欢迎来到易发表网,发表咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

处理工艺论文优选九篇

时间:2022-10-08 21:50:51

处理工艺论文

处理工艺论文第1篇

各元素在合金中的作用如下:(1)Si和Mg的影响Si和Mg是该铝型材合金的主要组成元素,其结合形成了产品的主要强化相Mg2Si。但Si和Mg比例不同,形成强化相的数量和分布有差别,这直接影响到产品日处理后的力学性能。研究表明[3],对于Al-Mg-Si三元合金,当其处于ɑ(Al)-Mg2Si-Si三相区间内时,具有最大的抗拉强度。对于Al-Mg-Si三元合金,Mg2Si含量增加,会提高其抗拉强度,但会降低其伸长率;当Mg2Si含量为定值时,Si含量增加,抗拉强度增加,伸长率变化不大,但当Si出现过剩相时,合金的耐蚀性随过剩相含量的增加而降低,脆性增大;当Si含量为定值时,增加Mg含量,也会提高抗拉强度。合金位于ɑ(Al)-Mg2Si两相区或Al单相区(Mg2Si固溶于基体),具有最佳的耐蚀性能。公司根据以上机理,确定了内控标准。(2)Mn的影响Mn亦可强化基体,提高产品的韧性和耐蚀性,但Mn含量过多时,会减少Si的强化效果,形成晶内偏析,产生粗精组织,降低铸锭的挤压性能,因此,要适当控合金中Mn含量。(3)Ti的影响Ti是晶粒细化剂,可以避免铸造时形成热裂纹,减少铸锭中的柱状晶组织,细化铸锭的晶粒度,减少挤压产品的各向异性。(4)Zn和Cu的影响少量的Zn和Cu可以提高铝型材的强度,耐蚀性变化不大,但添加量过多时会降低铝型材的抗腐蚀性。同时,少量的Cu可以减少人工时效后机械性能的下降。(5)Fe的影响Fe是铝型材中的杂质元素,会损害型材的综合性能,应尽量减少其含量。综上所述:在该产品用铝合金成分配比中,镁硅比应保持在1.18左右,此时铝型材内强化相绝大部分是Mg2Si,含有少量的富余Si,Si含量亦不过剩,此时强度较高,塑性和抗蚀性未降低;由于没有过剩的硅含量,Mn含量可以处于国标的下限。Fe含量应根据原铝锭冶炼水平,越低越好。

2热处理工艺控制

2.1铝棒均质热处理工艺控制在铝棒铸造成型过程中,受合金成分、浓度梯度、温度梯度、冷却强度等因素的影响,铝棒不可避免的会出现树枝晶、蔷薇晶、带状组织、偏析、非平衡相、铸造应力等不希望得到组织或状态,为了在挤压前消除这些缺陷,优化铸棒组织,需要对铝合金棒进行均质处理。均质处理时一是要考虑铝棒不能过烧,出现二次共晶;二是要使粗大的针状、带状和非平衡相充分溶解。以XX公司35吨均质炉,装入直径292mm铝棒为例,考虑到热电偶误差,保温温度应控制在570±5℃,保温6h为宜,低于560℃,可能出现组织不均匀区域(低倍组织),挤压型材力学性能较低;高于585℃,将会使晶界粗化,引起过烧,严重时形成难熔质点。保温时间应在5.5~6.5h之间,过高和过低都影响铝型材力学性能。以保温温度570℃,保温6h为参照,挤压工艺相同的情况下,当保温温度延长至7.5h时,抗拉强度下降约11%。冷却时,采取风冷+水冷分级的冷却方式,一方面使冷却介质均匀分布,一方面不至于冷却速度过慢或扩快,影响均质效果。

2.2加热固溶热处理工艺控制研究表明[4],模具出口处型材温度受铝棒加热温度、挤压速度和其它因素多重影响,其中铝棒加热温度影响强度约44%,挤压速度影响强度约32%。对于本文研究的该型材产品,由于合金为6082合金,本身变形抗力较大,同时型材截面复杂,幅面宽,因此,适宜较高的铝棒加热温度,低的挤压速度。对铝棒加热的控制主要是加热温度和保温时间,对于加热温度控制,主要考虑因素是型材出口温度(固溶温度)和变形抗力,铝棒加热温度过低,将造成变形抗力过大,出现模具崩裂或走水;即使挤出型材,型材出口温度较低,型材性能较差。考虑到铝棒从铝棒炉出来到进入挤压机有一定的时间间隙,铝棒加热温度应适当提高。对于铝棒保温时间控制,主要考虑析出物溶解程度和铝棒温度均匀性,对于长棒炉,通过改善加热方式和内部热循环方式,尽可能提高炉内温度均匀性。对生产该型材的铝棒,保温时间应控制在3分钟以上,能够保证析出相的充分溶解,如果铝棒进入加热炉前长时间放置,保温时间应延长。同时,实践证明,保温时间继续延长,对挤出型材性能影响不大。当生产铝型材使用在线淬火方式时,型材出口温度即为固溶温度。固溶温度与铝棒加热温度直接相关。对于生产该型材的6082合金,理论上,固溶温度越高,越有利于强化相的彻底固溶。由上述可知,其它挤压工艺相同的情况下,铝棒加热温度直接决定固溶温度,因此铝棒温加热温度越高,固溶的越好,但固溶温度要低于合金最低熔点,防止合金过烧。生产实践表明,当固溶温度处于520-545℃时,型材具有较高的性能;此时,采用某挤压工艺时,铝棒加热温度应控制在485~510℃。

2.3淬火工艺控制由于生产本文所述型材产品使用的是6082铝合金,该合金的淬火敏感性比6061、6063等牌号合金要高[2],因此,淬火强度要高,否则,将影响产品强度和时效效果。在曾经使用过的水淬、强风+雾、强风等淬火方式中,水淬冷却强度最大,淬火后硬度高,但淬火后由于型材厚度不均,容易出现产品的翘曲和变形,造成废品。强风+雾的淬火方式亦能达到产品性能要求,但对光身料产品,气雾容易在产品形成水渍,增大后期处理难度。Xx公司通过改变出风口位置,改善气体质量和温度,可以使产品强度和硬度等性能指标达到要求。在淬火工艺控制过程中,该型材的淬火冷却速度要保证达到300℃以上。

2.4时效工艺控制经过固溶淬火后的铝型材得到一种不稳定的固溶体,此时其力学性能并不能达到最大;同时,由于该固溶体处于过饱和状态,又有较大的析出倾向,如果不对其进行人工时效处理,析出相将在晶界处聚集,出现晶间腐蚀或应力腐蚀。在实际生产过程中,由于可能需要整形等工序,人工时效前产品会在自然状态放置一段时间,相当于一个自然时效过程。生产实践显示,自然状态放置时间应尽量避免在5~7h之间,在此时间区间内,相同人工时效工艺下,力学性能偏低。在人工时效工艺参数优化过程中,当时效温度为175℃吴宗闯,等:集装箱铝型材生产过程中热处理工艺控制初探•89•时,保温6.5h,产品性能最优;但延长保温时间,产品强度、硬度等力学性能变化不大,保温时间延长至15h,产品性能略有降低,强度降低小于3%。但保温时间低于5.5h,力学性能下降明显。考虑企业成本控制因素,保温时间控制6~7h最佳。

3结束语

处理工艺论文第2篇

1.1粪便污水主要来源于城市公厕、小区及企业等的化粪池。粪水中含有大量卫生用品、化纤织物、木头、塑料等杂物。若使用格栅除污机拦截,会出现缠绕等问题,且格栅不能完全密闭,产生的臭气对周边环境造成影响。

1.2由于大多数粪便中,新鲜粪便的含量不高,含水率较大。若直接采用厌氧消化工艺,会导致处理池容积过大,能耗高,沼气量低等问题。

1.3粪便污水中含有大量的泥沙和污泥,需要进行必要的污泥处理。

2粪便处理工艺设计

2.1粪便处理模式。该粪便处理站处理规模为200t/d。粪便处理采用固液分离,絮凝脱水、整体除臭工艺。即粪便首先进行固液分离处理,处理后的粪便过滤液通过调节池,均匀的供给到絮凝脱水设备,通过絮凝脱水设备将水渣分离。其中脱水后的上滤液进行后续上滤液处理;固液分离中产生的垃圾杂物以及絮凝脱水后的粪渣进行焚烧处理。在粪便处理的整个过程中增加除臭设备,以减小处理过程中对周边环境的影响。

2.2固液分离、絮凝脱水阶段

2.2.1固液分离阶段。粪便通过吸粪车运送到粪便处理站后,进入固液分离装置进行初步分离处理。主要作用是去除粪便中的大块沉淀物和大于20mm的漂浮悬浮物以及90%以上的大于0.5mm的砂。吸粪车与固液分离装置采用快速接头密闭对接,粪便污水在抽吸泵的负压下快速进入固液分离装置,可避免卸粪过程中粪液泄露,对周围环境产生影响。

2.2.2调节池。调节池为地下封闭钢筋混凝土池子,具有水力和水质调节作用。经固液分离后的粪便污水进入粪便调节池。在调节池中设置搅拌装置,对粪便废物进行搅拌,防止表面结痂,中间悬浮,池底沉淀固化,避免对后续工艺及设备的运行产生不利的影响。同时,一些有机物在调节池中可进行缺氧水解反应。

2.2.3絮凝脱水阶段。粪便经过调节池,进入絮凝脱水阶段。在絮凝脱水阶段,污泥脱水机采用螺压式浓缩、脱水一体机。在污水处理过程中,絮凝脱水的主要设备为脱水机,如带压式脱水机、板框式脱水机、螺压式脱水机等。其中带压式脱水机、板框式脱水机是污水处理中应用较为广泛的两种脱水机。但是,两种脱水机均是开放式操作,密封性较差,易产生恶臭,需大量抽风换气,不适宜粪便脱水。而螺压式脱水机具有低转速、全封闭、可连续运行等特点。因此该项目中采用螺压式浓缩脱水一体机,共两台,单台处理能力8~12m3/h。粪便污水通过调节池的提升泵,进入螺压式污泥浓缩脱水机。同时投加混凝剂,对污泥进行调质和絮凝。絮凝脱水后液体的固悬物含量大幅下降,COD含量也有大幅下降。同时,此次设计中,在接粪管及污泥脱水机中均设有冲洗装置,对快速接口和脱水机的滤网内、外侧进行清洗,避免粪便固化、遗撒、堵塞滤网。

2.2.4整体除臭。该项目中,采用生物滤床和植物液雾化吸收的技术,降解粪便处理厂臭气对大气的二次污染,保证处理厂不对工作人员及周围居民造成影响,各项环境污染控制指标符合国家有关标准。

2.3后续上滤液处理。絮凝脱水后的上滤液需要进一步处理。上滤液采用厌氧生化与MBR工艺相结合,处理后排入市政污水管网。

2.3.1厌氧生化处理。厌氧生化处理采用UASB工艺。在处理粪便上滤液方面,欧美等国家采用了UASB工艺,并且取得了良好的效果。我国也有工程实例,如北京小张家口粪便消纳站等也采用了UASB工艺。UASB可以提高厌氧反应器的负荷及处理效率,且占地较小。而且污泥停留时间的延长、污泥浓度的提高,使厌氧系统更具有稳定性,有效增强了对不良因素有毒物质的适应性。此次设计中,UASB工艺采用两相厌氧设计。

2.3.2MBR工艺。常规的MBR工艺中一般采用微生物悬浮生长,微生物的浓度约10-15kg/m3,使得膜分离装置的污染概率增加,膜表面易结垢。此次设计中,采用固化微生物技术,将游离的微生物限定在一定空间内(填料内),使其保持活性,可反复利用。固定化微生物处理技术在粪便上滤液处理中得到了一定的应用且效果良好。

2.4杂物及粪渣处理。目前,国内对于粪便处理过程中的杂物及粪渣采用的几种处理方法:a.经过粗过滤产生的大块沉积物、大粒径悬浮物及砂石,送垃圾填埋场填埋处理;b.经絮凝脱水阶段后,产生的粪渣可送至化肥厂制成有机肥料,使得资源有效利用。也可以进行堆肥处理;c.条件允许的情况下,可将粪便处理过程中产生的杂物、粪渣进行焚烧处理,进而实现资源转换为能源利用。该项目由于紧邻当地垃圾焚烧发电厂,因此可将粪便处理过程中产生的杂物、粪渣,送至垃圾焚烧发电厂,焚烧处理。既降低了建设运行成本,又可以转换为能源再次利用。

3结论

处理工艺论文第3篇

摘要:目前是市政发展到重要阶段,在此阶段中,人们的生活水平在不断的提高,但是伴随人们生活水平的不但提高,其对于水资源的污染也在逐渐严重,因此在目前的市政发展过程中,需要对相关的污水进行处理。在当前的水污染处理过程中,第一应进行污水处理工艺的提升,保证水资源的可回收性,其次提升保护意识,降低水污染的发生条件,实现污水的资源化利用。

关键词:市政污水;处理工艺;回用利用技术

引言:水资源关乎整个社会的生存与发展,因此人们在日常生活中必须减少水资源的浪费,提高水源的利用率,这样才能够缓解当前水资源紧张的局面。市政污水回用和污水处理技术是提高水资源利用的主要手段,因此市政部门需将污水处理作为重点工作,从根本上构建市政水循环系统,有效改善市政污水的问题。

1市政污水处理以及回用的意义

近年来,全球水资源日趋紧张,世界上已经有越来越多的地区缺少水源,如今很多国家都对污水处理、回用进行规划,将处理后的污水作为一种新的水源重新投入使用,以缓解水资源的紧张情况。若污水的重新利用率和再生利用率均能达到20%,就能缓解国家的缺水情况,将污水回用。这样不仅能够减少污水排放量,还能够在农业中发展污水再生技术,促进循环用水,在工业中将循环给水系统应用于实际的工业生产中。污水经过处理后回用,不仅能够减少污水排放量,还能够回收污水中的其他有用物质,从而降低湖泊、江河等水源的污染率,保护自然环境,保护水资源,维持生态平衡。污水经过处理后可用于农业灌溉,植物能够有效吸收污水中的营养物质,因此污水回用于农业生产中,能够有效解决和防治环境卫生问题。生活中排放生活污水、工业废水还会造成地下水污染,从某种意义上看,处理后的污水重新用于生活,能够保护自然环境,减少污染。

2市政污水治理现状

市政在污水治理方面的工作一直都没有停止过,传统方式的污水治理都是在强调污水排放的标准。市政工作人员在污水处理方面制定了一些标准和原则,所有的污水排放之前都需要进行检测,确保污水适合制定的标准才允许排放。而市政工作人员还强调排放污水的企业自行处理已经排放掉的废水。但该种模式的污水治理并不能起到明显的效果,而各个企业分别治理污水,无法达成一个统一的循环,水资源还是在持续地流失。经过国家环保部门对于污水治理工作的深入调查,最终决定改变污水治理的策略。通过市政所制定的污水处理厂统一处理污水,并致力于打造成一个完整的污水处理循环系统。但当前状态下的市政污水处理还并没有达到目标,在污水处理工作中也存在着一些问题,促使市政方面无法达成污水治理的目标。

典型的市政污水处理工艺流程主要包括机械处理、生化处理、污泥处理等工段。有机械处理以及生化处理构成的系统属于二级处理系统,其中BOD5和SS去除率可达90%-98%。处理效果介于一级和二级处理中间的一般称为强化以及处理、一级半处理或不完全二级处理,主要有高负荷生物处理法和化学处理法两大类,BOD5去除率达45%-75%。具有生物除磷脱氮功能的二级处理系统通常称为深度二级处理。为了除特定的物质,在二级处理之后设置的处理系统属于三级处理,例如化学除磷,活性炭吸附等。

3污水的处理与回用

随着时代的变迁,人类的思想发生了重大的转变。就对污水的处理而言,在以前,人类常采用简单、粗放的处理模式;而现如今,尤其是在可持续发展战略的影响下,人类懂得了变废为宝,加强了对污水的回收利用率。只有这样,才能有利于水资源的循环、可持续利用,才能有利于我国经济持续、健康、快速、稳定的发展。下面,本文将从污水处理厂的规模、数量与选址,处理工艺和污水回用三个维度对该问题进行如下的阐述。

3.1污水处理厂的规模、数量与选址

市政污水处理厂设计是一项非常复杂的工程,其规模、数量与选址都是设计的重要组成部分。具体地讲,主要体现在这样三个方面:首先,就污水处理厂的规模而言,我们在设计时,应当先进行近期及远期规模的研究,以此来确定工程的分期。其次,就污水处理厂的数量而言,其设计不应当局限于传统的经验,而应当根据具体实际的需求,科学地分配污水处理厂的数量,不应过分集中,而且要充分考虑市政的实际承受能力,不应盲目地扩建,并最终形成一种大、中、小相结合的污水处理厂布局规划。最后,就污水处理厂地选址而言,应首先进行实际的调查走访,根据回用水的需求,在适当位置设计出合适的污水处理厂。除此之外,应摒弃传统的规划方式,不应将厂址选址河系的下游或者市政的郊区,因为这违背了污水资源化的原则。

市政污水处理厂是进行市政污水处理的主力军,我们必须对其进行科学地规划和设计,使其充分发挥自身的作用,为污水处理事业做出应有的贡献。

3.2处理工艺

污水处理工艺是指对市政生活污水和工业废水的各种经济、合理、科学、行之有效的工艺方法。根据《水污染控制工程》,我们将其分为不溶态污染物的分离技术、污染物的生物化学转化技术、污染物的化学转化技术、溶解态污染物的物理化学分离技术四类。但是,在实际操作中,我们应按照污水水质和回用水水质的要求,对水处理单元进行多种组合,选择出既经济又有可操作性的污水处理流程。

在确定进水水质的问题上,我们应事先在城区选择几个有代表性的排污口,然后对其进行定期的检测,并用加权平均的方法计算出其水质的浓度。因此,我们应当事先对该厂附近地区污水再生水需求情况的调查,然后对处理工艺进行适当的延长和完善,在此基础上,确定切实可行的处理工艺。目前,许多市政污水处理厂迫于法律和行政部门的压力,普遍采用了二级生物处理工艺,也就是用生物处理法将污水中各种复杂的有机物氧化降解为简单的物质。

3.3污水回用

污水回用是指将废水或污水经二级处理和深度处理后回用于生产系统或生活杂用。污水回用的范围很广,从工业上的重复利用水体的补给水和生活用水。污水回用既可以有效地节约和利用有限的和宝贵的淡水资源,又可以减少污水或废水的排放量,减轻水环境的污染,还可以缓解市政排水管道的超负荷现象,具有明显的社会效益、环境效益和经济效益。

我国是一个贫水国家,许多市政面临着水资源短缺的危机。在这种形势下,加强污水的回用就成为解决这一问题的重要举措。到目前为止,许多市政在污水回用方面做出了显著的成绩,如大连、青岛、天津等,通过它们的发展实践证明,市政污水回用有着重要的经济价值,应当加大实施力度。

在污水回用的过程中,有许多问题应当引起我们高度重视,如环境污染问题。污水回用需要很大的资金投入做支撑,然而,市政污水处理厂的资金毕竟是有限的,这就需要政府加大支持力度,保证污水回用事业的顺利完成。

4总结:

当今世界已经有很多国家都属于贫水国家,而我国正是属于这类国家的范围之内。淡水资源环境遭到迫坏,水资源更加难以获得。国家的发展虽然需要依靠经济,但国家发展的根本就是国家的资源,水资源也是国家资源之一,甚至关系到了国民的身心健康。确保水资源的充足,提高水资源的利用效率是国家需要关注的问题。国家支持污水回用利用技术的发展能够有效地完善污水处理问题,从而实现我国的长远发展。

参考文献:

[1]市政再生水系统优化研究[J].伍茂春.环境与发展.2018(02)

[2]农产品加工工业园区污水处理工程设计应用[J].陈斌,马雪林,陈龙.中国资源综合利用.2018(07)

[3]对环境工程中市政污水处理问题的探讨[J].王志刚.农家参谋.2018(17)

处理工艺论文第4篇

盾构刀圈的制造工艺一般为:下料——锻造——软化退火——机械加工——淬火、回火——精加工。因盾构滚刀的刀圈承受严重的冲击载荷和磨料磨损,因此选用刀圈的材料应具有较高的屈服强度,避免刀刃端在高应力下发生变形或压溃变形;应有足够高的硬度,有利于提高耐磨性,减少刀圈的磨损;应具有良好的冲击韧性,可防止刀圈工作时的断裂和崩刀;应具有良好的抗回火性能,提高材料的热稳定性,保证刀圈在热装和滚压、破碎岩体过程中因摩擦热而升温时不会过分降低硬度;刀圈材料还应该具有好的热加工和冷加工性能,材料成本相对较低、制造方便等。目前,国内外制造盾构刀圈材料主要为模具钢,常用刀圈材料的化学成分如表1所示[8~11]。可以看出,刀圈材料的含碳量一般在0.4%~0.9%,较高的含碳量可以提高热处理后刀圈材料的硬度,保证耐磨性能和使用寿命。对于模具材料,热处理后全相组织中马氏体的硬度主要取决于马氏体的含碳量,而合金元素对硬度的影响较小。从表1可看出,刀圈材料合金中含有较高的Cr、Mo、W、Ni、Si、V等合金元素,主要是为了提高热处理时的淬透性,提高刀圈截面硬度的均匀性,提高回火抗力及全相组织的热稳定性。

2热处理工艺

(1)在盾构刀具制造材料中,4Cr5Mo-SiVl钢是常用于制造刀圈的材料之一。4Cr5Mo-SiVl相当于美国牌号AISI-H13,日本JIS-SKD61、德国X40CrMoV5-l,是一种铬系中合金高强韧热作模具钢,该钢的特点是含铬量较多,具有较高的淬透性,如厚度为150mm的钢可油冷淬透。由于合金元素含量较高,具有较高的回火抗力和抗氧化性。模锻时锻造温度范围较窄,应严格控制锻造温度,模锻加热温度在1120~1150℃,始锻温度在1080~1120℃,终锻温度不小于850℃,模锻后应该缓冷并及时退火,以免产生裂纹。4Cr5-MoSiVl钢球化退火工艺为860℃±10℃×2h,降温到750℃±10℃×4h,500℃左右出炉。普通退火工艺为845~880℃×2~4h,然后缓冷到500℃左右出炉。4Cr5MoSiVl钢刀圈材料淬火加热温度一般为1020~1050℃,空冷或油冷材料的硬度HRC55~58,淬火组织为细针和隐针马氏体、未溶的碳化物和残余奥氏体,需适当的回火提高韧性。文献[12]在4Cr5MoSiVl基础上,通过提高含碳量至0.5%,适当增加Mo、Cr、V合金元素含量,热处理工艺为1060℃真空淬火+550℃回火3次,回火后硬度HRC55~58,且具有良好的韧性。3次回火的目的是由于合金元素含量较高,淬火后全相组织中残余奥氏体含量较高、硬度偏低,淬火后第一次回火可促使部分奥氏体的分解和对淬火马氏体进行回火,而在第一次回火冷却过程中部分未分解的奥氏体会转变为二次马氏体;第二次回火是对二次马氏体的回火并进一步促进奥氏体分解,减小奥氏体含量;通过第三次回火可使奥氏体含量达到较低水平,提高材料硬度和组织稳定性。(2)进口盾构刀圈材料中,有的用40CrNiMo制造刀圈。40CrNiMo属于低合金超高强度钢,常用于调质结构钢,具有良好的韧性、强度和耐磨性。40CrNiMo是在热作模具钢50CrNiMo钢的基础上降低含碳量而来,因此韧性提高。用40CrNiMo钢制造切割圈,热处理采用870℃淬火220℃回火,硬度为HRC50~55,全相组织为回火马氏体和少量残余奥氏体组织。文献[13]分析进口40CrNi-Mo刀圈材料与国产4Cr5MoSiVl的刀圈材料,发现进口刀圈材料的硬度值从刀圈刃部至内圈逐渐减小,表面硬度为HV627(HRC56.5)、心部硬度HV530(HRC51),但具有很高的冲击值、良好的综合力学性能和耐磨性,进口刀圈材料基体组织主要为回火板条马氏体,细小的碳化物不连续地分布在马氏体板条间及晶粒内部。而国产4Cr5MoSiVl全相组织虽然也为回火马氏体,但析出碳化物沿晶界及马氏体板条间分布,导致刀圈的冲击值降低,使用寿命低于进口刀圈。(3)5Cr5MoSiV属于中合金模具钢,热处理时材料的硬度一般随淬火温度的升高而增加,在1060~1100℃时硬度达到峰值,淬火后回火温度在500~560℃时硬度达到最大值[14]。5Cr5MoSiV的热处理工艺一般为1060~1100℃淬火+530~560℃2次回火,硬度HRC57~60。淬火后多次回火使奥氏体充分分解或回火冷却过程发生马氏体转变,减少奥氏体量、稳定组织和提高材料硬度,淬火回火的全相组织为回火马氏体和其上弥散分布的碳化物,如VC、Mo2C及M23C和少量M3C型碳化物,碳化物在基体中弥散分布能提高材料的硬度及其耐磨性能。文献[15]研究了热处理对5Cr5MoSiV钢硬度和耐磨性的影响,结果表明,5Cr5MoSiV钢较合适的热处理工艺为1060℃淬火+530℃2次回火,可获得较高的硬度(HRC57~58)和良好的耐磨性。为了进一步提高5Cr5MoSiV材料的韧性和塑性,合金化时可再加入微量的稀土和钨,形成5Cr5MoWVSiRe钢[16],钢中加入钨能形成复合碳化物,提高耐磨性;稀土的加入可以净化钢液、细化组织,能够改善钢的力学性能,耐磨寿命达到或略超过进口刀圈的寿命。(4)50CrMoV属于低合金模具钢,用50Cr-MoV制造刀圈的模锻始锻温度为1100℃,终锻温度900℃。由于材料含碳量较高,存在提高淬透性元素Cr、Mo,模锻空冷后可产生马氏体组织,硬度较高。因此模锻时要注意严格控制终锻温度和锻造后的锻件冷却速度,以防止锻造裂纹发生,模锻后刀圈在机械加工前应进行软化退火,温度在750℃~780℃。刀圈的奥氏体加热温度为870~880℃。为防止刀圈在淬火加热时发生表面脱碳,淬火加热最好在可控气氛热处理炉内进行或采用真空淬火热处理,淬火后的刀圈应及时进行热处理,50CrMoV回火温度在500℃~550℃,回火后刀圈的硬度HRC56~59。(5)6Cr4Mo2W2V为一种高合金模具钢,含有较高的铬、钼和钨,具有良好淬透性、耐磨性和韧性,应用于岩石抗压硬度较高的情况,是制造滚刀刀圈理想材料之一。实验表明[17],6Cr4-Mo2W2V钢制滚刀的使用寿命是9Cr2Mo钢制滚刀使用寿命的2倍以上,制造刀圈的热处理工艺为680℃回火、820℃加热、1150℃加热,预冷一定时间后在200℃等温处理,油冷、540℃3次回火,刀圈截面硬度HRC62~63,硬度分布均匀,刀圈材料中含有一定量的下贝氏体组织,形成回火马氏体和下贝氏体的复相组织,结果表明这种复合组织对提高滚刀的磨料磨损有利。(6)9Cr2Mo钢属于高碳低合金钢,一般作为Cr系冷轧辊用钢。9Cr2Mo钢制作刀圈材料,钢的硬度值控制在HRC54~58,用于软岩滚刀刀圈,具有耐磨性和经济效益[18]。9Cr2Mo钢通过等温淬火,可形成下贝氏体或下贝氏体和马氏体的复相组织,可提高耐磨性。9Cr2Mo钢淬火温度为840~860℃,淬火后硬度66~68HRC,回火温度360℃,硬度HRC56~57。淬火回火状态的全相组织为隐针状马氏体、针状马氏体、贝氏体组织和碳化物。文献[19]研究了热处理对9Cr2Mo钢硬度的影响,结果表明9Cr2Mo钢具有较高的淬透性,实际生产时热处理可采用油淬,加热至温度845℃淬火,硬度达HRC61,淬火全相组织为马氏体、Fe3C和残余奥氏体,随淬火温度的提高,全相组织中残余奥氏体增加、硬度降低,淬火后随回火温度的提高,硬度有降低的趋势,300℃以前回火硬度变化较小,HRC为57~61;淬火回火组织为回火马氏体、碳化物或回火马氏体、下贝氏体和碳化物。超过300℃回火,硬度下降较快。9Cr2Mo实际生产中可采用840℃淬火、300℃~360℃回火,可获得较高硬度(HRC54~57)和韧性。从上述分析可以看出,刀圈材料经热处理后的表面硬度较高,一般在HRC56-60,心部硬度HRC50-56,可以承受较大的冲击。对于软岩和中硬岩的刀圈材料,刀圈所受岩石的冲击力相对较小,可用利用刀圈的高硬度来提高碾压破岩效率,可用一般的工模具钢或高碳低合金模具钢制造,经淬火回火热处理使用。对于硬岩,刀圈所受岩石冲击力较大,为提高材料的耐磨性和冲击性能,可采用基体钢或中高碳中合金钢制造,配合合理的淬火或回火工艺,为提高刀圈的使用寿命,也可在刀圈刃部镶嵌硬质合金,以提高刀圈材料使用寿命。

3提高盾构滚刀刀圈材料耐磨性能的主要措施

分析国内外刀圈材料的组织和性能,提高盾构滚刀刀圈耐磨性和寿命的主要措施有材料、热处理、表面处理、破碎岩石的特性等方面。材料方面主要提高刀圈材料的纯净度,减小材料的成分偏析、带状偏析及其气体和夹杂物含量、细化刀圈材料的组织,提高材料的纯净度,采用电弧炉冶炼+炉外精炼,或采用电渣重熔等措施,提高材料的冶金质量。在热处理工艺方面应研究热处理工艺参数对组织和性能的影响规律和机理,确定合适的热处理加热温度、回火温度及回火次数,通过热处理细化材料的全相组织、提高刀圈的韧性。对于破碎工况,要分析了解岩石的硬度特征,对于硬岩工况,为了提高刀圈材料耐磨性,可以在刀圈工作部分镶嵌硬质合金刀头,或采用回火抗力较高的刀圈材料;对于软岩工况,适当提高刀圈材料的硬度,对耐磨性有利。刀体部分可选用耐磨合金钢材料,也可采用表面堆焊硬质合金、热喷涂耐磨层、渗氮或碳氮共渗等方法增加表面硬度,提高滚刀的耐磨性。

4结论

处理工艺论文第5篇

关键词:生活污水;湿地处理;工艺流程

一、概述

盘锦鼎翔集团现有常住人口1.2万人,平均日排放污水1万m3,多年来一直采取自然排放的方法,进入双台子河流域,对流域水质、周边地区及空气环境质量造成了很大的污染。同时,现有的排水系统淤积渗漏严重,区外采用明渠排放,给人民生活环境造成不良影响。

建设鼎翔集团人工湿地污水处理可使境内水系的水质得到极大的改善,逐步缓解和消除对环境的污染,保护本地区的生态环境。同时与城市生态建设紧密结合,增加城市水面、绿地面积与景观用水量,对于改善盘锦市生态环境,营造亲水文化氛围,提高盘锦市整体形象具有十分重要意义。

二、处理规模

盘锦市鼎翔集团污水处理规模为:10000m3/d,小时流量按500m3/h设计。

三、设计水质

3.1原水水质

根据盘锦市环境监测站的分析,污水水质为:COD110-138mg/l,BOD536-50mg/l,SS50-80mg/l,NH3-N18-24mg/l,TP1.5mg/l,pH8.05。

3.2出水水质

根据盘锦市总体规划,出水水质达到辽宁省污水综合排放标准(DB21/1627/2008)中Ⅰ级标准,COD50mg/l,BOD530mg/l,SS70mg/l,NH3-N5mg/l,TP0.5mg/l,pH6-9。

四、生活污水湿地处理技术工艺

4.1概述

污水的人工湿地处理是近年来发展起来的一种新型的污水处理技术,是一种人工建造和监督控制的与沼泽类似的地面,它的基质通常是碎石,植物生长于碎石床介质中。这种湿地系统是在一定长宽比及底面有坡度的洼地中,由填料、土壤和种植在表面具有处理性能好、成活率高、抗水性能强、生长周期长、美观及具有经济价值的水生植物(如芦苇)形成一个独特的生态系统,污水在系统中流动,通过填料、土壤、植物和微生物等的共同作用,对污水进行净化处理,因此人工湿地在处理污水中具有高效率、低投资、低费运转、处理效果好、维修费用低的特点。

4.2工艺流程及工艺参数简述

管网收集到的生活污水首先经过格栅进入集水池,然后由污水提升泵将污水提升到曝气生物滤池。经过曝气生物滤池处理后,出水COD≤96mg/l,BOD5≤40mg/l,SS≤56mg/l,NH3-N≤19mg/l,TP≤1.2mg/l。

污水经过曝气生物滤池处理后进入沉淀池,沉淀池出来的污水进入潜流人工芦苇湿地处理系统。

该工程构筑潜流湿地3.3hm2,设计负荷0.3m/d的潜流湿地,采用水平潜流运行模式,底部铺设防渗膜,床体中下层、第二层、第三层及第四层均铺碎石,上层铺熟土,表面种植芦苇。潜流人工芦苇湿地处理系统处理结果:出水COD≤50mg/l,BOD5≤30mg/l,SS≤10mg/l,NH3-N≤5mg/l,TP≤0.5mg/l。

为提高水资源利用率,将经过潜流湿地处理的污水,经过二级泵站(Q=400m3/h,H=10m,N=22kW)提升至景观湿地-国坝南侧的芦苇湿地进行深度处理。芦苇湿地出水直接排入人工湖,经处理后的污水排入辽河。最终出水:COD≤50mg/l,BOD5≤10mg/l,SS≤10mg/l,NH3-N≤5mg/l,TP≤0.5mg/l。

五、结束语

为使环境保护的步伐能够与经济发展同步,兴建盘锦鼎翔集团污水处理厂,彻底消除污水对河流水域的污染,保护生态环境和人民的身体健康,同时,将处理后的污水回用于景观湿地建设,提高了水资源的利用率,它将产生显著的社会效益、经济效益和环境效益。

处理工艺论文第6篇

图1为不同热处理工艺条件下30MnSi钢的拉强度。可以看出,当回火工艺相同时,淬火温度为910~990℃时,30MnSi钢的强度较高。在热处理后要保持材料的抗拉强度高于1420MPa,其回火温度应控制在390~430℃。表1和表2为不同热处理处理工艺条件下30MnSi钢的力学性能。可以看出,当回火温度为390℃时,性能满足要求。当回火温度为430℃时,只有淬火温度在910~990℃时,性能才满足要求。

2耐延迟断裂性能分析

图2为不同热处理工艺条件下30MnSi钢的延迟断裂性能。可以看出,回火温度为390℃时,试样的延迟断裂时间随淬火温度的升高而先上升后下降。虽然试样的力学性能都能满足要求,但耐延迟断裂性能差异较大,也就是说淬火温度对PC钢的耐延迟断裂性能影响较大[2]。当淬火温度为870℃时,由于低温下淬火材料的回火温度较低,使材料的韧性变低,耐延迟断裂性也较低,所以导致延迟断裂的时间变短为30h。当淬火温度为950℃时,试样的耐延迟断裂性能达到了FIP实验的要求。当回火温度为430℃时,淬火温度为910℃和990℃时断裂的时间都增加且与在950℃淬火时相同。当回火温度为390℃时,淬火温度为910℃和990℃时其耐延迟断裂性能远不如950℃淬火时的性能。这说明,耐延迟断裂性能随着回火温度的升高而提高,且获得较好的延迟断裂性能的淬火温度的范围变大[4]。当在较低的温度下回火时,试样的耐延迟断裂性能不能满足FIP实验的要求。而在高温下回火时,则可以满足FIP实验的要求。所以,当PC钢的强度满足要求时,适当的提高回火温度可增加材料的耐延迟性能。

图3为不同淬火温度下试样的微观组织。可以看出,当淬火温度为950℃时,所得组织是细小且均匀的回火屈氏体。淬火温度为990℃时,组织是较粗大的回火屈氏体。淬火温度升高到1030℃时,组织较粗化且板条之间的距离变大,但其延迟断裂性能的差别并不是晶粒尺寸所影响的。实际上,当奥氏体的温度升高时,钢中合金元素的分布位置会发生变化。因为材料中Mn的含量比较高,Mn对延迟断裂较敏感[3]。这些都导致了当奥氏体化温度大于950℃时,温度越高材料的耐延迟断裂性能越差。

图4为不同回火温度下30MnSiPC钢的TEM形貌。可以看出,回火温度为390℃时,可以清晰的看到马氏体板条界,并在界面上可观察到析出的薄片状碳化物。该碳化物为收集氢的陷阱,如果这种碳化物连续的分布在马氏体的边界,则进入到钢中的氢会富集在晶界处,导致晶界脆化,从而使延迟断裂变得敏感。当回火温度从390℃升高到430℃后,析出的渗碳体会聚集粗化,并变为清晰地条状的渗碳体。细小的碳化物会弥散的分布,从而较小应力集中,使界面能降低,断裂时间变长,从而使其耐延迟断裂性能增加[5]。当回火温度升高到470℃时,渗碳体会球化。当回火温度继续升高时,较小的碳化物颗粒会逐渐溶解,大的颗粒会长大,当温度升高到一定程度后,细粒的碳化物会逐渐聚集并粗化,会出现更加粗大的渗碳体和铁素体颗粒,其强度和硬度都较低。

3结论

处理工艺论文第7篇

1.1试验材料本文研究的材料为14Cr1MoR+S32154爆炸复合板,规格为(3+75)mm,2种材料的化学成分和力学性能见表1和表2。

1.2试验方案制定不同热处理工艺,对14Cr1MoR+S32154试板进行热处理试验,并检验理化性能和显微组织,试验方案见表3。

2试验结果及分析

2.1试验结果理化性能检测结果见表4.

2.2结果分析

2.2.1理化性能1)爆炸复合板依靠炸药爆轰产生的冲击力完成基覆板的冶金接合,完成爆炸焊接的同时,复合板也产生了冲击硬化和内应力,表4中6号试样为爆炸复合态的力学性能,与原始基板相比,其力学性能表现为强度高,屈强比高,断后伸长率低。2)1、2号试样经历了相变温度以上的高温热处理,基板性能与原始状态相比有较大差别,强度降低,冲击吸收功减少,断后伸长率增加。1号试样经历了高温正火+720℃回火热处理,基层获得较好的强度和塑韧度配合,综合力学性能较好;2号试样的热处理为800℃退火,与1号试样相比,强度和塑性差别不大,但冲击韧度大幅度降低,对覆层弯曲和晶间腐蚀检验均不合格。800℃下长时间停留对覆层S31254产生了不利影响,析出了脆性相。3)3、4、5号试样的热处理为相变温度以下的低温热处理,旨在消除爆炸冲击硬化,恢复性能,尽量减少对覆层S31254析出相的影响。从表4试验结果可以看出,低温退火可以消除爆炸加工硬化现象,随着加热温度的升高,基层14Cr1MoR强度逐渐降低,塑性变好,冲击吸收功无明显变化。同时覆层的外弯试验和晶间腐蚀试验结果均合格,可见低温热处理未对覆层产生明显不利影响。

2.2.2显微组织分析1)基覆材的原始状态显微组织如图1所示,基层为贝氏体组织,覆层组织为孪晶奥氏体+少量碳化物。2)1号试样经正火+回火后复合板基覆层的显微组织如图2所示,热处理后基层组织为铁素体+贝氏体,覆层组织为等奥氏体+碳化物,由于加热温度低,奥氏体为等轴晶粒[4];2号试样800℃退火后的金相组织如图3所示,热处理后基层组织为铁素体+珠光体+贝氏体,覆层组织为孪晶奥氏体+碳化物。与2号试样相比,1号试样基层组织更为均匀,更接近原始组织,故力学性能较好,但由于加热温度高,覆层组织与原始状态相比变化较大。与原始状态相比,2号试样覆层晶界和晶内产生了大量析出物,导致力学性能恶化和耐蚀性降低。3)由于3、4、5号试样的热处理为相变温度以下的退火处理,基层未发生相变,因此主要对覆层组织进行观察分析。金相照片(见图4)显示,3号和4号试样的金相组织与原始状态最为接近,为孪晶奥氏体+少量碳化物,5号试样在晶内和晶界析出相明显增多。

3结语

处理工艺论文第8篇

要提高连铸辊辊体材料的性能应从以下几方面入手:1)通过调整辊体材料的成分、增加合金成分的含量,提高淬透性;2)控制锻坯冶炼和锻造质量,提高材料的均匀性和纯净度,改善夹杂物形态,降低有害元素含量;3)采用能细化组织及晶粒的热处理工艺,提高材料的断裂韧性,降低裂纹扩展速度。

1.1辊体材料成分设计小炉冶炼的材料成分如表3所示,为保证一定的强度,规定了最低含碳量,为增加辊体材料的淬透性,Mn含量选取上限,三炉Ni、Cr含量进行了相应调整。其中01#与目前宝钢使用的R73连铸辊成分基本一致。

1.2熔炼方法三炉原料均采用IF钢以降低P、S含量,在50kg感应炉中冶炼,铸成电极棒,然后采用30kg电渣炉进行重熔,最终得到120mm电渣锭。

1.3锻造将120mm电渣锭锻成30mm×400mm拉伸试样毛坯、32mm×32mm×180mm冲击试样毛坯和40mm×26mm×450mm的J积分试样毛坯。锻造毛坯经950℃正火+650℃高温回火后,机加工至一定尺寸再进行调质热处理。

1.4调质热处理在盐浴炉中进行调质加热,在井式电炉中进行回火处理,炉温均经过校正。调质工艺采用二种方案:1)900℃水冷+690℃回火空冷2)900℃空冷+690℃回火空冷最终硬度均要求在连铸辊辊体材料所规定的硬度范围内,即32-37HSD,采用900℃空冷的目的是:比较在不同热处理方式下三种成分的连铸辊辊体内部性能和金相组织的差别。

1.5金相组织及性能测试分析经调质热处理的试样测试硬度值后,分别按GB/T228-2010、GB/T229-2007和GB/T21143-2007标准,进行拉伸、室温冲击、J积分试验。三种成分的试验钢种经调质处理后,采用OLYMPUS-BX51金相显微镜进行微观组织分析,冲击断口形貌采用NOVANANOSEM430型扫描电子显微镜观察分析。

2试验结果分析

小炉冶炼的三炉试验材料实际成分如表4所示,机械性能测试结果如表5所示,03#金相组织及断口电镜图片如图1、图2所示。

3结果讨论分析

图1是03#试样调质后的金相照片,从图中可以看出组织由已经再结晶的铁素体和均匀分布的细粒状渗碳体组成,并且渗碳体充分析出,均匀弥散分布,基体呈细小的等轴状。因此03#经调质处理后,具有较高的强度和硬度,同时具有更好的塑性和韧性,综合力学性能优异。图2是03#冲击试样的断口形貌,从图中可以看出断口形貌呈韧窝状,基本由圆形或者椭圆形的凹坑-韧窝组成,由此可以推断在冲击断裂过程中发生了明显的塑性变形,进一步说明了03#的塑性和韧性较好。由表5结果可知,在第一种热处理条件下,03#成分试样的强度虽然比R73、01#和02#略低,但强度值仍大于700MPa,满足了使用要求;而韧性指标大幅度提高,其中延性断裂韧度03#比01#提高了48%,冲击吸收功03#比R73提高了78%,塑性也得到了很大的提高,其中收缩率03#比R73提高了14%,因此03#在水淬和高温回火的情况下,综合力学性能良好。分析其主要原因在于03#中Ni和Cr的含量较高,部分溶于基体的Ni和Cr的产生了固溶强化,另外部分未溶的Ni和Cr以强化相的形式析出,这样实现了既保证强度达标又不降低韧性的目的[8]。断裂韧度对连铸辊来说是极重要的指标,连铸辊在恶劣的工况条件下,堆焊层经冷热疲劳最终要产生裂纹,产生的裂纹将向连铸辊内部扩展,高的断裂韧度,裂纹就不容易向辊体内部扩展,因此提高连铸辊的关键在于获得高的断裂韧性[7],由此可见03#成分对于防止疲劳裂纹的扩展具有重要的意义。另外在900℃空冷状态下,经高温回火后,其冲击功03#成分也比01#、02#高,可预期连铸辊内部在冷却速度比表面缓慢的情况下,采用03#成分的连铸辊塑韧性也要比01#、02#连铸辊好。从材料经过两种不同的热处理工艺后得到的力学性能上看,水冷和空冷所得的硬度基本一致,但是从强度上看水冷的要稍微低于空冷的,而在塑韧性上,水冷要高于空冷,尤其是冲击吸收功上,水冷后回火的值要比空冷后回火的高24%以上。而提高连铸辊使用寿命的关键就在于提高韧性,因此采用水冷后高温回火工艺更加合适,使用寿命也会有所提高。另外,可以从理论上判断锻件淬火能否直接采用水冷。根据热处理手册,首先应当考虑锻件化学成分和基础性能的影响,一般可以采用碳当量的计算公式计算,如公式1所示。按此式计算03#成分:[C]=0.56%≤0.75%,由此可见03#钢虽然提高了Ni、Cr含量,但是整体的碳当量还是处于较低的水平,所以水淬是安全的,不会引起巨大的内应力而淬裂的产生。从生产效率上看,直接水淬需要的时间更短,效率也更高,因此03#最佳的热处理工艺是900oC水冷+690oC回火空冷。

4结论

处理工艺论文第9篇

(1)隔油池。

在炼厂一般都采用利用油、水的比重差进行油水分离的隔油池。其中比重小于1的油品上浮至水面而得到回收;比重大于1的其他机械杂质沉于池底。所以,隔油池同时又是沉淀池,但主要起除油作用。

(2)浮选。

浮选就是向污水中通入空气,使污水中的乳化油粘附在空气泡上,随气泡一起浮升至水面。一般为了提高浮选效果,向污水中投加少量浮选剂。由于炼厂的生产污水中本身含有某些表面活性剂,如脂肪酸盐、环烷酸盐、磺酸盐等,故不需另外加入浮选剂,也能获得较好的浮选效果。所以,近几年来在国内外都广泛地用它来处理炼厂的含油污水。

(3)絮凝。

对于颗粒直径小于10-5m的油粒,一般称之为乳化油。这种乳化油由于其表面吸附有水分子,此水层使油粒不能相互聚合。另外,因油粒表面带有相同电荷,由于静电排斥作用也妨碍油粒间的相互聚合而在水中呈稳定的悬浮状态。这两种因素构成了乳化油在水中的稳定状态。再者,油粒间由于水分子运动产生的布朗运动,促使油粒相互碰撞聚合而变成较大的油粒,以及由于范德华力所产生的油粒间相互吸引力,促使它们相互聚合,以上所有这些因素就构成了油粒的不稳定因素。为了使具有这种特性的油粒凝聚,就应消除其稳定因素。絮凝法的基本原理主要是根据油粒稳定因素之一——静电排斥力发生电中和作用的现象来进行絮凝。仅用双电层原理来解释絮凝原理尚有许多现象不能说明,因此絮凝作用还应考虑金属氧化物的水化物对油粒的吸附、包围圈带等各种现象的综合作用。

(4)过滤。

含油污水中油粒和悬浮物质在通过滤层时被截留在滤层中间,一般污水中的悬浮物质的粒度同砂层中的空隙相比要小得多,这种微小的颗粒在砂层中被截留下来的现象,许多学者试用下列作用来解释:筛滤作用、沉淀作用、化学吸附作用、物理吸附作用、附着作用及絮凝形成作用,这些作用中,到底哪一种对过滤起着决定性的作用,不同的研究者提出了不同的看法,至今还未建立一个统一的、肯定的说法。

2含硫、氨、酚污水处理工艺

炼厂在渣油焦化、催化裂化、加氢精制等二次加工过程中都会产生一定量的过程凝缩水,其中含有较多的硫化物、氨和酚类,一般称为含硫污水。它的排量不大,但如不经任何处理直接排入炼厂排水系统,则将严重地破坏隔油池操作流程,影响污水处理构筑物的正常运行。

(1)水蒸汽汽提法。

水蒸气汽提法就是把水蒸汽吹进水中,当污水的蒸汽压超过外界压力时,污水就开始沸腾,这样就加速了液相转入气相的过程;另一方面当水蒸气以气泡形态穿过水层时,水和气泡表面之间就形成了自由表面,这时液体就不断地向气泡内蒸发扩散。当气泡上升到液面时就开始破裂而放出其中的挥发性物质,所以数量较多的水蒸气汽提扩大了水的蒸发面,强化了过程的进行。工业污水中的挥发性溶解物质如硫化氢、氨、挥发性酚等都可以用蒸汽蒸馏的方法从污水中分离出来。

(2)含酚污水的处理。

酚既能溶于水,又能溶于有机溶剂如苯、轻油等。水和有机溶剂是两种互不相溶的液体,利用酚在这两种液体中的溶解度不相同(酚在有机溶剂中的溶解度较水大),把某种有机溶剂如苯加入酚水中,经过充分混合后,酚就会逐渐溶于苯中,再利用水和苯的比重差进行分离。因此可以利用此原理从污水中把酚提取出来。但为了获得较高的脱酚效率,需要采用对酚的分配系数高又与水互不相溶、不易乳化、损耗小、价格低廉、来源容易的有机溶剂作萃取剂。

3生物氧化法

利用大自然存在着大量依靠有机物生活的微生物来氧化分解污水中的有机物质,运行费用比用化学氧化法低廉。这种利用微生物处理污水的方法叫作生物氧化法。由于它能有效地除去污水中溶解的和胶体状态的有机污染物,所以一般炼厂都采用它作为净化低浓度含酚污水的主要方法之一。

4深度处理

炼厂污水经过隔油、浮选(一级处理)和生化处理(二级处理)等构筑物净化后,水质仍然达不到国家制定的排入地面水卫生标准的要求。为了防止恶化环境,消除其对水体、水生生物和人畜的危害,对某些地处水源上游和没有大量水源可作稀释水的炼厂来说,就必须对排出污水进行深度处理(亦称三级处理或抛光处理)。深度处理方法很多,但一般都由于技术比较复杂,处理成本过高,而未被生产上广泛采用,尚有待进行深入研究和改进。目前从国内外的发展趋势看,活性炭吸附法、臭氧氧化法,对彻底净化炼厂污水,使其达到排入水体或回收利用方面颇有价值。

(1)活性炭吸附法。

活性炭吸附污水中的杂质属于物理吸附。其原理是由于活性炭是松散多孔性结构的物质,具有很大的比表面积,一般可达1000m2/g。在它的表面粒子上存在着剩余的吸引力而引起对污水中杂质的吸附。近几年来国内外利用活性炭吸附处理炼厂一级或二级出水,取得了良好的效果,综合起来,可得到以下的主要试验结果:①用活性炭吸附法净化炼厂污水生化需氧量可脱除80%,出水中酚含量<0.02mg/L;②使水产生臭味的有机污染物,较其他有机污染物更容易脱除,在净化过程中它们首先被吸附掉;③在使用活性炭吸附前,污水应经过预处理,使固体悬浮物小于60mg/L,油含量达到20mg/L以下,这样可以减轻活性炭的负担,延长操作时间,减少再生频率,降低再生费用;④每公斤活性炭可吸附0.3~0.5kg以化学耗氧量衡量的有机物,吸附饱和后的活性炭可用烘焙法再生,再生损失约为5%~10%;⑤活性炭的粒径对吸附速度影响较大,一般水处理活性炭采用8~30目较合适。

(2)臭氧氧化法。

臭氧具有很强的氧化能力,所以在西欧各国被广泛用于给水处理的杀菌、脱色和除臭处理。目前国内外已开始大规模地研究把臭氧氧化用于工业污水的最终处理,并取得了良好的效果。

5其他处理工艺

除了上述几种常见的采油废水处理工艺外,近几年来也出现了一些新技术。文献[1-2]指出,越来越多的膜分离技术开始用于油田采出水处理,膜分离技术是利用膜的选择透过性进行分离和提纯的技术。膜法处理可以根据废水中油粒子的大小,合理地确定膜截留分子量。文献[3-4]指出,生物吸附法是一种较为新颖的处理含重金属废水的方法,具有高效、廉价的潜在优势。所谓生物吸附法就是利用某些生物体本身的化学结构及成分特性来吸附溶于水中的金属离子,再通过固液两相分离来去除水溶液中金属离子的方法。

6结语

相关文章
相关期刊
友情链接