欢迎来到易发表网,发表咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

工业机器人论文优选九篇

时间:2023-03-20 16:20:58

工业机器人论文

工业机器人论文第1篇

本文作者:工作单位:安徽埃夫特智能装备有限公司

从控制系统设计角度来说,可以采用辩证法内外因基本原理来分析影响重载机器人控制品质的因素,首先,如果系统存在动力学耦合、柔性等非线性因素,仅仅采用传统的线性控制很难获得良好的控制品质,底层伺服回路的控制缺陷是影响机器人控制品质的内因。第二,如果运动规划环节处理不当,传输给底层运动控制回路的运动指令不合理,即存在位置不连续,速度不连续,加速度跃变等情况,对系统会产生严重的冲击,即便底层伺服控制设计再优秀,同样也会严重影响系统控制品质,这就是所谓的外因。下面就从内外因角度对目前在机器人运动规划和底层伺服控制方面的相关进展进行综述。机器人运动规划方法运动规划与轨迹规划是指根据一定规则和边界条件产生一些离散的运动指令作为机器人伺服回路的输入指令。运动规划的输入是工作空间中若干预设点或其他运动学和动力学的约束条件;运动规划的输出为一组离散的位置、速度和加速度序列。运动规划算法设计过程中主要需要考虑以下三个问题:(1)规划空间的选取:通常情况下,机器人轨迹规划是在全局操作空间内进行的,因为在全局操作空间内,对运动过程的轨迹规划、避障及几何约束描述更为直观。然而在一些情况下,通过运动学逆解,运动规划会转换到关节空间内完成。在关节空间内进行运动规划优点如下:a.关节空间内规划可以避免机构运动奇异点及自由度冗余所带来种种问题[1-4];b.机器人系统控制量是各轴电机驱动力矩,用于调节各轴驱动力矩的轴伺服算法设计通常情况也是在关节空间内的,因此更容易将两者结合起来进行统一考虑[5,6];c.关节空间运动规划可以避免全局操作空间运动规划带来的每一个指令更新周期内进行运动规划和运动学正逆计算带来的计算量,因为如果指令更新周期较短,将会对CPU产生较大的计算负荷。(2)基础函数光滑性保证:至少需要位置指令C2和速度指令C1连续,从而保证加速度信号连续。不充分光滑的运动指令会由于机械系统柔性激起谐振,这点对高速重载工业机器人更为明显。在产生谐振的同时,轨迹跟踪误差会大幅度增加,谐振和冲击也会加速机器人驱动部件的磨损甚至损坏[7]。针对这一问题,相关学者引入高次多项式或以高次多项式为基础的样条函数进行轨迹规划,其中Boryga利用多项式多根的特性,分别采用5次、7次和9次多项式对加速度进行规划,表达式中仅含有一个独立参数,通过运动约束条件,最终确定参数值,并比较了各自性能[8]。Gasparetto采用五次B样条作为规划基础函数,并将整个运动过程中加速度平方的积分作为目标函数进行优化,以确保运动指令足够光滑[9]。刘松国基于B样条曲线,在关节空间内提出了一种考虑运动约束的运动规划算法,将运动学约束转化为样条曲线控制顶点约束,可保证角度、角速度和角加速度连续,起始点和终止点角速度和角加速度可以任意配置[10]。陈伟华则在Cartesian空间内分别采用三次均匀B样条,三次非均匀B样条,三次非均匀有理B样条进行运动规划[11]。(3)运动规划中最优化问题:目前常用的目标函数主要为运行时间、运行能耗和加速度。其中关于运行时间最优的问题,较为经典是Kang和Mckay提出的考虑系统动力学模型以及电机驱动力矩上限的时间最优运动规划算法,然而该算法加速度不连续,因此对于机器人来说力矩指令也是不连续的,即加速度为无穷大,对于真实的电驱伺服系统来说,这是无法实现的,会对系统产生较大冲击,大幅度降低系统的跟踪精度,对机械本体使用寿命也会产生影响[12]。针对上述问题Constantinescu提出了解决方法,在考虑动力学特性的基础上,增加对力矩和加速度的约束,并采用可变容差法对优化问题进行求解[13]。除了以时间为优化目标外,其他指标同样被引入最优运动规划模型中。Martin采用B函数,以能耗最少为优化目标,并将该问题转化为离散参数的优化问题,针对数值病态问题,提出了具有递推格式的计算表达式[14]。Saramago则在考虑能耗最优的同时,将执行时间作为优化目标之一,构成多目标优化函数,最终的优化结果取决于两个目标的权重系数,且优化结果对于权重系数选择较为敏感[15]。Korayem则在考虑机器人负载能力,关节驱动力矩上限和弹性变形基础上,同时以在整个运行过程中的位置波动,速度波动和能耗为目标,给出了一种最优运动规划方法[6],然而该方法在求解时,收敛域较小,收敛性较差,计算量较大。

考虑部件柔性的机器人控制算法机器人系统刚度是影响动态性能指标重要因素。一般情况下,电气部分的系统刚度要远远大于机械部分。虽然重载工业机器人相对于轻型臂来说,其部件刚度已显著增大,但对整体质量的要求不会像轻型臂那么高,而柔性环节仍然不可忽略,原因有以下两点:(1)在重载情况下,如果要确保机器人具有足够的刚度,必然会增加机器人部件质量。同时要达到高速高加速度要求,对驱动元件功率就会有很高的要求,实际中往往是不可实现(受电机的功率和成本限制)。(2)即使驱动元件功率能够达到要求,机械本体质量加大会导致等效负载与电机惯量比很大,这样就对关节刚度有较高的要求,而机器人关节刚度是有上限的(主要由减速器刚度决定)。因此这种情况下不管是开链串联机构还是闭链机构都会体现出明显的关节柔性[16,17],在重载搬运机器人中十分明显。针对柔性部件带来的系统控制复杂性问题,传统的线性控制将难以满足控制要求[17-19],目前主要采用非线性控制方法,可以分成以下几大类:(1)基于奇异摄动理论的模型降阶与复合控制首先针对于柔性关节控制问题,美国伊利诺伊大学香槟分校著名控制论学者MarkW.Spong教授于1987年正式提出和建立柔性关节的模型和奇异摄动降阶方法。对于柔性关节的控制策略绝大多数都是在Spong模型基础上发展起来的。由于模型的阶数高,无法直接用于控制系统设计,针对这个问题,相关学者对系统模型进行了降阶。Spong首先将奇异摄动理论引入了柔性关节控制,将系统分成了慢速系统和边界层系统[20],该方法为后续的研究奠定了基础。Wilson等人对柔性关节降阶后所得的慢速系统采用了PD控制律,将快速边界层系统近似为二阶系统,对其阻尼进行控制,使其快速稳定[21]。针对慢速系统中的未建模非线性误差,Amjadi采用模糊控制完成了对非线性环节的学习[22]。彭济华在对边界层系统提供足够阻尼的同时,将神经网络引入慢速系统控制,有效的克服了参数未知和不确定性问题。连杆柔性会导致系统动力学方程阶数较高,Siciliano和Book将奇异摄动方法引入柔性连杆动力学方程的降阶,其基本思想与将奇异摄动引入柔性关节系统动力学方程一致,都将柔性变形产生的振动视为暂态的快速系统,将名义刚体运动视为准静态的慢速系统,然后分别对两个系统进行复合控制,并应用于单柔性连杆的控制中[23]。英国Sheffield大学A.S.Morris教授领导的课题组在柔性关节奇异摄动和复合控制方面开展了持续的研究。在2002年利用Lagrange方程和假设模态以及Spong关节模型建立柔性关节和柔性连杆的耦合模型,并对奇异摄动理论降阶后的慢速和快速子系统分别采用计算力矩控制和二次型最优控制[24]。2003年在解决柔性关节机器人轨迹跟踪控制时,针对慢速系统参数不确定问题引入RBF神经网络代替原有的计算力矩控制[25].随后2006年在文献[24]所得算法和子系统模型的基础上,针对整个系统稳定性和鲁棒性要求,在边界层采用Hinf控制,在慢速系统采用神经网络算法,并给出了系统的稳定性分析[26]。随着相关研究的开展,有些学者开始在奇异摄动理论与复合控制的基础上作出相应改进。由于奇异摄动的数学复杂性和计算量问题,Spong和Ghorbel提出用积分流形代替奇异摄动[27]。针对奇异摄动模型需要关节高刚度假设,在关节柔度较大的情况下,刘业超等人提出一种刚度补偿算法,拓展了奇异摄动理论的适用范围[28]。(2)状态反馈和自适应控制在采用奇异摄动理论进行分析时,常常要同时引入自适应控制律来完成对未知或不精确参数的处理,而采用积分流形的方式最大的缺点也在于参数的不确定性,同样需要结合自适应控制律[29,30]。因此在考虑柔性环节的机器人高动态性能控制要求下,自适应控制律的引入具有一定的必要性。目前对于柔性关节机器人自适应控制主要思路如下:首先根据Spong模型,机器人系统阶数为4,然后通过相应的降阶方法获得一个二阶的刚体模型子系统,而目前的大多数柔性关节自适应控制律主要针对的便是二阶的刚体子系统中参数不确定性。Spong等人提出了将自适应控制律引入柔性关节控制,其基于柔性关节动力学奇异摄动方程,对降阶刚体模型采用了自适应控制律,主要采用的是经典的Slotine-Li自适应控制律[31],并通过与Cambridge大学Daniel之间互相纠正和修改,确立一套较为完善的基于奇异摄动模型的柔性关节自适应控制方法[32-34]。(3)输入整形控制输入整形最原始的思想来自于利用PosicastControl提出的时滞滤波器,其基本思想可以概括为在原有控制系统中引入一个前馈单元,包含一系列不同幅值和时滞的脉冲序列。将期望的系统输入和脉冲序列进行卷积,产生一个整形的输入来驱动系统。最原始的输入整形方法要求系统是线性的,并且方法鲁棒性较差,因此其使用受到限制。直到二十世纪九十年初由MIT的Signer博士大幅度提高该方法鲁棒性,并正式将该方法命名为输入整形法后[35],才逐渐为人们重视,并在柔性机器人和柔性结构控制方面取得了一系列不错的控制效果[36-39]。输入整形技术在处理柔性机器人控制时,可以统一考虑关节柔性和连杆柔性。对于柔性机器人的点对点控制问题,要求快速消除残余振荡,使机器人快速精确定位。

这类问题对于输入整形控制来说是较容易实现的,但由于机器人柔性环节较多,呈现出多个系统模态,因此必须解决多模态输入整形问题。相关学者对多模态系统的输入整形进行了深入研究。多模态系统的输入整形设计方法一般有:a)级联法:为每个模态设计相应的滤波器,然后将所有模态的时滞滤波器进行级联,组合成一个完整的滤波器,以抑制所有模态的振荡;b)联立方程法:直接根据系统的灵敏度曲线建立一系列的约束方程,通过求解方程组来得到滤波器。这两种方法对系统的两种模态误差均有很好的鲁棒性。级联法设计简单,且对高模态的不敏感性比联立方程法要好;联立方程法比较直接,滤波器包含的脉冲个数少,减少了运行时间。对于多模态输入整形控制Singer博士提出了一种高效的输入整形方法,其基本思想为:首先在灵敏度曲线上选择一些满足残留振荡最大幅值的频段,在这些特定的频带中分别选择一些采样频率,计算其残留振荡;然后将各频率段的残留振荡与期望振荡值的差平方后累加求和,构成目标函数,求取保证目标函数最小的输入整形序列。将频率选择转化为优化问题,对于多模态系统,则在每个模态处分别选择频率采样点和不同的阻尼系数,再按上述方法求解[40]。SungsooRhim和WayneBook在2004年针对多模态振动问题提出了一种新的时延整形滤波器,并以控制对象柔性模态为变量的函数形式给出了要消除残余振动所需最基本条件。同时指出当滤波器项数满足基本条件时,滤波器的时延可以任意设定,消除任何给定范围内的任意多个柔性振动模态产生的残余振动,为输入整形控制器实现自适应提供了理论基础[41],同时针对原有输入整形所通常处理的点对点控制问题进行了有益补充,M.C.Reynolds和P.H.Meckl等人将输入整形应用于关节空间的轨迹控制,提出了一种时间和输入能量最优的轨迹控制方法[42]。(4)不基于模型的软计算智能控制针对含有柔性关节机器人动力学系统的复杂性和无法精确建模,神经网络等智能计算方法更多地被引入用于对机器人动力学模型进行近似。Ge等人利用高斯径向函数神经网络完成柔性关节机器人系统的反馈线性化,仿真结果表明相比于传统的基于模型的反馈线性化控制,采用该方法系统动态跟踪性能较好,对于参数不确定性和动力学模型的变化鲁棒性较强,但是整个算法所用的神经网络由于所需节点较多,计算量较大,并且需要全状态反馈,状态反馈量获取存在一定困难[43]。孙富春等人对于只具有关节传感器的机器人系统在输出反馈控制的基础上引入神经网络,用于逼近机器人模型,克服无法精确建模的非线性环节带来的影响,从而提高机器人系统的动态跟踪性能[44]。A.S.Morris针对整个柔性机器人动力学模型提出了相应的模糊控制器,并用GA算法对控制器参数进行了优化,之后在模糊控制器的基础上,综合了神经网络的逼近功能对刚柔耦合运动进行了补偿[45]。除采用神经网络外,模糊控制也在柔性机器人控制中得以应用。具有代表性的研究成果有V.G.Moudgal设计了一种具有参数自学习能力的柔性连杆模糊控制器,对系统进行了稳定性分析,并与常规的模糊控制策略进行了实验比较[46]。Lin和F.L.Lewis等人在利用奇异摄动方法基础上引入模糊控制器,对所得的快速子系统和慢速子系统分别进行模糊控制[4748]。快速子系统的模糊控制器采用最优控制方法使柔性系统的振动快速消退,慢速子系统的模糊控制器完成名义轨迹的追踪,并对单柔性梁进行了实验研究。Trabia和Shi提出将关节转角和末端振动变形分别设计模糊控制器进行控制,由于对每个子系统只有一个控制目标,所以模糊规则相对简单,最后将两个控制器的输出进行合成,完成复合控制,其思想与奇异摄动方法下进行复合控制类似[49]。随后又对该算法进行改进,同样采用分布式结构,通过对输出变量重要性进行评估,得出关节和末端点的速度量要比位置量更为重要,因此将模糊控制器分成两部分,分别对速度和位置进行控制,并利用NelderandMeadSimplex搜索方法对隶属度函数进行更新[50]。采用基于软计算的智能控制方法相对于基于模型的控制方法具有很多优势,特别是可以与传统控制方法相结合,完成对传统方法无法精确建模的非线性环节进行逼近,但是目前这些方法的研究绝大部分还处于仿真阶段,或在较简单的机器人(如单自由度或两自由度机器人)进行相关实验研究。其应用和工程实现受限的主要原因在于计算量大,但随着处理器计算能力的提高,这些方法还有广泛的应用前景。

工业机器人论文第2篇

关键词 工业机器人控制;教学改革;课程建设

中图分类号:G642.3 文献标识码:B

文章编号:1671-489X(2017)04-0097-03

Abstract According to the industrial robot control course teaching goals and needs of automation-robot major for application-oriented

institute, the reform and exploration methods of theory teaching and

practical teaching for industrial robot control course is discussed. The optimization measures of curriculum and practical arrangements are given. The result of curriculum reform has been applied in tea-

ching and good effect is obtained. It is useful to cultivate the student

practice and innovation ability, and to stimulate the students learning

initiative.

Key words industrial robot control; teaching revolution; course con-

struction

1 前言

近年恚随着制造业的快速发展,劳动力成本不断提高,工业机器人在全球范围内的需求急速增长,企业对高层次机器人专业技术人才的引进也将不断增加,如何培养高质量的机器人专业技术人才成为相关高校所面临的共同问题[1-3]。南京工程学院在2013年招收了第一届自动化(机器人)专业方向的本科生,目的在于培养高层次机器人专业技术应用型人才,能从事机器人系统设计与开发、技术集成,系统安装、运行、维护和技术管理等方面工作。在开设的相关课程中,工业机器人控制是自动化(机器人)专业方向的一门重要的专业课程,为进一步提升教学品质、完善教学策略。本文在对工业机器人控制课程教学大纲及教学现状进行分析的基础上,对其理论教学、实践教学以及课程考核方式进行改革探索。

2 课程特点及教学目标

课程特点 机器人控制系统在很大程度上决定了机器人的功能和性能。机器人控制涉及自动控制、计算机、传感器、人工智能、电子技术和机械工程等多学科的内容。工业机器人控制技术的主要任务是控制机器人在工作空间中的运动位置、姿态、轨迹、操作顺序及动作时间等。课程主要目的和任务是通过对工业机器人控制系统基本理论和最新进展的介绍,使学生掌握工业机器人常用的控制方法以及智能控制方法。

相比于研究生阶段开设的相关课程,本科阶段开设的工业机器人控制课程更注重应用实践能力的提高,在一定程度上弱化理论研究;同时,与高职院校开设的机器人控制实训课程也不同,应用型本科阶段开设的工业机器人控制课程应使学生在掌握控制理论知识的基础上,具备较高的提出问题、分析问题、解决问题的能力[4]。因此,在课程内容设置上,要兼顾理论学习与实践操作的有效融合与渗透。

教学目标 工业机器人控制课程的教学目标是要求学生掌握机器人运动学和动力学基础、机器人控制基础、机器人的位置控制和力控制、机器人智能控制技术、机器人轨迹规划等,要求学生不仅具备一定的理论分析能力,也要具备较高的解决实际问题的能力,使学生既不浮于理论之上而导致难以学以致用,也不会因为理论知识储备不足而导致难以具备以后继续学习的能力。

3 课程改革措施

南京工程学院自动化学院的工业机器人控制课程共48学时,其中理论教学40学时,实践教学8学时,是自动化(机器人)专业方向本科生的必修课程。工业机器人控制课程兼具理论学习与实践操作的教学要求,针对这一特点,在教学过程中,理论上应以引导为主,突出重点,做到深入浅出;而不是要求学生全盘推导复杂公式,否则可能导致学生在学习之初便难以理解而失去学习兴趣。在实践操作环节,应结合已讲授过的理论知识帮助学生理解机器人动作的原理与含义,将相关的运动学、动力学、控制方法、轨迹规划、传感器等知识有效渗透在实践操作过程中,而不是仅仅要求学生按照实验步骤完成机器人动作。理论学习与实践操作的相互渗透、相互结合,可帮助学生更深入理解机器人理论知识,同时加强学生的动手实践能力[5]。

理论教学方法改革 在40课时的时间里要完成工业机器人运动学、动力学、轨迹规划、位置控制、力控制、智能控制等方面的教学内容,知识点繁多,且其中不乏烦琐的公式推导。因此,要能够在有限的时间内让学生掌握关键知识点,教学内容的合理安排尤为重要,可从以下几个方面来进行理论教学的改革探索。

1)架构课程知识体系。可以在绪论部分通过给学生简单介绍工业机器人的工作过程,将后续要学习的相关知识点都容纳进来,给学生提供一条学习的主线,首先架构出完整的知识体系。如对于工业机器人的工作过程,简言之,就是通过规划,将要求的工作任务变为期望的力和运动,由控制环节根据期望的力和运动信号,产生相应的控制作用,以使机器人输出实际的力和运动,进而完成期望的工作任务;工业机器人实际运动的情况通常还要反馈给规划级和控制级,以便对规划和控制的结果做出适当的修正优化。工业机器人的这一工作过程如图1所示。

在上述概念中,自然地涵盖了课程的关键知识点,如何才能在工业现场实现机器人的上述动作过程?这一问题的提出,可大大激发学生的学习兴趣,若能配合相关的视频、动画、框图进行讲解,可进一步帮助学生了解课程内容与工业现场之间的关系,进而架构更完整的知识体系。

2)打牢数学基础。工业机器人控制技术涉及多种坐标系以及复杂的姿态变换、坐标变换等,这部分内容是课程重要的数学基础。一些重要概念一定要讲解透彻,如旋转矩阵的多种表示方法、齐次变换矩阵的含义等,可借助多媒体课件加深学生对各种变换的掌握。具体的公式不要求学生记住,但是一定要理解其含义,在此基础上进一步讲解通过MATLAB仿真软件完成相关计算的方法。也就是说,这部分内容要侧重讲解变换方法与MATLAB实现方法,弱化具w的运算。

3)控制方法要具体可行。工业机器人控制系统的构成包括中心控制器、驱动电路、电动机、减速器、传感器、相关硬件和软件等组成部分,对于多变量、非线性、耦合的复杂机器人系统,其控制方式也与一般伺服系统不同,控制方法的好坏是系统性能优劣的关键因素。尽管很多研究者对机器人的高级控制方法进行了很多研究,如变结构控制、自适应控制、智能控制等,但这些更多地偏重于理论与仿真研究,对于应用型本科院校的学生来说,在工业机器人控制这门课程的教学过程中,切不可让学生脱离机器人本体而仅浮于理论研究之上进行学习,应紧密结合机器人本体进行教学,从模型建立、模型简化、电动机伺服控制原理、电动机转速调整、单关节控制、多关节控制的耦合与补偿等各个方面讲解工业机器人控制系统的基本原理。可以讲解经典机器人案例的控制方法,如PUMA机器人,其伺服控制组成结构、位置控制系统实现原理、单关节控制、多关节控制等各个方面的内容都与机器人本体紧密相关,这种具体性、可实现性也可在一定程度上增强学生学习的信心。在此基础上引导学生深入学习一些机器人高级控制算法,并通过MATLAB对算法性能进行仿真对比,进一步掌握机器人各种控制方式的特点与控制算法的优劣。

实践教学方法改革 在实践教学部分,南京工程学院自动化学院采用的实验设备是汇博六自由度模块化可拆装串联机器人,该设备6个自由度的每个模块可以独立运行操作,并能按照统一接口任意组合成2~6自由度机器人。工业机器人控制课程的实践侧重于机器人运动学、动力学研究、驱动源电气参数的设置、机器人程序的编写、基于控制卡链接库和机器人链接库的VC编程等方面。

1)拓展实践教学内容。

首先,常规的示教、搬运装配等实验是大纲中要求的实验内容,为进一步提升学生对机器人工作原理、工作方式的认知程度,应结合实验设备进一步拓展实践教学内容。6个模块多样化的结构均体现了工业机器人的特点,涉及谐波减速、行星减速、同步带传动、蜗轮蜗杆传动以及齿轮传动等工业机器人常用的结构形式,因各模块均为透明封装,便于了解其具体结构原理,故可将其与实验室已有的搬运、焊接等工业机器人结合起来进行讲解,帮助学生掌握工业机器人的机械结构与传动原理。

其次,产品设备提供了控制卡链接库函数和机器人动态链接库,因此,要求学生在掌握控制卡链接库函数和机器人链接库函数的功能及调用方法基础上,能实现对机器人的二次开发,实现机器人复位、单轴运动、状态检测等多种控制,而不仅限于能操作设备自带的软件界面。

最后,实践环节还应设置相关的MATLAB仿真实验,将一些控制算法与工业机器人对象相结合,借助MATLAB软件对机器人的动力学特性进行分析,实现对机器人的仿真控制,通过直观的图文可以加深学生对控制算法的理解,动画仿真结果也可大大激发学生的学习兴趣。

2)实践考核方式多样化。在实践环节,教师应进一步优化实践考核评价体系,各环节的考核方式均应灵活多变,注重培养学生的创新能力。虽然大纲上已安排了具体的实验,但在实验过程中,仍然应根据学生的学习能力对其进行引导,鼓励学生积极思考,利用实验室现有设备提高自己对知识的综合应用能力,而不受限于仅完成已有实验项目。同时,应鼓励学生参加各种机器人大赛,在实践中综合运用各学科知识,提升知识应用的能力。将这些纳入实践环节的评价体系中来,可以增强学生学习的主动性。

4 结束语

通过对工业机器人控制课程理论环节和实践环节教学方法及考核方式的不断改革创新,在教学过程中取得一定的效果,改革成果在实际教学中的应用为培养自动化(机器人)专业方向的优秀人才打下坚实的基础。随着机器人技术的快速发展及企业对高层次机器人专业技术人才的大量需求,南京工程学院自动化学院将进一步完善工业机器人课程创新教学平台,进一步突出素质教育和工程应用能力的培养,注重学生学科知识、工程能力和专业素质的协调发展,让学生能以工程项目为背景,在工程应用中更深刻理解机器人控制理论知识,提升解决实际问题的能力和创新能力。

参考文献

[1]王建文,王剑,马宏绪.“机器人控制”课程建设研究[J].电气电子教学学报,2013,35(6):4-6.

[2]程仙国,孙慧平,李占涛.《工业机器人技术》课程教学改革与实践[J].宁波工程学院学报,2015,27(4):104-108.

[3]李庆龄.应用型本科工业机器人课程教学改革的探索与实践[J].中国教育技术装备,2013(21):93-95.

工业机器人论文第3篇

论文格式就是指进行论文写作时的样式要求,以及写作标准。直观地说,论文格式就是论文达到可公之于众的标准样式和内容要求。以下是小编给大家搜集整理机器人论文格式,欢迎赏析。

××此处填写论文题目××

学院(系):×××

专业班级:×××

学生学号:×××

学生姓名:×××

成绩:×××

目录

摘要................................................................................................................................................................1

Abstract..............................................................................................................................................................2

1绪论................................................................................................................................................................13

1.1×××.........................................................................................................................................................14

2空气燃烧火焰空间的数值模拟....................................................................................................................15

2.1数值模型................................................................................................................................................16

结束语................................................................................................................................................................17

参考文献............................................................................................................................................................18

机器人论文格式范文:

中国机器人的发展与成绩

【摘要】在早期,中国机器人技术发展速度十分缓慢,但随着我国科学技术的不断发展,我国机器人产业得到迅猛的发展,现己在各个方面均取得了骄人的成绩。目前,中国已经具备生产国际先进水平机器人的能力,机器人行业已经成为我国一个十分朝阳的技术发展方向。

【关键词】中国机器人发展成绩

国际机器人联合会(InternationalFederationofRobotics,IFR)将机器人定义如下:机器人是一种半自主或全自主工作的机器,它能完成有益于人类的工作,应用于家庭或直接服务人称为(家政)服务机器人,应用于特殊环境称为专用机器人(特种机器人),应用于生产过程的机器人称为工业机器人[1]。随着国内外经济的发展,国内外均对机器人技术的发展愈发重视。与此同时,机器人技术也被认为是对未来新兴产业发展具有重要意义的高新技术之一[2]。机器人技术的发展对于国民经济和国防建设都起到了十分积极的作用。

一、工业机器人

中国著名科学家钱学森先生曾在1984年指出:机器人就是有特定功能的自动机,是如今新技术革命的重要发展对象之一,是高智商的人工智能机电一体化装备[3]。”据有关部门统计,我国的工业机器人需求量惊人,而且每年的需求量以30%的速度飞速增长。相关专家曾经预测,根据发达国家产业升级与发展的历程,以及工业机器人产业化发展趋势,在2015年,中国工业机器人市场容量预计可达到约十几万台套以上[4]。为了使我国与发达国家的差异迅速缩短,是我国工业机器人的发展站在更高层次的平台上,我们必须虚心学习国外的新技术,新思想,在此同时,国家的支持与重视也是必不可少的。到目前为止,我国拥有专业机器人产业开发的企业超过50家,专门从事机器人研发的单位超过200家上。我国机器人的发展前景十分明朗。

二、移动机器人

我国从八五期间开始研究移动机器人。虽然与世界上的许多强国相比发展比较落后,但是丝毫没有影响到我国移动机器人的发展速度。我国投入大量人员,大力支持此项技术的发展,对于一些室外机器人的某种关键技术,我国已经接近甚至达到国外发达国家的技术水平。目前,国内也出现了许许多多优秀的研究成果,例如:由清华大学研制的的智能移动机器人THMR-Ⅲ,Ⅴ型机器人等。机器人技术从以前的一无所知,到逐渐引进,从初步引进到不断改革,我们对于机器人技术的研究不断深入。我们深信,在不久的未来,会有许许多多高智能,富有情感的机器人出现在我们的生活中,为我们的生活生产更好地服务[5]。

三、仿生机器人

目前,仿生机器人的研究不断深入,已经出现了多种多样的仿生机器人,主要分为3大类:仿生物、仿人和生物机器人。仿生机器人凭借其灵敏的感知系统以及以及灵巧的行为能力对人类的科学研究以及生产劳作起到了十分有利的作用,所以,我国很早就已经开展了对于仿生机器人的研究。国内许多高校以及科研院所都进行了仿生机器人的研究:在国家“863”智能机器人主题大力支持下,北航机器人研究所研制出了能实现简单操作作业和抓持的3指9自由度仿生手。仿生机器人在娱乐、服务,甚至军事上都有很大的发展潜力,目前,已经成为21世纪机器人研究的重点研究对象。

四、医疗与康复机器人

欧美的许多发达国家首先开展了对于康复机器人的研发,而我国在此方面的速度相比起来却发展较晚,目前,主要有一些研究所,高校以及一小部分企业正在开展康复机器人的研究。哈工程机电一体化实验室对康复机器人领域的研究较为深入,其已经研制出十分优秀的下肢康复训练机器人,此机器人可以模拟踝关节的运动姿态等规律、正常人的行走步态.清华大学的康复工程研究中心对下肢训练器研究也比较先进,做了一定的深入探索,开发出肌电反馈控制康复器设备等优秀的康复机器人。我国的一部分公司如浙江金华、北京宝达华等企业也不断致力于我国的康复机器人技术的发展,我国的康复机器人市场前景广阔,就有很好的发展潜力。

五、结语

我国机器人的发展速度不可同日而语,通过查找文献,看到许多前沿的机器人,也看到了发达国家在机器人方面的成绩,认识到机器人行业对各行各业的帮助,深受启发。我相信,在我国的大力支持下,机器人产业一定能给我们的生产生活带来极大的便利。

参考文献

[1]InternationalFederationofRobotics.Servicerobots[EB/OL].[2013-06-09].http://ifr.org/service-robots/.

[2]徐扬生.智能机器人引领高新技术发展.科学时报,2010-08-12

[3]孙英飞,罗爱华.我国工业机器人发展研究.科学技术与工程.2012年4月

工业机器人论文第4篇

一、智能机器人 

机器人是一种可编程和多功能的,用来完成搬运、安装、焊接、切割等不同任务的操作机,或是为了执行不同的任务而具有可改变和可编程动作的专门系统[3]。 智能机器人则是一个在感知、反应、思维方面全面模拟人的机器系统,融合了机械、电子、传感器、计算机、仿生学、自动控制、人工智能等多学科知识的复杂智能机械,可以代替人从事危险复杂的工作,例如在工业、农业、军事、航天、医疗等多个领域大显身手。目前,各国正加快智能机器人技术的创新与发展,如美国再工业化和工业互联网战略、德国工业 4.0 战略、日本机器人新战略、韩国机器人强国战略等,机器人技术引领当今科技和产业发展态势。中国通过制定“互联网+”行动计划、“中国制造 2025”发展目标、“十三五”规划,,将机器人和智能制造纳入了国家科技创新的优先重点领域[4][5]。 

二、 “智能机器人”和“智能控制”主题热点搜索 

本文以“智能机器人”和“智能控制”为主题进行“学术研究热点”检索,检索结果显示了按照热度值排序的热点主题相关的主要知识点、主题学科名称、热度值、主要文献数、相关国家课题数、主要研究人员数和主要研究机构数。“智能机器人”相关知识点主要有移动机器人、工业机器人、仿人机器人、服务机器人、机器人导航、远程操作、人工智能、神经网络、模糊控制等知识点。 

智能化是机器人控制和产业创新发展的重点。关于“智能控制”的热点知识主要包括模糊控制、神经网络、遗传算法、学习控制、自适应控制、变结构控制、预测控制、专家系统、非线性系统等知识点,这些知识点代表着“智能机器人”主要研究方向。 

三、“智能机器人”和“智能控制”主题学术趋势和研究发展 

CNKI数字图书馆提供“学术趋势”检索功能,为科研工作者了解“智能机器人”发展趋势提供了非常好的工具。本文通过“学术趋势”功能检索“智能机器人”和“智能控制”主题的学术趋势,图中不仅提供学术关注度,还提供热门被引文章供读者深度研究。图2显示智能机器人和智能控制方面的从1997年至2015年论文收录量逐年增大,2015年收录量达1343篇。读者可以从图2中及时掌握每年学术热点论文,从中深入学习“智能机器人”的具体研究方法和科研理论,为理论创新寻找突破口。 

另外,CNKI数字图书馆还具有“指数”功能,通过对“智能机器人”和“智能控制”主题进行检索,得到以下各项信息: 

“学术关注度”和“媒体关注度”是我们进行科学研究时比较关注的两个方面。通过对关注度的分析发现最近三年科研工作者和媒体对智能机器人的关注度剧增,预示着国家加大了“智能机器人”领域的投入和研究力度。 

“关注文献”和“研究进展”搜索功能为读者提供了当前“智能机器人”领域高被引论文、下载量比较大的论文以及最新相关论文,为科研工作者迅速把握“智能机器人”研究的内容和研究趋势提供帮助。 

“学科分布”为读者提供“智能机器人”和“智能控制”在不同学科领域的研究情况和“相关词”的统计情况。通过分析可知,移动机器人、智能制造、人工智能、路径规划、机器视觉、图像处理、虚拟现实、语音识别、声源定位等是分布在不同学科领域的“智能机器人”相关词,也是“智能机器人”目前重要的学术研究方向;单片机、模糊控制、神经网络、智能家居、智能电网、物联网、RFID、ZigBee、无线传感器网络、智能交通等是分布在不同学科领域的“智能控制”的相关词。因此,我们通过它们可以了解到跨学科智能机器人的研究动向。 

“机构分布”显示了哈尔滨工业大学、哈尔滨工程大学、上海交通大学、清华大学、浙江大学、中国科学院沈阳自动化研究所等多所研究机构是文献的主要提供单位,这为读者认识机器人研究机构提供参考。 

结论 

CNKI数字图书馆提供的“学术研究热点”、“学术趋势”和“指数”功能为我们展示了“智能机器人”和“智能控制”的研究热点和学术研究方向,为读者科研选题和科学研究提供学术参考。通过对“智能机器人”关键知识点的、经典科研论文和最新科研论文的深度分析,探索和挖掘智能机器人发展的技术空白点,发现最新研究方向。目前大学图书馆的资源整合和智能搜索功能还比较弱,需要进一步加强图书馆智能搜索引擎的构建和其他智能交互平台建设才能提高图书馆资源利用率和服务效能。 

参考文献: 

[1]陈臣. 基于大数据的图书馆个性化智慧服务体系构建[J]. 情报资料工作,2013,06:75-79. 

[2]王长全,艾雰. 云计算环境下的数字图书馆信息资源整合与服务模式创新[J]. 图书馆工作与研究,2011,01:48-51. 

[3]任福继, 孙晓. 智能机器人的现状及发展[J]. 科技导报, 2015(21). 

工业机器人论文第5篇

近年来,人机工程学得到了飞速发展,并已逐步发展成为了一门多学科交叉的工业设计学科。人、机器以及环境之间的关系是人机工程学的主要研究目标。在科学技术飞速发展的今天,人机工程学该门学科具有一定的现实意义。本文从人机工程学角度入手,系统的阐述了人机工程学相关理论的研究速度,旨在进一步推动人机工程学理论研究工作的深入。

关键词:

人机工程;人体性能;环境因素

人、机器和环境之间的关系是人机工程学的主要研究内容,该门学科的研究方法众多,评价手段非常丰富,包括心理学和生理学等等,通过对人机工程学理论的深入研究,我们能够通过多门学科的有效应用,为工业设计领域提供必要的理论依据,这种做法能够有效提高我国工业设计领域的工作效率,能够极大的改善工业设计的工作方式,因此,我们必须对其予以高度的重视。

一、人体特性

作业者以及机器的使用者在人机工程学理论中被称之为“人”,研究人机工程学理论中的“人体特性”应当从以下两个方面入手。一是深入的研究人体结构。[1]从本质上来说,该种研究方式就是在应用人体尺寸测量知识来实现对人体结构的研究,从而将单个主体同群体之间的差别挖掘出来,得出相关数据。这些数据能够为人体测量提供必要的标准。例如,在设计驾驶员座椅的时候,我们就可以以人体数据为标准,制作出适应驾驶员实际情况的座椅等等,由此可见,人机工程学理论在工业设计中占据着非常重要的地位。二是深入的研究人的具体劳动动作。在这里我们又将人的具体劳动动作称之为作业,其内涵是设计者通过作业这种手段,将材料逐步转变为与具体工作顺序相一致的活动。所谓作业空间是指作业者以及机器的使用者在工作的过程中,同机器以及工具等所需要的所有空间总和。之所以进行作业空间设计主要目的在于通过这种方式能够将人机系统的工程优势充分的发挥出来,从而不断的满足作业的需求。[2]笔者认为,在设计作业空间的过程中,设计者应当做到全方面的考虑诸多因素,例如个人的行为因素、设计作品的舒适度等等,只有这样做,才能够设计出符合大众需求的优秀作品。良好的作业空间具有以下几方面的优势,一是作业者的工作效率能够得到极大的提升;二是能够确保作业者四肢所分担的工作量保持适中;三是适应群体的范围非常广泛;四是安全性高,舒适、便捷。在设计作业空间的过程中,我们应当遵循以下几点要求:

1)在设计作业空间的过程中,设计者应当以具体设施和元件的重要程度为依据,像显示器、控制器这类装置是比较重要的装置,因此,在布置这类装置的过程中,我们应当考虑布置区域是否能够方便作业者进行操作,笔者认为,这些设备可以安放在空旷的作业区内。[4]

2)在设计作业空间的过程中,设计者还应当依照具体设施和元件的使用频率进行布置。在最佳操作区域内放置的设施和元件往往是一些使用频率较高的元件,值得注意的是,在依照该顺序进行摆放的过程中,应当尽可能的将上述元件安排的接近一些,这样做能够使整个操作过程形成一个流水线,极大地提高了工作效率。

3)在设计作业空间的过程中,设计者除了应用上述顺序进行排序外,还可以依照不同设施和元件的功能来进行排序,这样,能够极大地方便操作,提升管理水平。值得注意的是,上述排列顺序并不是独立存在,是有机结合在一起的。设计者在进行空间布局的过程中,应当将上述顺序有机结合在一起,并在此基础上,充分考虑作业的安全性、人流的组织形式以及方便特殊人群等因素,可见,虽然空间布置看上去比较简单,其中所蕴含的道理则非常的多。

二、机器系统

作业者以及机器的使用者所操作和使用的产品就是指人机工程学中的“机”,值得注意的是,大家在理解这一概念的过程中,应当明确这里所说的“机”并不是狭义的机器。机器系统主要研究和设计人机界面层次,它具有一定的具体性。一般情况下,我们会将机器系统划分为两个方面,一是显示设计,二是控制设计。很早以前的一段时间内,我们都是通过手工技能来实现对机器质量的控制的,在这种情况下,作业者及机器的使用者与机器之间的协调配合就显得非常重要。常见的手动控制机器的作业包括机床操作等等。随着社会的发展,科学技术水平的提升,大型智能机器应运而生。与传统机器不同,大型智能机器的输出量非常大,其操作幅度也越来越复杂,这就要求作业者以及机器使用者(人)具有较强的决策能力,能够正确的判断信息,并以此为依据选择正确的操作方案。现如今,人机工程学的主要研究内容已经逐步向显示器与控制器的设计方向转变。显示器在工作过程中占据着非常重要的位置,主要原因在于,现如今的生产过程中,操作人员需要大量的处理信息,这就要求操作人员具备精准的、快速的信息处理速度,而上述这些要求则必须通过显示器来实现;控制器在信息传递的过程中也发挥着巨大的作用。笔者认为,设计师在设计控制器的过程中,应充分考虑操作人员的性别特征以及生理尺寸,这样才能够提高工作效率。

三、环境因素

在人机系统中,环境的作用也非常的重要。所谓环境主要是指人们工作的环境以及生活的环境。这些小环境往往与人机系统存在着密切的联系。工作环境不好,会给作业者带来一定的负面影响,例如,作业者如果长期在声音较大的环境下工作,就会导致听力有所下降等。因此,必须对环境因素给予高度的重视。通过长期的研究与实践我们可以得出这样的结论,在深入了解人体对环境中各种因素适应能力的基础上,我们可以确定什么样的环境才能够保障作业者以及机器使用者工作的舒适度,才能够确保他们的安全,使整个作业在安全的环境下进行,这样做,能够极大地提高作业者以及机器使用者工作的积极性,保障他们的健康。

四、结语

总而言之,工业设计中人机工程学理论的研究具有非常重要的意义,它能够进一步提高作业者的工作效率,保障作业者的人身安全,除此之外,还能够实现流水操作,从而推动工业领域的发展,正因如此,我们应当对其予以高度的重视。

作者:王兴 单位:九江职业技术学院

参考文献

[1]卢兆麟,汤文成.工业设计中的人机工程学理论、技术与应用研究进展[J].工程图学学报,2009,06:1-9.

[2]刘继航.工业设计中的人机工程学理论、技术与应用研究进展[J].科技展望,2015,09:280.

工业机器人论文第6篇

关键词:工业机器人 高技能人才培训 项目化课程

工业机器人是一种仿人操作,可以进行自动控制和重复编程,在多品种、大批量的柔性生产中尤为适用,在促进产品质量的稳定和提升、生产效率的提高、劳动条件的改善等方面发挥极为重要的作用。近年来,工业机器人在各个生产企业应用日益增多,生产企业迫切需要工业机器人的相关技术人才。技工院校高技能人才培训主要目标是培养应用型的高技能人才,学生具有独特的知识技能和就业导向。因此,我们需要探索适合技工院校高技能人才培训的工业机器人课程教学方案。

一、工业机器人概述

1.工业机器人组成

工业机器人一般由执行机构、驱动装置、检测装置和控制系统等组成。

执行机构即机器人机械本体,其臂部一般采用空间开链连杆机构,其中的运动副(转动副或移动副)常称为关节,通常关节个数即为机器人的自由度数。

驱动装置是驱使执行机构运动的机构,按照控制系统发出的指令信号,借助于动力元件使机器人进行动作。

检测装置的作用是实时检测机器人的运动及工作情况,根据需要反馈给控制系统,与设定信息进行比较后,对执行机构进行调整,以保证机器人的动作符合预定的要求。

控制系统由一台微型计算机或多台微机来分担完成机器人的控制。

2.工业机器人的应用

工业机器人最早应用于汽车制造工业, 常用于焊接、 喷漆、上下料和搬运。工业机器人延伸和扩大了人的手足和大脑功能,它可代替人从事危险、有害、有毒、低温和高热等恶劣环境中的工作;代替人完成繁重、单调的重复劳动,提高劳动生产率,保证产品质量。工业机器人与数控加工中心、自动搬运小车以及自动检测系统可组成柔性制造系统(FMS)和计算机集成制造系统(CIMS),实现生产自动化。目前工业机器人的应用有如下几类。

(1)喷涂机器人。喷涂机器人在汽车、建材、机械等行业广为应用,比如,自动对汽车整车、发动机、驾驶室等喷漆,自动对卫生陶瓷喷釉,喷涂玻璃纤维加强水泥预制板、自动对电视机、电脑及减速器等的外壳喷漆,自动对汽车等、塑料件等涂胶等。

(2)网路机器人。网路机器人在通信和远距离控制中广泛应用,负责观测环境等工作,比如,在Internet上连接几个机器人,通过网络控制机器人实现动作等。

(3)电焊、弧焊机器人。电焊、弧焊机器人在汽车、工程机械等领域广泛应用,比如,对汽车底盘等部件进行点焊,在装配领域使用弧焊等。

(4)搬运、装配机器人。搬运、装配机器人在机械、汽车制造业等领域广泛应用,能够自动输送产品和物料、能自动按要求组装设备等。

(5)其他机器人。如对汽油、柴油等进行定量加注的机器人、军用机器人、探月车等。

二、工业机器人课程教学方案

1.进行正确的课程定位

工业机器人课程定位在为企业培养能够操作和维护保养工业机器人的应用性人才。课程的显著特征应该是重实践、轻理论,教师可以简单介绍工业机器人的理论知识,但要求学生熟练掌握工业机器人的操作和理解结构特性;课程所采用的教学模式应该是项目化的,从工业实际案例中寻找项目,并在项目教学过程中将相关的理论知识融入其中,做到理论联系实际。

2.工业机器人理论知识的分解和取舍

传统的工业机器人课程教学对理论知识尤为注重,但由于工业机器人的数量很少,并且具有较高的造价,而且很难维护,因此实训环节只占很小的比例。而理论知识繁杂,内容包括矩阵理论、微积分等,太多的算法夹杂在运动规划和轨迹控制中,企业的具体应用往往不需要过多抽象的理论,学生在学习中也会不可避免地遇到较大的难度,学习的主动性和积极性也会大打折扣,从而严重影响了教学质量。工业机器人的理论主要有运动控制理论、计算机控制理论、电动机控制理论、传感检测理论,对理论知识可以分解为三个层次:基础应用层次,编程、维护层次,创新应用层次。在技工院校的高技能人才培训中,教师应该在项目教学过程中根据实际需求融入分解过的理论知识,激发学生学习理论知识和技能的兴趣,这样才能满足企业的要求。具体来说,就是在项目教学中渗透工业机器人认知、结构、施教理论、维护保养等知识,简单介绍电动机运动控制、虚拟示教、离线编程等知识即可。

3.项目化课程设计

(1)工业机器人的认知。由于学生大都具有较为片面的机器人认知,将认知停留在人形和智能机器人层面,而对工业机器人的各种应用场合及多种结构形式缺乏了解。因此认知类项目可分为:应用方面的认知项目、结构方面的认知项目、使用方面的认知项目、创新拓展方面的认知项目。本项目通过图像、视频、实训设备等使学生对工业机器人、军事机器人、娱乐机器人等在各种场合的应用有一个大致的了解。教师对机器人的工业应用,要着重对其各种应用场合和结构形式进行讲解,通过该项目让学生全面认识机器人学科,从而提高学生学习机器人的兴趣。

(2)工业机器人的基本操作。在本项目中,学生可以在不同的坐标下操作示教器运转工业机器人,并在动态模拟软件中加载和控制虚拟机器人。教师通过各关节坐标的运动让学生对机器人的结构形式有一个大致的了解,通过直角坐标系让学生对轨迹控制的概念有一个大致的了解,并对用户坐标系和工具坐标系的实用意义进行简单的介绍。教师对工业机器人的系统构成、各部分的原理及作用进行简单的讲解。

(3)AGV设计编程与调试。AGV系统就是自动导引车系统。它是物流自动化系统和柔性装配系统中的重要组成部分。学生可以使用组合式的机器人套件和相应的传感器,将四轮移动小车自主设计出来,在程序设计中利用C语言或图形化编程软件,让小车前进时沿着制定的路径,从而促进自动导引功能的切实实现。本课程项目让学生对AGV的原理和应用有了一个大致的了解,在AGV组装过程中也促进了学生动手能力的提高,并通过对小车编程对单片机开发流程有所了解,将学生利用C语言编制较为复杂的程序的能力培养了起来,对传感器的原理和其与主控制器的连接方法有所了解,对直流电动机的调速方法进行熟练掌握。

(4)机器人示教系统实现。在一般情况下,工业机器人是一个不公开D-H参数的封闭系统,用户要想完成工业机器人的变换控制,只能通过示教器或PC机软件,仅仅依靠工业机器人无法完成对电动机控制理论及正逆运动学的验证。为了将此难点克服掉,本项目让学生对组合式的机器人套件设计,结构形式为PUMA560形式的机器人进行应用,在实现示教器功能时充分利用主控制器编程,也就是说能够对该机器人的关节运动进行有效的控制,并能够将其运动轨迹记录并复现。开放通讯协议的舵机驱动着该机器人的关节,主控制器能够和舵机进行双向通信,将关节角度设定或获得。因为该套件可以将各构件的三维模型组建出来,因此学生可以将UG、Pro/E导入完成虚拟装配,在对工业机器人的正逆运动学理论进行了解的过程中充分利用运动仿真的方式。通过该项目让学生对PUMA560形式的机器人结构有一个深刻的理解,并对工业机器人的虚拟示教和示教器示教的联系与区别有一个大致的了解,对使用C语言编制复杂程序的过程和舵机的原理及控制方法能够熟练掌握,能够熟练地使用UG、Pro/E。

(5)工业机器人常见的故障和维护。工业机器人常见的故障有碰撞、通信异常、夹具损坏等,常用的维护手段有清洁、、紧固、更换防尘罩、更换防静电网罩、调整工作负载等。如果工业机器人的数量不足,教师可以通过图片、视频等方式对工业机器人的相关知识进行讲解。在教师的指导下,学生可以对工业机器人进行适当的拆装。除此之外,还应该对规范化的诊断和排除故障的流程进行强调。

4.教学方案和成绩评价

在工业机器人培训中采用项目教学法,以企业应用为目标,重实践、轻理论,并坚持理论联系实践,方能取得良好的教学效果。特别是在教学过程中有条件地引入组合式教学机器人,可以弥补工业机器人数量不足和D-H参数的封闭性,同时也可以根据实际情况利用虚拟机器人和仿真软件来弥补工业机器人数量上的不足。这样使学生学习的参与性、积极性和主动性增强,活跃课堂教学的气氛,在实践中掌握理论知识,从而极大地促进工业机器人课堂教学的成效。

在对学生的成绩评价中,我们应该对过程评价给予足够的重视,其中学生的动手能力、创新能力及职业素质等是教学评价的主要着眼点。在同级培训课程结束后,教师可以让学生自由选择某一项目,然后将自己的研究性报告提交上来,然后对学生综合应用知识的能力进行及时有效地考查。学生在完成了全部项目课程之后,应该能够安全熟练地操作工业机器人、掌握基本编程方法及日常维护保养能力。

参考文献:

[1]郭洪红.《工业机器人技术》(第二版).西安:电子科技大学出版社,2012.

[2]郑雅丽,王震.李通.基于RFID的助盲语音寻物机器人的设计与实现[J].电脑知识与技术, 2012(4).

[3]唐洪涛.工科职业技术类院校开设工业机器人专业的可行性分析[J].黑龙江科技信息, 2009(18).

[4]张祥瑛.教学督导工作模式的运用及成效[J].高教研究,2010(10).

[5]关红辉.我国高校教学质量监控研究综述[J].黑龙江教育,2011(2).

工业机器人论文第7篇

关键词:人文教育;科学教育;融合;机器人队

“十三五”期间对高等教育发展提出了许多新要求和目标,其实现的基本路径是深化教育领域的综合改革,优化教育教学模式,重视教育教学过程和环节的丰富与创新,将人文教育和科学教育与第一课堂、第二课堂、科技竞赛以及学生活动相融合,更好地实现全人教育的探索之路。

一、人文教育与科学教育相融合的意义

人文教育主要是对人进行人文知识、思想道德和文化精神的教育,强调人性的培育和精神世界的丰富。而科学教育主要是进行自然科学知识的传授和技术创新的教育,强调严密的逻辑思维、系统化的科学知识以及物质财富的创造能力。任何教育都不应该区分进行,教育的本质是以学生的成长成才为核心,重视学生的全人培养。科学教育中,人文精神的渗透为科学知识的学习提供强大的精神动力,帮助学生树立正确的价值观,狭隘的科学教育无法完成学生对人类有益的持续创造性培养;而在人文教育中,同样需要科学的理性思维的支撑,狭隘的人文教育也无法带给学生持久的价值感和理性逻辑。

二、电子科技大学校机器人队培养模式

以我校机器人队为例,依托2002年起步的一项亚太大学生机器人大赛和国内选拔赛,十五年的时间里,我校已培养了约300名机器人队正式队员,其中70%以上的学生在毕业后出国或在国内深造,毕业后均进入优秀的企业或自主创业。机器人队培养模式是科学教育和人文教育融合并重的实际案例。大学的培养离不开精神引领和塑造,“勤为径,创新求胜;苦作舟,荣辱与共”的机器人队精神,通过十五年的凝练和传承,影响了一届又一届的队员和机器人爱好者。经过十五年的探索和完善,机器人队培养已建立一套完备健全的体系(如图1所示)。机器人队相关培养活动不止是通过实践平台提升学生的专业技术和科研水平,在这个体系中,既重视平台的搭建和打造,整个氛围的营造和文化活动的开展,又重视学生团队的自我适应能力、协作能力和创造力的培养与挖掘;既重视依托培训、赛事、活动等实践,又重视创新成果的总结和提升。整个体系由培养平台、氛围营造、训练平台、学生团队、实践平台等5个层面构建而成,涵盖15个方面的丰富内容,三大学生项目基金支撑贯穿于整个培养过程,固化并升华了学生机器人的科创成果。

(一)依托学校工程训练中心硬件平台,促进学生的发展

学校工程训练中心现有加工中心、数控车床、数控铣床、普通车床、普通铣床、钻床、折弯机、剪板机、冲床、交流弧焊机、电工技术实验台、电气维修实训台、传感器综实验台、慧鱼及博创机器人创新实验模块组件等近2000套设备仪器,价值2000多万元。基于“基础型、综合型、创新型”的层次化实训教学体系,分别设置了基础工程训练、综合训练、创新训练及职业技能训练等四个层次,培养学生的基本工程素质与实践技能、理论联系实际的科学思维方法以及探索知识与勇于创新的精神,促进学生专业知识、能力与素质的协调发展。

(二)彰显机器人的鲜明特色,营造机器人三位一体氛围

每年通过校园“创新创业周展”“年度获奖机器人展”“高校科技夏令营展”等途径,展出机器人,宣传机器人成果,树立文化标杆。让机器人文化像诗歌、电影等一样,成为一种流行。建设学院“机器人文化馆”和“机器人展厅”,展出历年自主研发的优秀机器人,积淀机器人成果,将历届机器人队实体成果和精神结晶传承。同时重视机器人Logo的印记影响。通过校园宿舍走廊机器人装扮文化和机器人标示,传递机器人文化。宿舍的多彩装扮,门把手上的温馨提醒,学校的各项重要活动……机器人的logo无处不在。另外,机器人论坛、机器人校庆周活动不断丰富着我校机器人文化。

(三)加强系列理论培训,搭建由易及难的赛事平台

加大技术培训系列活动的同时,通过由易及难的比赛题目,开展训练和选拔。通过新生杯电子设计竞赛,学院机械创新设计大赛等赛事,让学生迅速入门。然后,通过全校性巡线机器人大赛实现技术进阶。低年级学生组队,机器人队成员和科协成员通过宣讲会、题目解析会、答疑解难会等方式帮助低年级学生完成作品。巡线机器人大赛已成为我校影响力最大、参与学生最多的学生自发组织的品牌赛事。

(四)全力开展机器人队备战赛事,培养机器人技术骨干精英

由于学生组成的多元化,跨学科交流是培养的另一种尝试。每年机器人队成员有来自机械、电气、工业工程、计算机、电子信息、通信等工科专业的学生,也有外国语、管理、数学等专业学生。整个备赛过程约10个月时间,集中在机器人基地开展。20~30人组成的机器人队,分为软件组、机械组、控制组以及协调组,依据个人特长分工完成相应任务,同时做好配合,完成预计方案设计的机器人。其中机构设计、加工,器材的选型、购买、报账、入库,设备器材使用、维修、报废,机器人联动调试、手动操作培训等一系列工作,均由队里自主完成。

(五)追求技术极致为国争光,心系社会共谋创新之路

注重机器人文化校外交流也成为机器人队与社会接轨的一种培养方式,如走进社区和中学进行机器人科普宣传,开展志愿活动和社会服务。2013年,机器人队学子通过技术交流,帮助成都七中GMT-E机器人队攻克难关,最终在“FIRST机器人大赛”力战群雄,拿下了全国一等奖,并代表中国赴美国参赛。2015年,机器人队学子指导中学生获得2015年中国青少年机器人竞赛活动VEX机器人工程挑战赛“立地顶天”冠军,获得2015年世界机器人大会•世界青少年机器人邀请赛VEX机器人工程挑战赛“一网打尽”亚军。

三、机器人队培养成效

通过纵横交错、同步开展的培养体系,培养了学生人文素质和科学素质,包括表达沟通能力,热情自信的魅力,冷静思考、精益求精的思维习惯,严谨创新的科学态度,不畏困难、勇往直前的勇气,全面的组织能力以及相互信任、团队协作的集体精神。其中,有一位机器人队员获得2011年全国大学生十大年度人物提名奖。2013年全省高校校园文化建设优秀成果评选活动中,电子科技大学参评的“超越梦想”机器人研创文化活动获得全省高校校园文化建设优秀成果一等奖。目前,机器人队成员已成功孵化科技类创业公司10余家,创业团队若干。在创新创业的路上,机器人队一直在前行。总之,教育不是一朝一夕,短时间就能达到极致或者突显成效。高校应以人为本,认识到人文教育与科学教育对于学生全面发展成才的重要性和不可缺失性。搭建更多平台,以多元化的教育途径相结合的方式,替代传统的课堂理论知识讲授,使人文精神和科学精神潜移默化地影响学生,并促进他们的成长成才。

作者:李丽娟 孙东 于乐 单位:电子科技大学

参考文献:

工业机器人论文第8篇

关键词:高职;工业机器人;研究

1高职教育工业机器人专业开设的必要性

《中国制造2025》指出机器人产业是重点发展的十大产业之一[1]。在国家相关政策的引导下,工业机器人作为智能制造的着力点,在各行各业的应用迅速发展起来,但是与之配套的工业机器人技能人才严重缺乏,由于工业机器人专业是新兴专业,各高职院校的专业建设不成熟,造成了毕业生难以达到企业的要求,而企业又招不到合适人才的尴尬局面[2]。

2高职工业机器人专业课程建设措施

1)人才培养方案。以山东工业职业学院为例,工业机器人专业已与江苏汇博工业机器人有限公司、北京华航唯实机器人公司以及与山东钢铁集团、日照钢铁集团、魏桥集团等大型企业进行深度合作,将企业的需求作为人才培养的重要方向和目标,校企共同制定工业机器人技术专业人才培养方案。2)课程体系。课程体系的构建,遵循“逆向设计,正向培养”的设计思路。通过企业调研,确定主要工作岗位,并对岗位任职要求进行分析,归纳出若干典型工作任务,依据典型工作任务特点的不同,归纳出职业行动领域,根据行动领域特征,以学生知识、能力、素质三方面的综合培养为目标,按照“从基础到专业,由单一到综合”的基本认知规律构建课程体系。3)实验室和实训基地建设。实验室建设:根据本专业所需要的核心知识能力要求,选取喷漆、涂胶、焊接、分拣、装配和包装6种工业机器人典型应用自动线项目为载体进行实验室的建设;根据山东省和全国职业院校技能大赛工业机器人技术应用赛项(高职组),建立工业机器人创新实验室。实训基地建设:加强与装备制造企业的合作,稳步扩大校外实训基地。在优势互补、互惠互利、共赢发展的原则下,将学校的人才优势与企业的资源优势有效结合,建立良好的校企合作关系。组织学生到校外实训基地进行学习和训练,让企业师傅按照企业标准指导,在真实环境下“教、学、做”一体教学,使学生学习企业需要的知识,体会企业文化。4)教学模式。采用“项目导向制”与“信息化教学”相结合的教学方式。“项目导向制”:以机器人实操为主,将实际工作需要掌握的工业控制、电器绘图、工业机器人项目集成设计等知识点编入项目中供学生学习,由学生实操设备实现需求。“信息化教学”:把知识点用视频、动画、PPT等形式展现出来,做成精品资源课,以便于学生自学,进一步补充学生的理论知识,提升学习的效率。企业可以安排经验丰富的工程技术人员通过订单班、专家讲座、企业顶岗实习指导等多种方式为学生授课。5)学生考核评价。采用理论考核,实践考核。理论考核:网上答题、开卷、闭卷、笔试、口试、提供论文等。实践考核:该考核设计完全依托于工业现场案例,比如其中一道题目是“完成工件的装配设计”,其目标是让学生设计出一个功能完备的机器人装配工作站。学校提供传送装置、各类型传感器、执行部件等,让学生进行小组协作,从器件选型、程序编写烧录、电气图纸绘制、电柜接线到最终的功能实现,全方位考核学生在工业机器人领域实际解决工程问题的能力[3]。6)深化工学结合。学生在企业进行工学结合的过程中,结合自己在学校学习的知识,通过观察,找出自己工作岗位上存在的问题,由老师汇总,由老师和企业技术人员进行深入研讨,确定改造方案,学校和企业进行项目合作,学校取得的项目由创新创业工作室的老师和学生来完成,项目完成,帮助企业完成设备升级改造。通过以上过程实现学校和企业的项目、技术融合。学校把完成的项目汇总,进行宣传,从而获得与更多企业进行项目合作的机会。7)社会服务和保障机制。通过学校的宣传,会有更多的企业与学校合作,学校为社会服务的机会大大增加,并且要建立相应的保障机制[4]。8)师资培训。学校教师要定期去企业培训,深度参与企业售后、自动化系统集成等工程项目的实施。

工业机器人论文第9篇

关键词 机器人;CDIO;科技创新能力;校企合作

中图分类号:G642 文献标识码:B

文章编号:1671-489X(2016)22-0049-03

On Collaborative Training of Undergraduate Technology Inno-

vation Ability with Carrier of Robot//LIU Baojun, ZHOU Yanming,

PENG Fang, WANG Fan, NI Liyong

Abstract Taken robot, a typical mechatronical system as the carrier, collaborative training of undergraduate technology innovation ability

is implemented with the idea of CDIO engineering education via mul-

tiple styles and multiple channels such as enhancing teaching reform and creative experiment project, project-based extracurricular tech-nology training activities, participation in teacher’s science research project and university-enterprise cooperation cultivation, and it is obviously proved that the ability is greatly upgraded.

Key words robot; CDIO; technology innovation ability; university-enterprise cooperation

1 引言

创新是民族进步的灵魂。大学生科技创新能力训练是目前我国高校培养大学生创新精神的重要研究课题。本课题以机器人这一典型的机电一体化系统为载体,采用CDIO工程教育理念,通过多环节、多渠道,成功实施大学生科技创新能力的协同培养实践。

2 机器人是大学生科技创新训练的重要载体

机器人是集机械结构、电子技术、计算机软件、自动控制和通信技术等多学科知识和新技术于一体的典型机电一体化系统,形式多样、应用广泛。而对于以应用型技术人才培养为核心任务的应用型大学,其大学生普遍具有思维活跃、喜爱应用实践和动手制作的特点。同时由于机器人自身构造和功能的无限可能性,大学生对机器人充满好奇和喜爱,也都十分渴望拥有自己设计和亲手制作的各类机器人作品。机器人目前已成为机械、自动化、电子、通信、计算机等各学科和专业大学生开展科技创新实践训练的重要载体[1]。

本课题运用由MIT倡导的CDIO工程教育理念,将机器人的理论知识、设计制作和创新构想等众多环节,通过注重实效“以学生为主体”的理论和实验课程教学改革、“教师―科协―学生”合作的大学生课外科技训练实践、学生参与教师科研项目、校企合作共建研究服务平台为工业企业提供应用支持等多渠道来实施协同育人,更好地引导大学生开展广泛而持续性的机器人构思、设计和制作活动,提高广大学生学习兴趣,增强学习动力和信心,助推相关各专业的建设与发展,其目的在于培养出一大批理论扎实、应用实践能力强、拥有创新精神和能力的应用型人才,增强办学特色。

3 基于CDIO理念开展大学生科技创新能力协同培养的实践途径

CDIO(Conceive-Design-Implement-Operation,即构思―设计―实现―运行)国际工程教育理念由麻省理工学院(MIT)和瑞典皇家理工学院等共同发起和倡导,并认为:应为学生提供基于产品开发全周期的重视工程基础的工程教育环境。学生应该在学校、工业和社会环境下,按照一个产品或系统从基本构想、设计、研制实现直到实际运行的完整开发过程这种情境,学会解决问题,并完成特定的工程或项目[2]。

以机器人这一典型机电一体化系统为载体,将CDIO工程教育理念进一步拓宽,运用到大学生科技创新能力的协同育人实践,构成多环节、多渠道的训练和培养途径。

日常教学注重教学改革,开展CDIO项目式创新实验 在平常的理论和实践课堂教学中,教师坚持“以学生为主体”的原则,重视启发式教学、交互式教学、案例教学法、合作学习、项目教学法等教学方法的运用。例如:通过机械设计、工业机器人、机电一体化系统、液压与气动技术、材料成型等课程的课程设计或实验,强化大学生良好的机械设计和制作能力;通过电子技术、传感器、单片机、计算机控制技术等一系列课程的教学改革实践,奠定大学生良好的电路设计和软件编程能力。提高课程实践教学比重,而且更重视实践的内容,通过机电一体化综合实践、自动化制造系统实践、自动化专业综合实践等,以自动巡线机器人、分拣机器人、搬运机器人、表情C器人、篮球机器人等综合性课题设计,由学生组成项目开发小组,学生因此塑造了基本、稳固而系统性的机器人设计开发思想。

实验实训环节是促进大学生理解和消化吸收理论知识、提高动手实践和应用能力的关键环节。就机电类专业而言,除拥有一系列的基础和专业实验室外,还设置了机电综合创新实训室、柔性制造自动化控制生产线实训室、慧鱼机电一体化创新实训室、机器人综合创新设计实训室等综合创新实训空间,同时添置如工程机器人、水中机器人、空中机器人等各类新型机器人设备。丰富的机器人相关实验设备和开放的实验实训管理机制,为大学生开展创新实验提供了条件。

结合CDIO项目式训练理念,实验实训的课内环节鼓励学生自己构思实验实训课题、设计课题内容、引导开展综合性实验项目,课外环节则大力鼓励学生主动发掘社会生活中的实际需求、构思和设计综合创新性应用实践项目并加以实现,从而很好地激发学生的主动性和创新思维,这已成为训练大学生科技创新能力的基础环节[3]。

基于CDIO理念、以机器人为载体的大学生课外科技训练 机器人课外科技竞赛项目通过吸引机械、自动化、电信、计算机学院等相关学科各专业学生开展协作性的设计和制作,并不断改进和完善,形成功能较为完善的机器人科技作品。通过参加各类机器人学科竞赛,在激烈的比赛过程中发现不足并及时调整,争取最好的表现。在机器人设计、制作和竞赛过程中,学生既能充分利用已学理论知识并转化应用到实际的机器人作品设计和制作中,又会遇到各种未学过的知识和技术需要学习和钻研,而遇到各种困难时则需要发现问题、查找问题的根本原因并努力设法解决。由于机器人的技术综合性,整个过程通常由多人组成的不同功能设计小组合作完成,需要学生间和小组间的互相合作和良好的沟通交流。

因而,机器人作品从构思、设计和制作、调试完成到实际参赛时的作品运行或对抗性比赛的完整过程,完全契合目前CDIO“产品开发全生命周期”的工程教育理念。既可以锻炼大学生将理论知识转化为具体应用设计和实践制作的能力,提高发现问题和解决问题的能力,也可以很好地锻炼其团队合作和沟通交流能力,并能通过参加整个过程拓宽视野,结交不同学科和爱好的朋友,更全面地认识和理解机器人[4]。

日常教学不仅注重培养大学生良好的理论和实践基础,而且在教学中渗透各种以机器人为典型载体的各类机电一体化自动化设备的设计思想。与此同时,以大学生参加机器人科技竞赛的作品作为课堂讲解的典型设计案例,较好地丰富了课堂的教学内容,促使更多的学生在搞好平时学习的基础上,更渴望参加到课外的机器人设计和制作实践活动中来。目前在机器人学科竞赛项目指导教师团队的指导下,自动化科技协会每年招新人数屡创新高,吸引力不断增强,成员不仅来自机电、自动化、计算机、电子技术、通信等工科专业,甚至经管、人文、管理等文管类专业的学生也积极参加。

实践证明,通过机器人的课内外科技实践活动,已经培养了一大批理论基础好、实践应用能力强、工程素养良好、富有创新能力的应用型大学生,并逐渐达到“基础广泛、大量培训、选优参赛、以赛促学、以赛促教、以研带赛、教学研赛共赢”的良性循环。

带领学生参加教师团队科研项目训练,提升科技创新能力 机器人指导教师团队目前由学校多个不同专业的教师团队专项负责,以机器人相关各类科技竞赛项目作品的指导训练为基础,引导学生参加教师科研项目训练,如管线巡检机器人研制、消防救援机器人研制、智能轮椅服务机器人研制、注塑机械手控制系统开发、六轴工业机器人控制系统开发等,加强对学生的科技文献查阅能力、方案构思与知识综合运用能力、问题解决能力、团队协作和合作能力的指导和培养,并突出创新能力、实践应用能力的培养和学生的个性化发展,很好地提高了学生的专业技能和钻研深度,拓宽了学生的科研视野,增强了学生的科研态度和职业道德精神。这正符合CDIO培养能力大纲中关于个人专业能力和职业素养、团队合作与交流能力的要求。

实践证明,由来自多个学科、不同专业方向的教师作为机器人团队指导教师,可以显著提高大学生的科技训练指导水平。多学科不同专业的指导教师团队也可以吸引更多不同专业的学生参加到机器人的科技实践活动和教师的科研项目中,有利于师生之间、学生之间的互相交流和技术提高,不断提高机器人的整体设计水平,更有利于通过不同视角的思想交叉碰撞而激发和形成新的创新思维。

由于机器人技术的交叉性和迅速发展,跨学科不同专业的机器人教师团队指导学生开展科研项目训练,已成为培养优秀大学生科技创新能力的重要途径。

校企合作共建机器人研究和服务平台,协同培养应用型人才 重视校企合作,建设深入合作的大学生实践基地,在通常的参观实习活动时,安排学生开展顶岗实习锻炼,甚至为企业的生产制造过程、产品开发与设计提出合理化建议和可行的设计方案,为学生实践能力的提高做好实践环境保障,成为大学生科技创新能力训练的又一重要渠道。由于大学生在机器人普及教育阶段时已经打下良好基础,在机器人科技竞赛方面取得优异成绩,在科研训练上展现出良好的应用能力和创新能力,从事自动化生产技术和机器人应用推广的某知名企业主动与学校开展合作建设中山市工业机器人技术应用推广服务中心;并共同建设校级机器人技术应用和机电研究平台,进一步推动学校的机器人技术教育和应用服务。这为大学生开展CDIO体系中社会环境下的科研训练提供了新途径。

借助机器人技术研究平台和应用服务中心的设备和资源,更多大学生参与工业机器人项目开发,直接为机器人在工业企业的应用提供技术支持服务,有力助推了校企合作共同培养高素质的应用型技术人才。而该合作项目目前已成为创新强校质量工程项目,正有力地推动机器人相关学科和专业的建设和发展,增强大学生科技创新能力的训练,提高应用型人才的培养质量。

4 结语

多年来,以机器人这一涉及多学科不同专业知识和技能的典型产品为载体,运用国际先进的CDIO工程教育理念,通过日常教学改革与创新实验实训环节、大学生课外科技竞赛训练、参加教师科研项目训练、校企合作平台共同培养锻炼等多环节、多途径,开展大学生科技创新能力的协同培养实践,取得良好的成效。

在科技训练实践过程中,逐步探索形成一套行之有效的“基础工程、专项强化、综合训练、自主创新”四阶段、阶梯式的大学生科技创新能力训练体系,对大学生的科技创新能力培养起到良好的保障和推动作用。大学生在校期间以机器人为主要设计和研究载体,获得众多全国性学生科技竞赛一等奖,开展国家和省级大学生创新创业项目,毕业后进入国际知名企业和大型高新技术企业从事相关关键技术开发岗位,在机器人行业成功创业并获得省创新创业资金扶持等,正是本课题成果的有力佐证。参考文I

[1]张云洲,吴成东,崔建江,等.基于机器人竞赛的大学生创新素质培养与实践[J].电气电子教学学报,2007,29(1):

116-119.

[2]顾学雍.联结理论与实践的CDIO:清华大学创新性工程教育的探索[J].高等工程教育研究,2009(1):11-23.

相关文章
相关期刊
友情链接