管上设有水锤消除器。避难层消防,超高层建筑须设避难层,设备专业也利用该层作设备间。本工程二十一层为避难层,设有空调机房,生活、消防泵房和转输水箱。本层为发生火灾时人员避难场所,并设有较多的设备。无论该层有无可燃物,不容置疑,均应设置消火栓和消防卷盘及自动喷头。考虑避难层四周向室外敞开,冬季温度较低,管道容易冻结,故本层喷头采用易熔合金喷头,并所有的管道采用保温措施。中间转输水箱,当采用水泵直接串联供水时,中间转输水箱同时起着上区输水泵的吸水池和本区消防给水屋顶水箱的作用。按规范要求,其储水的有效容积按15~30min消防设计水量确定。因转输水箱都利用避难层设置,一般还设有生活转输水箱,考虑结构承受能力,对建筑物的影响,按最低要求60m3储水量设置。避难层水泵隔震措施,转输水泵设于避难层中,应做好隔震措施,减少对下层办公场所的影响。避难层水泵采用双层隔震措施,水泵采用弹簧隔震器槽钢基础,再在其下设橡胶隔震垫钢筋混凝土基座,以减小震动噪音。

防水设计论文第7篇

1.1生活水泵房

为保证服务区供水压力满足要求,需设置生活水泵房。北方地区通常采用地下式泵房以防冻。生活水泵房中的设备设施包括:生活水箱、变频水泵以及电控制柜等。根据《建筑给水排水设计规范》,生活水箱的有效容积应按照服务区最高日生活用水量的15%~20%确定。为了节能故选用变频水泵,水泵的流量及扬程应能保证服务区的设计秒流量位于水泵高效区末端以及最不利点的供水压力满足要求。

1.2室内生活给水系统

高速公路服务区中大多为低层建筑,因此室内不需要分区供水。建筑单体的给水形式一般是下行上给式,采用枝状布置。室内给水管径应根据设计秒流量及合理的流速进行计算选取。对于办公室、员工宿舍等人员使用比较均匀的单体,可采用平方根法计算设计秒流量,而如餐厅、公厕等人员使用较集中的单体,可采用同时给水百分数法。室内给水管材根据水质、水压、敷设条件及方式等进行选择,常用的管材有PP-R管,铝塑复合钢管等。管道布置宜靠近用水量大的用水点,立管可敷设在管井内,也可敷设在墙角、柱边等。支管则可敷设于吊顶内或者沿墙敷设在管槽内。在穿越墙、基础时应与建筑、结构专业及时沟通,预留孔洞的位置。还应注意的是给水管道的布置不宜穿越伸缩缝、沉降缝以及抗震缝等,并且不得布置在遇水会引起燃烧、爆炸的原料、产品以及设备上面。

1.3室外生活给水系统

高速公路服务区的供水形式(以建虎高速公路大兴服务区为例)详见图1所示。服务区室外给水管网通常按枝状布置,为保证供水安全可由生活水泵房引出两条给水管线,并按一定距离设置用于检修的阀门井,若管线过长还需要设置排气阀门井。室外给水管道通常采用直埋的方式,其埋设深度需考虑冰冻情况、外部荷载、管材性能等因素。还应保证与其他构筑物、管道等的最小水平净距与最小垂直净距的要求。若给水管道与污水管道交叉且敷设在污水管道的下面还应加设钢套管。

2热水系统设计

服务区热水系统的服务对象主要有办公楼、公共浴室、卫生间及食堂洗手间等。热水的供应系统主要有局部热水供应系统、集中热水供应系统、区域热水供应系统等。热水供应系统的选择应综合考虑建筑物特点、用水点分布、热水用水量以及用水规律、操作和管理的条件等因素,并结合热源条件确定。服务区一般热水用量及用水点较少,可采用局部热水供应系统如太阳能热水器或电热水器。使用电热水器时应注意漏电保护等安全问题。室内热水管道通常暗敷设于墙体和垫层内,在穿楼板、墙壁、基础等时应加套管,若穿越屋面时应加防水套管。

3排水系统设计

3.1室内排水系统

服务区建筑单体室内排水通常采用污废合流制。地上建筑部分采用重力排水,餐厅与操作间等产生含油污水需排至隔油池,卫生间等其他污废水排至化粪池。室内的排水系统,需按照规范要求设置检查口、清扫口、通气管等。室内排水管道的布置和敷设需严格按照规范的要求进行敷设。屋面雨水系统通常采用外排水系统,而对于寒冷地区以及立面装修要求较高的服务区建筑也可采用内排水系统。雨水系统的设计流量计算按照当地暴雨强度公式计算。地下建筑部分如泵房,应采用压力排水,在地下建筑内设置排水沟及集水坑,集水坑内设置潜水排污泵将水排至室外排水系统。

3.2室外排水系统

服务区室外排水体制采用雨污分流制。服务区场区内的雨水通常采用雨水管网的形式,利用雨水口及雨水管道将服务区路面的雨水收集就近排入场区的边沟。生活污水应通过污水管网排入化粪池及污水处理构筑物。雨、污水管网需按一定的距离设置检查井,化粪池应定期清掏清理。雨、污水管道的敷设应符合规范规定,其管顶最小覆土深度除了考虑管材强度、土壤冰冻深度等,还应结合当地埋管经验进行确定。生活污水也可进行资源化利用,利用特殊处理设备将生活污水进行处理,达到中水回用的水质标准,可以用于冲厕、洗车、浇灌绿地等以节约水资源。

4消防系统设计

4.1消防水源及消防设施

与生活水源一样,高速公路服务区无法利用市政水源,因此通常采用自备水源如深井作为消防水源。消防系统包括消防水池、消防供水泵、消防管网、增压稳压设备等,其供水形式详见图1。消防水泵房通常采用与生活水泵房一并设置的方式,消防水池的有效容积应满足室内外消防火灾延续时间所需的消防水量。为了保证消防供水的安全性,采用分别设置室内、室外消火栓系统。因此消防水泵房中需分别设置供室内、室外消火栓系统的消防水泵。室内消火栓系统供水压力应保证最不利点消火栓充实水柱不小于10m。室外消火栓系统应保证最不利点供水压力不小于0.10MPa(从室外地面算起)。

4.2室内外消防系统

服务区建筑单体室内消火栓系统需两条引入管,管线按环状布置,室内消火栓布置间距不大于30m,应保证任何一处有两股水柱同时到达。每个消火栓处设置直接启动消防水泵的按钮,并设有保护按钮的设施。同时向消防控制中心报警。室内消火栓系统应设置高位水箱,以保证消防初期的消防水量。消防水箱置于屋顶时须与建筑和结构专业进行配合,考虑水箱的摆放位置、净空高度以及屋顶楼板承重问题等。室内消防系统通常在消防水箱间设置增压稳压设备,保证系统安全运行。根据《建筑设计防火规范》服务区消防系统还应设置消防水泵接合器,北方地区通常采用地下式消防水泵接合器。若建筑单体达到一定标准还需要布置室内自动喷淋系统,气体灭火系统等,这些需视具体情况而定。建筑内部应遵循《建筑灭火器配置设计规范》的要求配备灭火器。服务区建筑中通常选用磷酸铵盐干粉灭火器,可以扑灭A、B、C类火灾,但对于加油站等单体,还应在设计中符合相关规范中的有关灭火器配置的规定。服务区场区消防管网自消防水泵房引出两条管线,布置成环状管网。于消防管网中布置地下式消火栓保证室外消防用水。消火栓的布置满足两消火栓间距不大于120m的要求。并且室外消火栓距路边不超过2m,距房屋外墙不小于5m。消火栓等消防设施需置于便于消防车取用的位置,并有明显的标识。

5结语

防水设计论文第8篇

关键词:消防系统,设计

 

本建筑位于天津市河东区卫国道与雪莲路交口处,主体部分为地上十二层、地下一层,裙房部分为地上三层。建筑高度为58.00m,占地面积为4515m2,总建筑面积为29600m2。建筑工程等级为一级,建筑耐火等级为一级,建筑防火等级为一类公建,工程总投资为1.4亿。主体部分主要为各个部门的办公区,裙房部分为士兵的住宿区。

1室外消火栓系统

室外消火栓系统用水量为30L/S,全部取自市政给水管网,引入管有两条,分别位于卫国道和雪莲路上,管径均为DN200,引入后在室外成环,管径DN200,布置了多处室外栓。室外栓同时满足两条要求:1)间距不大于120m;2)每个水泵接合器均能在15~40 m范围内找到一个室外栓供其取水。科技论文,设计。

2室内消火栓系统

室内消火栓系统用水量为40L/S,全部取自消防水池。科技论文,设计。低位消防水池及消防水泵房位于地下一层,水池有效容积为402.5m3,满足2小时室内消火栓用水量及1小时喷淋用水量。科技论文,设计。消火栓与喷淋合用的高位消防水箱位于屋顶水箱间内,有效容积为21m3,另设有增压稳压设备以保证最不利点的消防压力。

室内消火栓箱采用钢-铝合金箱体,箱内设自救式消防卷盘JPS0.8-19和启泵按钮。8层及以下消火栓均采用减压稳压消火栓,以保证栓口出水压力不大于0.5MPa。

室外设置四套消防水泵接合器,分散到两处,设置的位置同时满足消防车易察觉易取用及离建筑外墙距离大于5m的要求。

3水喷雾灭火系统

首层大台阶下设有柴油发电机房及储油间,在这两个场所设置了水喷雾灭火系统,设计喷雾强度为20L/min.m2,保护面积约50m2,持续喷雾时间为0.5h,设计用水量为30m3。

采用高闪点油类水雾喷头;

4气体灭火系统

本指挥中心楼内设有多处机房,但重要性不一,经与甲方协商,在三、五、七、九、十二等层内的部分特别重要的房间内设置了气体灭火系统,其余机房仍采用水系统保护。

可用于机房灭火的气体主要有两种:七氟丙烷和IG541。七氟丙烷较为便宜,但灭火剂输送距离较短,且灭火时分解出的HF对人有一定的毒性、HF结合空气中的水蒸汽又会对精密设备有侵蚀,因此本工程选用了IG541作为灭火剂,其性价比也得到了甲方的认同。

因三层的部分机房对温、湿度都有严格的要求,所以暖通专业在这些机房内配置了恒温恒湿空调,给排水专业则需要给这些空调机组配置补水并排放冷凝水和加湿溢流水。为防止给排水管道对机房产生不必要的不利影响,管道设置时都尽可能地靠近空调机组,缩小管道长度,给排水管道处设置漏水报警器。

5自动喷水灭火系统

除配电室、变电站、消防值班室、消防水池、面积小于5平米的卫生间及设置了气体灭火和水喷雾的房间外,其余场所均设置湿式自动喷水灭火系统。火灾危险等级按中危 I计,设计用水量为30L/S。

喷淋与消火栓合用高位消防水箱,有效容积为21m3,另设有增压稳压设备以保证最不利喷头处的消防压力。室外设有两套消防水泵接合器,接至报警阀前。科技论文,设计。

地下一层消防泵房内设有五套湿式报警阀和一套雨淋阀,各层各防火分区内分别设有信号蝶阀和水流指示器。科技论文,设计。10层及以下楼层的水流指示器之后均加装减压孔板,以保证配水管入口压力不大于0.4MPa。科技论文,设计。具体的孔板孔径为:3层及以下,40mm;4~7层,50mm;8~10层,60mm。所有喷头均为玻璃球型,动作温度68°C,K=80。

6问题讨论

本工程在设计的过程中,曾多次得到天津市建筑设计院给排水专家的指导,我也根据专家的意见作了设计优化,但对于以下指导意见,我在进一步的研究基础上坚持了自己的看法。

1)专家意见:消火栓的火灾延续时间为什么采用3小时,而不是2小时?

设计人意见:本楼裙房为士兵宿舍,此楼应定性为综合楼,故消火栓的火灾延续时间采用3小时。

2)专家意见:室外给水引入管既然有两路DN200,那么在计算水池容积的时候就可以减去水池的补水量。

设计人意见:DN200的给水管道所能提供的流量约40L/S,减去室外消火栓用水量30L/S,再减去生活用水量9.6L/S,已经所剩无几,故未考虑。

3)专家意见:换热机房的温度较高,喷头动作温度建议改为93度

设计人意见:经向暖通设计人及换热设备厂家咨询得知,换热机房夏天不用,室温应为常温;冬天时又未设采暖系统,换热设备均有保温措施,室温应该不会高过20度,所以63度喷头即能满足要求。

7小结

本工程设计周期约一个月,内容多,涉及面广,再加上设计人水平的局限性,有可能存在一些缺陷。目前,该工程已顺利通过消防部门的施工图审图,正在建设当中,设计人将紧密关注工程进展状况,随时对发现的问题进行认真总结并妥善解决,以期该工程的圆满完工。

防水设计论文第9篇

关键词:蓄滞洪区;防洪;评价论证报告

中图分类号:TV87文献标识码: A

在我国自1992年建设项目审查管理实施以来,具有资质的编制单位都按要求编制了许多防洪影响评价报告,仅笔者就编制近二十份防洪影响评价报告,相关报告经河南省水利厅或安阳市水利局有关专家评审。在此,本文结合工作实际,对常见的建设项目进行分析,提出防洪评价时应注意的问题及建议,供评价人员参考。

在编制蓄滞洪区防洪影响评价报告时,应根据流域或所在地区的河道特点和具体情况,采用合适的评价手段和技术路线。在防洪影响评价工作中除执行《编制导则》外涉及其它专业时,还应符合相应规范要求。具体编制要点为:

一、概述:概述一般应包括项目背景、评价依据、评价范围、技术路线及主要评价内容。

二、基本情况

基本情况包括建设项目概况、建设项目所在蓄滞洪区基本情况等。简述建设项目名称、性质、地点和建设目的,建设项目设计方案,工程地质,建设项目施工方案,蓄滞洪区基本情况,地形与水系,水文与气象,河道、渠系基本情况,必要时进行河道演变分析,河道演变分析应包括河道历史演变概况、河道近期演变分析、河道演变趋势分析,分析建设项目对河道行洪和河势稳定的影响。

蓄滞洪区内的防洪排涝与灌溉设施,安全建设工程现状,规划总体布局与实施安排,调度方案,蓄滞洪区运用几率,对蓄滞洪区的防洪评价项目也十分重要。

三、建设项目对防洪的影响

蓄滞洪区的设计蓄滞洪水位、围堤外江设计洪水位可直接采用有关规划成果。

蓄滞洪区内涝水位确定和建设项目涉及蓄滞洪区内主要河道、渠系时,一般应进行相关水文分析计算。其水文分析计算的内容包括:

资料的审查与分析;资料的插补和延长;采用的计算方法、公式、有关参数的选取及其依据;不同频率设计流量及设计水位的计算成果;成果的合理性分析。

3.1.2蓄滞洪影响分析计算

蓄滞洪影响分析计算主要内容包括:建设项目占用蓄滞洪区的面积和容积分析计算;建设项目对分洪影响的分析计算

3.1.3退洪影响分析计算

通过数学模型,计算项目建设对蓄滞洪区退洪过程的影响。

3.1.4 防洪工程影响分析计算

对可能影响现有防洪工程安全的建设项目,还应进行施工期和运行期渗流及渗透稳定、抗滑稳定、结构安全等计算复核。

3.1.5 河道行洪和河势影响分析计算

对于跨越蓄滞洪区内河道的建设项目,还应分析计算其对河道行洪和河势的影响。

一般情况下可采用数学模型计算、物理模型试验等技术手段进行。其内容应包括:建设项目最大壅水高度和壅水范围;对主要汊道分流比的影响;工程影响范围内代表性断面流速分布的变化情况;主流线、深槽、洲滩、岸滩断面等的变化情况;工程影响范围内防洪工程及其它设施附近流速大小与方向的变化。

3.1.6 排涝、灌溉影响分析计算

分析计算建设项目对蓄滞洪区内现有的排涝、灌溉水系布局和排涝、灌溉设施能力等影响。

四、洪水对建设项目的影响

3.2.1淹没影响分析计算

蓄滞洪区分蓄洪水时,对建设项目可能造成淹没影响的应进行淹没分析计算。

3.2.2冲刷与淤积影响分析计算

蓄滞洪区分蓄洪水时,对建设项目可能造成冲刷与淤积影响的应进行冲刷与淤积分析计算。冲刷与淤积影响可通过经验计算、数学模型计算和物理模型试验等一种或多种方式进行分析计算。

五、建设项目对防洪的影响评价

根据建设项目的基本情况、所在蓄滞洪区的防洪任务与防洪要求、防洪工程布局及其它国民经济设施的分布等情况以及洪水影响评价计算成果,对建设项目可能对防洪产生的影响进行总体分析评价。

有关规划实施的影响评价,分析评价建设项目与有关的流域防洪规划、蓄滞洪区建设与管理规划以及其他国家已批规划的关系以及对规划实施的影响。蓄滞洪区运用的影响评价包括对蓄滞洪区分洪的影响和对蓄滞洪区退洪的影响以及对流域总体防洪能力的影响

防洪工程的影响评价是根据建设项目影响范围内堤防附近流速、流向的变化情况,分析评价项目建设对堤防、护岸等工程的冲刷影响;对可能影响现有防洪工程安全的建设项目,还应根据渗透稳定、抗滑稳定、结构安全复核等计算成果进行安全影响评价。

安全建设设施的影响评价,是分析评价建设项目对现有的和规划的安全区、安全台、避水楼、转移道路及桥梁等安全建设设施的影响。

蓄滞洪区内河道、渠系的影响评价,包括对河流水系行洪、排涝、灌溉能力的影响;对河道行洪的影响;河势稳定的影响还有对排涝、灌溉设施的影响;防汛抢险和水上救生的影响评价;蓄滞洪区管理的影响评价。

六、洪水对建设项目的影响评价

建设项目防洪标准与蓄滞洪区运用几率的适应性评价;淹没影响评价;冲刷影响评价;洪水对建设项目影响的综合评价结论。

七、减轻或消除洪水影响的措施

建设项目对蓄滞洪区分洪运用、防洪、排涝、灌溉等方面有影响时,或洪水对建设项目有影响时,应就其影响提出减轻或消除影响的措施,主要包括(1)建设项目优化调整措施,(2)防洪避洪措施,还有其它补救措施和非工程措施,主要包括建设项目工期安排的优化调整、施工期的监测和管理及监督,分洪救生设施的配备,警示标志的设置,防汛抢险预案和分洪。

7结论与建议

7.1结论

总结归纳洪水影响评价的主要结论。其主要内容应包括:

(1)蓄滞洪区运用几率分析结论;

(2)建设项目对防洪影响的评价结论;

(3)洪水对建设项目影响的评价结论;

(4)减轻或消除洪水影响的措施。

7.2建议

为保证蓄滞洪区正常运用,维护蓄滞洪区防洪工程及其他水利设施安全和建设项目自身安全,对存在的主要问题提出有关建议。

参考文献:

[1] 李友起, 陈宝中, 衣秀勇. 防洪评价应注意的几个问题的探讨[J]. 海河水利 2010

相关文章
相关期刊
友情链接