欢迎来到易发表网,发表咨询:400-808-1701 订阅咨询:400-808-1721

关于我们 期刊咨询 科普杂志

室内水电设计优选九篇

时间:2023-06-25 16:10:13

室内水电设计

室内水电设计第1篇

【论文摘要】室内设计发展至今,早已突破了原有学科本位思想的束缚,把生态设计引入室内设计,扩展室内设计的内涵,将把室内设计推向更高的层次和境界。随着计算机图形学的飞速发展,虚拟现实成为当前国内外的一个研究热点。本文围绕面向对象的新型三维实体造型设计系统中的问题进行研究和探讨,旨在为建立环保、廉价的经济实用住房。

一、引言

当今社会随着人民生活水平的提高,购房后一次装修和旧房子再次装修非常频繁。现在装修房屋,尤其是在二手房重新装修中装修师傅往往面临着因为没有水电装修布线图纸,对原来的水管布置,电路走线不清楚的问题,导致装修时经常出现水管或电线损伤,给装修带来不必要的麻烦。所以为施工单位提供准确可靠的水电装修布线信息,已成为一个迫切需要解决的问题。

二、新型室内设计系统研究的背景、目的和意义

国内也有一些公司致力于水电布线管理或施工软件的开发,但大多数系统是2D或者2.5D的[1]。墙壁的水电布线纵横交错,用平面来表示并不充分,无法体现房屋布线后的三维整体状态,没有直观的效果。目前国内市场施工常用的布线设计以平面布线图处理为主,接近工程设计人员的实际,有很好的应用价值,但是开发者不是从房屋用户角度出发的,房屋用户对图纸理解困难,安装起来比较麻烦,而且不是三维的,无法给人一个房屋三维布线的立体感受,而且安装工程中经常出现二维设计不直观、设计图纸不协调、施工图设计阶段图纸综合会审困难等问题。采用虚拟现实技术(Virtual Reality),Delphi面向对象编程技术,将隐藏的水电布线清晰、直观地从三维角度呈现在用户面前,并将装修时的水电布线图纸保留下来,每次装修的时候可以打开、编辑、存储。具备这样功能的软件,不仅适合装修公司使用,还适合施工人员和屋主来使用,为他们提供很大的方便, 有着极大的市场潜力。

施工人员在装修初期,建立房屋三维模型,选取具体施工的各个墙面,把水电安装图纸输入电脑,并保存在数据库中。再次装修时,相关人员可以从数据库中调出图纸,以房屋三维的状态显示,做到水管的布置及电路的走线一目了然,然后根据本次装修的具体情况,调出所需墙面,修改和编辑相对应的原施工图纸,并再次保存到数据库中。这样不仅能帮助施工人员合理的安排好水管和电路的走向,还可以为再装修留下可供参考的依据,再次装修时房屋的水电分布心中有数。

三、房屋装修水电布线的模型化与可视化

房屋是装修时水电布线的几何对象,同时也是建筑物的基础。由房屋模型的数据结构可以知道,对于复杂的房屋,其实也是由许多简单的部分组成的,每一部分都占据一定大小的空间范围,而且房屋的每一个面都可能具有不同的颜色或纹理的属性特征。其次,在大多数情况下,房屋模型是一个个的单体状态存在的,例如一间房间是由几个墙面和一个屋顶组成。因此,简化房屋模型在三维绘制时可以减少几何数据的容量提高三维显示速度。房屋模型场景树结构的建立根据三维目标模型的数据结构,可以分解为屋顶、墙面以及各个面的纹理数据。

房屋的可视化主要由房屋侧面的可视化和复杂的房屋顶面的可视化构成。房屋侧面主要是由一个个四边形构成,可以用三角形组成的面片来表达。而对于房屋的顶面,一般是个复杂的多边形结构,同时考虑到三角形是最基本的图形,适合图形的显示,所以对房屋屋顶的多边形分割为三角形进行可视化,对于复杂房屋屋顶需要设计算法实现[2]。

对于建筑物和构筑物几何对象的模型建立的方法,国内外对此有广泛的研究,主要的研究重点是建筑物模型的自动或半自动的三维重建[3],研究的主要内容是建筑物屋顶模型的自动提取与三维重建。这些研究主要重点都是集中在单个房屋模型的立体重建,对于三维模型的编辑与交互操作方面的研究存在一定的欠缺,如:模型的形状改变、分析功能的开发等。

房屋表面几何对象经过模型化后,以数字的形式存储在计算机中,只有将其模型进行可视化,才能看到虚拟的房屋。必须采用计算机图形学的知识,通过一定的算法,将房屋各模型通过计算机显示出来,同时,通过有效的数据处理、LOD算法、多分辨率的图像处理和逼真的纹理贴图,来优化房屋三维模型系统[4]。

四、室内水电装修布线的综合布线系统

水电改造属于装修的隐蔽工程,也是装修的前奏工程。因此,在装修过程一定要考虑周全。具体在施工过程中也需严格把好质量关,以免留下遗憾。水电安装的综合布线系统是指将水线、电器等设备进行集中控制的电子系统。电路布线中,布线时线管尽量一根使用不要接头,除特殊需要才截断(比如长度小于2.8米),有底盒之间也是需要截断的。另外从使用安全上讲布线时线管内是一条线到底的,中间不能有接头,一般照明和一般插座2.5m㎡就够了,厨房电器和空调插座必须4mm2 (以上均为强电)。水路布线改造完后必须打压测试,通过打压测试后方可封槽进行下一工序。具体到水电布线三维模型图上,首先考虑水电布线图映射模型:

将水电布线图映射到房屋三维模型上,用的是贴图的方法。在房屋几何对象模型表面逐个面进行水电线路绘制时,在二维编辑器上先做好图像,然后进行贴图,不仅可以节省绘制时间,同时可以增加模型的逼真性和现实性。贴图是一个平面区域与指定的颜色或图像区域之间的映射ξ:CR。因此,平面区域上每一个点都有自己的颜色值。由于贴图只是离散的图像表示,它只是记录了一个颜色矩阵。因而为了取得正确的结果,必须建立颜色空间与几何对象模型空间的正确的映射关系。

一般情况下通过仿射变换的方法建立二维的纹理数据(像素空间)与三维的物体空间(三维物方坐标系)之间的映射关系。对于三角形或四边形只需要指定三个点之间的((u)v),即可根据上述公式进行求解,从而得出矩阵中的各个系数的数值大小。

对于属性数据的管理,在数字表面房屋三维模型中,可以把属性数据分为贴图数据和几何模型的语意描述数据两大类型。对于前一类数据使用属性数据库进行管理,至于属性数据的查询与更新通过对象的标识码进行关联。因为几何模型中面片的属性中保存了贴图的名称,因此在三维显示时,能够保证正确的贴图映射结果。在三维虚拟现实系统中,贴图是其最为成功的技术之一,其是通过将图像粘贴于几何表面来增强图形的真实感,既能增加绘制真实感又不影响几何图形本身的几何复杂度。

五、三维模型在实体设计中的理论意义和环保效应

房屋模型是三维的,而各个面上水电布线则在二维平面上进行,并将水电布线图粘贴到房屋三维模型对应的面上,所以,系统必须解决人机交互和墙面拾取的问题。

但是房屋室内水电布线三维可视化的理论和应用的研究目前还处于研究与探索阶段,一些实际的问题还需要解决,将三维建模和图形图像处理较好地结合在一起,使水电布线在三维表现上得到较好的体现,而且对于单面墙的布线也能很好地调用、编辑、修改与存储,解决了三维建模和二维图片在三维物体上拾取、贴图、存储的问题。

另外,作为环境的创造者的室内设计师,应在具体设计中充分体现环保,水电布线应充分考虑环保节能,其实是一个有机联系的整体:光、色、水让人们能综合地感受室内环境,光照下界面和家具等是色彩和造型的依托“载体”,灯具、水管陈设又必须和空间尺度、界面风格相协调。

总之,水电布线是房屋使用的物质基础之一,是“数字房屋”的重要组成部分,对其三维模型的可视化和空间分析的室内装修水电设计研究具有十分重要的现实意义。

参考文献

[1]严勇《地下管线的三维可视化研究》,武汉大学硕士学位论文,2003。

[2]李志林,朱庆著《数字高程模型》,武汉大学出版社,2001.7。

室内水电设计第2篇

关 键 词:给排水 综合电气楼 消防给水

Abstract:Iron and steel enterprise of the factory is provided with an integrated electrical building, iron and steel enterprises some integrated electrical building both electrical room and office building features. In this paper, combined with a large United iron and steel enterprises electrical building engineering example, the iron and steel enterprise integrated electrical building water supply and drainage design made a preliminary analysis and discussion, can be used as reference in similar projects.

Key words:Water supply and drainage; General Electric Building; Fire water supply.

中图分类号: S276文献标识码:A 文章编号

概述

钢铁企业常设有综合电气楼,为了避免电缆过长、损耗过大、投资增加、常常位于主车间内或工艺主单元旁侧。综合电气楼是工业系统总的变配电室,负责向系统内各用电设施供电。综合电气楼一般为多层建筑,综合楼内设置有变压器室、高压配电室、电缆夹层、操作室、低压配电室、 MCC室、 PLC室及地下电缆室等。大型综合电气楼通常又往往兼具办公楼的功能,设有会议室、办公室、卫生间等办公生活辅助设施。因此,大型综合电气楼是特殊的电气室,也是特殊的办公楼。

本文结合某大型联合钢铁企业的电气综合楼为工程实例,对钢铁企业大型综合电气楼的给排水设计要点做了初步的分析和探讨,可作为相似工程的参考。

1综合电气楼情况介绍、给排水设计内容及遵循的设计规范

(1)钢铁企业中各主工艺单元的大型综合电气楼一般面积大、层数多、功能复杂。以某大型联合钢铁企业综合电气楼为例,综合电气楼为五层建筑(地上五层,地下一层),建筑面积约为 12000m2,与生产主厂房毗连,生产类别为丙类,建筑物耐火等级为二级(变压器室耐火等级为一级)。通常钢铁企业的大型综合电气楼均为丙类生产类别并采用二级耐火等级。

(2)该综合电气楼底层平面为两个独立部分,彼此之间无法连通,两个部分之间是悬空的,为火车进出车间的轨道,两部分分别设有变压器室、高压配电室、空调机房、快分配电间、快分工具间、配电间、男女厕所楼梯走廊等用房,层高为 3.400m;二层平面也分为两个独立部分,两个部分之间仍为火车进出车间的轨道,两部分分别设有点检室、工具室、男女厕所等用房,层高为3.600m;三层以上是统一的,三层平面设有快分作业长室、快分制氧设备除尘室、空调机房、点检室、电缆夹层和男女厕所等用房,层高为 3.200m;四层设有 PLC室、 MCC室、操作室、快速分析室、空调机房等用房,层高为6.100m;五层设有电气设备点检室、管理中心现场生产调度室、过程控制计算中心、通讯设备机房、电力室等用房,层高为 4.500m;地下一层仅局部有,为电缆夹层,层高为3.500m。

从上述综合电气楼的内部布局和功能分析,综合电气楼具有以下特点: ①综合电气楼作为主要用来满足工艺和生产需求的建筑物,建筑物整体常有不规则或当中有隔断、悬空等现象,这在钢铁企业中是经常发生的,而这种悬空和隔断对于管道系统布置不利; ②各层平面之间的房间功能的布局具有不协调性,在三层为作业长室,但在四层同样的平面位置上就是 MCC室,前者可以看作是普通的办公楼,而后者是典型的电气室,电气室在是不允许有水管穿过的,这种不协调也对给排水设计造成了很大的困难。

(3)给排水设计须紧密围绕大型综合电气楼上述特征来进行。给排水设计内容应包括消防给水系统(消火栓给水系统、自动喷水灭火给水系统)、空调净循环水系统、空调冷凝水排水系统、雨水排水系统、电缆地下室排水系统以及供办公生活辅助设施用的生活给水系统、生活污水系统等。

在给排水设计时,应遵循《钢铁冶金企业设计防火规范》GB50414-2007、《建筑设计防火规范》GB50016-2010、《建筑给水排水设计规范》 GB50015-2009、《自动喷水灭火系统设计规范》GB50084-2001等相关设计规范的要求。

2综合电气楼给排水设计要点

2、1消防给水系统

电气综合楼消防给水系统包括消火栓给水系统和自动喷水灭火给水系统。

(1)消火栓给水系统

根据《钢铁冶金企业设计防火规范》 GB50414-2007、《建筑设计防火规范》GB50016-2010,综合电气楼应设置室内消火栓给水系统。室内消火栓用水量参照《建筑设计防火规范》 “室内消火栓用水量”中“其他建筑”,定为 15L/s,同时使用水枪支数为3支。室内消火栓通常设置在综合电气楼的楼梯走道旁侧,以便于消防时使用,走道楼梯间内均设置室内双栓消火栓。

在设计时,针对综合电气楼这种特殊条件时,应对于消火栓系统环状管网要多加考虑,根据不同的情况采取不同的做法。

(2)自动喷水灭火给水系统

综合电气楼一般设有中央空气调节系统,根据规范要求,应在走道、会议室、办公室等设置自动喷水灭火给水系统。

仍以某大型钢铁联合企业综合电气楼为例,底层快分工具间、二层点检室、工具室、三层快分作业长室、快分制氧设备除尘室、点检室、四层快速分析室、五层电气设备点检室以及各层走廊等均设置自动喷水灭火给水系统;所有配电室、配电间、 PLC室、MCC室、操作室、管理中心现场生产调度室、过程控制计算中心、通讯设备机房、电力室等用房均不设置自动喷水灭火系统。

综合电气楼设置自动喷水灭火给水系统的危险等级为轻危险级,喷水强度按4L/min・m2,作用面积160m2,总用水量为10~15L/s。

综合电气楼的电缆夹层、地下电缆室,一般将建筑面积控制在500m2以内,不设置水喷雾灭火系统。

一般大型综合电气楼单台变压器容量不超过 40MVA,不用设置水喷雾灭火系统。本炼钢综合电气楼变压器总容量约为30MVA。一般情况下,综合电气楼的变压器室均可不考虑水喷雾消防。

(3)消防水源及水泵房

在大型钢铁企业内,通常均有两路独立消防水源(接自全厂工业新水处理站或接自市政给水管网)并在整个厂区范围内设置环状管网,而且综合电气楼总的消防水量不大,因此综合电气楼的消防水可直接自全厂管网并有两路水源而无须设置消防水池。

一般情况下,钢铁企业厂区管网工作压力较低,无法直接满足综合电气楼最不利点消防用水的要求。综合电气楼的水消防通常不采用屋顶消防水箱的设计方法,而采用稳高压给水系统。在综合电气楼底层设置专门的消防水泵房,内设消火栓给水泵、自动喷水灭火系统给水泵、消火栓系统和自动喷水灭火系统的稳压装置(包括稳压泵、稳压罐等)。消火栓给水泵、自动喷水灭火系统给水泵由稳压装置的压力开关直接气动。

综合电气楼的室内消火栓用水量为15L/s,自动喷水灭火系统计算用水量为10~15L/s;室内消火栓充实水柱长度按不小于7m可以满足要求,自动喷水灭火系统的喷头工作压力按0.1MPa计。两者无论从水量和水压的要求而言都是非常接近的。因此,也可以考虑室内消火栓系统、自动喷水灭火系

统合用 1套消防水泵和 1套稳压装置。消防水泵的流量应满足室内消火栓和自动喷水灭火用水总量,水泵扬程按较大的计算值选定。

另外,随着《钢铁冶金企业设计防火规范》 GB50414-2007等的,冶金企业对主厂房室内消火栓系统的要求也大大提高了,而在工艺复杂、设备众多的主厂房内设置消防水泵房有困难,鉴于综合电气楼一般位于主厂房内或是紧邻主厂房,可以考虑将主厂房内室内消防水加压泵房与电气综合楼的消防水泵房合建。

2.2空调净循环水系统和空调冷凝水排水系统

(1)空调净循环水系统

电气综合楼根据各生产用房的工艺要求,对温度要求较高的电气室、操作室等设置空调,会议室、办公室等也需设置空调。

电气室、控制室等的空调系统采用水冷柜式空调机组,空调室外机置于建筑物屋顶或专用空调机房,室内机按建筑装修要求可以为吊顶内安装或柜式明装,冷却水由给排水专业负责设计。

综合电气楼往往紧邻主车间或主工艺单元,循环冷却水管道可直接引自车间或区域内工业净循环冷却水管网,电气综合楼无须再独立设置冷却塔、循环水泵等。对于紧邻主车间的综合电气楼,采用上行下给的循环供回水方式,可直接从车间的架空净循环水总管上引支管至综合楼顶,接屋顶空调室外机,或将循环水管道敷设至专用空调机房上方,再以立管向下接空调机房内的空调室外机。对于循环水管道接自区域内工业净循环水管网的综合电气楼,采用上行下给的循环供回水方式,管道先埋地进入综合楼的空调机房或管道井内,接室外机用户。

在接空调室外机等用户处,循环冷却水给水、回水管道上均应设置压力表;循环给水管上应设置 Y型过滤器,过滤器前后也应设置压力表;重要场所的空调用户,过滤器应设旁通。安装条件许可时,可在进出口设置双闸阀或截止阀,一个阀门做开关用,另一个阀门检修切断用。另外,可考虑在进水侧安装水流指示器,以判断是否有死水现象从而影响室外机的冷却效果。

(2)空调冷凝水排水系统

如综合电气楼位于主车间或厂房外,设于屋顶的室外机空调冷凝水可直接排放至综合电气楼屋面,随雨水排水系统排出;各层空调机房内的空调冷凝水可排水至空调冷凝水立管,收集后排放至区域雨水排水系统。

如综合电气楼位于主车间或厂房内,特别是在位于车间中央时,建议将空调冷凝水以立管引至地下室集水坑内,由集水井潜水泵提升,以压力流送至车间外。因为如果以重力流管道直接引至车间外,管线太长容易堵塞;如果设窨井以重力流管道排至车间外,在工业企业特别是冶金行业的车间内不宜设置窨井。

2.3雨水排水系统

位于主车间或厂房外的综合电气楼屋面均采用有组织排水,雨水由立管收集后排放至室外雨水窨井。

2.4电缆地下室排水系统

电缆地下室一般不设置水喷雾灭火系统,排水系统主要排除地下渗漏水或是空调冷凝水排水等。排水系统由集水井和潜水泵组成。由于电缆地下室很少有人会到,建议设置 2台潜水泵, 1用 1备。

2.5生活给水系统和生活污水系统

综合电气楼的生活给水系统、生活污水系统主要是供厕所使用。

(1)生活给水系统

生活给水接自主车间内或工艺主单元生活给水管道。

(2)生活污水系统

如综合电气楼位于主车间或厂房外,则生活污水就近进行生化处理,达标后可直接排放于区域内室外污水管道。

如综合电气楼位于主车间或厂房内,特别是在位于车间中央时,建议设置污水集水坑,由集水坑潜水泵提升,以压力流送至车间外。进行生化处理,达标后排入室外污水管。

2.6其他

由于各层平面的房间功能的布局具有不协调性,常会出现不同楼层的厕所、办公楼、空调机房与电气室、配电室出现在同一平面位置的现象。特别是厕所、空调机房等用水点出现在电气室上方时,对于给排水系统设计而言,矛盾更为突出,立管和水平排水管的设置都会出现问题。而平面位置往往是根据生产工艺的要求确定的,很难加以调整。

在这种情况下,首先明确给排水横管不能在电气室内穿越电气用房上方,厕所排水应考虑采用同层排水方,空调机房的排水地漏应采用侧壁式地漏;其次,立管应尽量不穿越电气用房,将立管设置在电气综合楼室外,如确实无法避免,应和电气专业协商,设置钢筋混凝土管道井,将立管设置于管道井内。

3小结

总之,大型综合电气楼是工业企业中极其重要的生产单位,对于综合楼的给排水设计,必须进行周密的考虑。

参考文献:

1陆波等,GB50414-2007钢铁冶金企业设计防火规范,北京:中国计划出版社,2007

2方汝清等,GB50015-2003建筑给水排水设计规范,北京:中国计划出版社,2009

室内水电设计第3篇

大坝为碾压混凝土坝,坝顶高程546.00m,最大坝高150m。坝顶交通贯穿整个大坝,跨表孔设置交通桥,坝顶宽度为7m。作为巨大的水工建筑物,其结构和技术要求决定了工程的总体外部形象,水电站中的建筑物及环境设计均是在给定的宏伟轮廓中增添色彩,虽处辅助地位,却也有画龙点睛之效。

1.1下游坝面设计

在下游坝面上加上业主SEB与三峡总公司的徽标,使大坝表面元素更丰富,不显单调。坝面标志采用涂料绘制,简洁美观,见图1。

1.2坝顶设计

根据水工布置要求,坝顶高程为546.00m,上游两侧要设置1.5m高的防浪墙。防浪墙过高会影响人的观赏空间,而采用建筑设计与坝顶栏杆及人行道设置相结合的方法很好解决了该问题。设计0.25m高的人行道加上1.25m高的实体混凝土栏板,栏板表面凸凹有致,与弧形拱坝相呼应,每隔3m设置栏杆柱,柱顶配置庭园灯,简洁而不失典雅。大坝左右各设有一部楼梯井突出坝面,采用混凝土材质、简单的几何形体与大坝形成有机的整体。

2电站厂房建筑设计

2.1设计说明

水电站一般建筑于自然山水之间,厂房的建筑造型就必须考虑所处的自然环境,适应当地的山形水势,与所处的具体环境相协调。水电站厂房一般平面为简单的矩形,高度较高、体量较大,所表现出来的风格为大气豪迈。这类建筑本身不同于公共建筑,很少有大的形体组合、对比关系,设计中要注意“粗中有细”,尽量利用其本身大的体量,通过开窗方式、墙面与柱子关系的进退、色彩关系、材料质感等手法丰富其细部,使外观不单调。如主副厂房毗邻设计,充分利用毗邻副厂房,使主厂房体量作为形体组合的一部分,主副厂房一并考虑,以取得形体对比较丰富的组合效果。

水电站厂房内部空间环境设计的主要任务是在满足水工、水机、电气等专业提出的基本使用需要基础上,保证在建筑消防、安全性、内部交通关系等方面符合规范要求,提高建筑室内空间的有效使用率和综合利用率,为工作人员创造舒适的内部环境。室内装修设计是根据建筑物的使用性质、所处环境和相应标准,运用物质技术手段和建筑美学原理,创造功能合理、舒适优美、满足人们物质和精神需要的室内环境,主要包括以下内容:①在满足基本功能前提下,室内空间的组织、调整和再创造;②地面、墙面、顶棚等各界面线形和装饰设计;③确定室内主色调和色彩配置;④满足室内采光和照明要求;⑤选用各界面的装饰材料、确定构造做法;⑥协调室内空调、水、电等设备需求。

沐若水电站厂房建筑设计包括距大坝12km处的电站厂房设计和大坝下游处的生态电站厂房设计,同时包括室外附属建筑物、构筑物的设计和电站厂房室内建筑装修设计。室外附属建筑物、构筑物包括GIS室、尾水平台等。以下着重阐述电站厂房和生态电站的造型设计以及电站主厂房发电机层的室内建筑装修设计。

2.2电站厂房造型设计

电站厂房是水电站建成后人流最多、设备最集中之处,同时也是整个水电站小尺度与大尺度对比最强烈的地方。对于建筑设计而言,电站厂房设计最能体现建筑设计风格以及细部设计手法。电站厂房设计的品质可以直接影响人们对水电站设计的总体印象。不同于一般的民用建筑设计,电站厂房的设计在平面布置,空间组织上可变性不强,也相对简单,但是在造型构思,形体变化上受局限性比较大。造成这些局限的根本原因主要是因为受到功能、结构形式、造价、设备等的限制。因为电站厂房的设计是结构先行,建筑在已有的结构上面做文章,同时因为设备与厂房周围尺寸的关系,在建筑立面上不能有太夸张的变化。电站厂房距离大坝12km,相对独立,同时距业主营地1km左右,所以在设计上可以运用更建筑化的处理手法,更好地与当地的环境、文化结合。在主厂房的进厂入口处设立石碑,刻上工程简介、参建各方标志及工程业绩。

(1)厂房的建筑构思。该方案在立面以简洁的造型手法、简单的施工工艺来表达一些中国文化元素,同时也能够与当地的一些建筑造型取得呼应,使本来单调的工业建筑具有更多的内涵。立面的设计灵感主要来自中式窗格,民间传统窗格装饰艺术,努力做到造型、意趣兼备。同时,考虑到当地建筑的装饰风格,采用的图案尽可能达到两种元素的融合。

(2)建筑方案设计。采用折线元素,对立面进行线性分割。在形式上,这种折线元素是提取自民间传统窗格装饰,同时也符合当地建筑装饰风格元素。立面造型的折线线形形态表达也是对“水”、“电”形态的抽象表述。厂房的4个立面都采用这种元素,并通过首尾连接将其有机结合,体现出厂房的整体性和雕塑感。在主立面的每个折线框内开竖向的长窗,来削弱厂房的横向感,并用线条勾勒建筑物外框,保证立面的简洁、完整。墙体色彩及造型采用涂料粉刷饰面,经济适用(见图2)。3.3生态电站厂房造型设计生态电站厂房位于大坝下游,与大坝相比略显小巧,所以在造型上应尽量保持简洁。生态电站厂房下游面采用错位竖向开窗方式,营造轻盈活泼的感觉,外墙采用灰色涂料,与大坝混为一体,统一协调,见图3。

2.4室内装修设计

电站厂房的室内装修重点部位一般在发电机层以及中控室,也属人流较多部位。发电机层是厂房的室内门面,参观人员进门的第一眼就可以看到其室内空间,在沐若水电站厂房室内设计中发电机层的主要装修包括:

(1)浅灰色玻化砖地面。玻化砖地面美观、防滑、耐磨等性能好,且施工工艺较简单、工期短,同时具有一定的抗击能力,维修也比较方便。

(2)深色地板砖踢脚、浅色涂料内墙面。主厂房发电机层内墙底部200mm高采用深色地板砖踢脚,上部采用浅灰色涂料内墙面。使用这两种对比强烈的颜色,令竖向的墙面不显单调,而且简洁大方。

(3)网架屋顶。网架屋顶适合大跨度结构,本身结构稳定,且造型优美,在视觉上完整美观。中控室是水电站控制系统的核心部位,该部位管线集中、交叉。装修主要目的是合理组织照明、暖通、消防等专业,综合管线设计,采用各种新型技术和材料,创造一个安全、舒适的工作环境。

沐若电站中控室的装修主要采用600mm×600mm抗静电活动地板铺地,方便电缆敷设。内墙面采用复合铝塑板饰面、顶棚采用氟碳铝板吊顶,条形灯带、与壁灯交相呼应。木纹桌与中控显示屏位于房间的正中,成为视觉中心。副厂房一般电气设备房间采用玻化砖地面,墙面和顶棚采用水泥腻子刷内墙涂料,次要部位如电缆夹层采用水泥砂浆地面。考虑通风管道安装和空间高度上要求的影响,相应电气设备房间宜安装可拆卸式铝合金方型板吊顶。卫生间采用防滑地砖地面、面砖内墙面、铝合金方型板吊顶。楼梯间、电梯间前室采用玻化砖的地面、涂料内墙和顶棚,电梯站点出口做大理石门套、铝合金方型板吊顶。

3结语

室内水电设计第4篇

关键词:110kV变电站 土建工程 设计

随着城市大规模的建设,用电负荷的快速增长,变电站由郊外型向城市型发展,工业建筑设计不能仅简单地考虑在某一特定地段上的形体创造,需要与区域土地的综合利用、新城建设和旧区更新改造保护等城市或区域设计内容相协调的因素较多。某110kV变电站占地面积为2764m2;建筑面积为4030 m2;站区绿化面积约为700m2;绿化率为17%;容积率为1.46。变电站主要由主厂房、110kV GIS室及主变间等组成。

1、站区布置:

因用地比较紧张,为满足减少占地面积及减少对外界的干扰,同时又能实现变电站的功能,故该站建成全室内型变电站。主厂房位于站区东侧临街布置;110kV GIS 室位于站区南侧;主变间位于站区中间。变电站设备运输门设在站区东北角。为减少占地面积,我们采取的措施主要有以下几点:一、以向上拓展空间为原则,在满足工艺要求的前提下,将各设备房间紧凑布置,平面与垂直交通便捷,不合理及多于房间减少。二、将水泵房与主厂房连于一体,并利用主厂房地下夹层作为水泵房的蓄水池,有效地减少了水泵房占地面积。三、事故油池我们采用了全地下结构,即满足了分离油水的功能同时在其表面种植花草又可提高绿化率。为满足消防通道,我们将临街侧主厂房设计为过街楼形式,并设有警卫值班室,便于变电站的使用与管理。

由于本站位于城市中心地区,在如此有限的占地面积内提高站区绿化率是相当困难的。我们采用了集中绿化区和利用边角地带绿化的方法,尽量提高绿化率。另外我们还在主厂房一侧屋顶种植花草,即提高了绿化率又可以丰富街道景观。

2、建筑设计:

(1)外观设计:本工程建筑物由10kV开关室、主变间、散热器间、GIS间组成,10kV开关室为地上三层,其余均为单层建筑,主要厂房均设地下夹层。由于建筑物地处繁华市区,建筑设计不仅要考虑自身特点,还应与周围建筑物融合协调。因此注重建筑形体的设计是非常必要的,因为这些位置是建筑物与周围环境的接触面。在本工程设计中,我们将东侧临街的主厂房尽量做的整齐有序,与周围建筑物融为整体。同时,在尊重整体格局的前提下,我们还希望将这个变电站设计成为有个性,富有时代感的城市型变电站。

(2)建筑装饰说明:设备房间采用丙级钢制防火门,普通办公房间内门采用木门、外门采用铝合金玻璃门。窗户采用银白色铝合金框白玻璃窗。主控室及通讯室采用塑料抗静电地板,其他设备房间采用现制磨石地面,普通房间地面采用地砖。设备间为普通白色涂料,主控室及办公室、值班室采用立邦漆涂料墙面,厕所、厨房墙面磁砖到顶。设备房间均不吊顶,采用涂料喷漆,其余办公房、门厅、休息室采用纸面石膏板吊顶,浴室、厨房采用PVC板顶棚。外墙采用肉色外墙面砖贴面,局部使用深粉色面砖。

3、结构设计:

所有主要建筑物均采用现浇钢筋砼框架结构,筏板基础,抗震设防烈度为8°,抗震等级为二级,内外墙采用陶粒砼空心砌块填充,地下夹角层采用Mm10机砖,M7.5水泥砂浆砌筑,事故油池采用钢筋砼结构。本工程地下水位较高,又属冬季施工,故对防水工程要求很高。我们采用了氯磺化聚乙烯防水卷材,重点控制卷材的搭接部位,用手压锟压合加固,嵌缝部位无空隙,确保防水质量无渗漏。

4、采暖 、通风、上下水及照明设计:

(1)热力工程:因本站为无人值班站,故房间采用空调取暖。

(2)给水工程:给水水源接变电站北侧市政管网,管径DN100。

(3)雨污水工程:主厂房下水排入2#砖砌化粪池,管径DN200,下水总管排入变电站北侧市政污水管线,站内做有组织排水,管径DN300,排入变电站东侧市政雨水管网。

(4)通风工程:变压器间采用自然通风和机械通风相结合的方式,每个变压器单元设进出风百叶窗和轴流风机,利用高差和机械排风散热。电容器室、所内变室每间在外墙安装进风百叶窗和轴流内机,利用机械通风散热。10kV开关室、GIS间、电缆夹层设事故轴流风机,进风百叶窗,利用机械、自然通风散热。

5、照明设计:

(1)动力系统:110kV变电站内动力及照明用电电压为380V/220V,采用三相五线供电。GIS、10kV开关室分别设置动力检修电源箱。

(2)照明系统:照明电压为380V/220V,灯头电压为220V,电缆夹层电压为380V/220V/24V。各层的照明电源由总配电箱引来,总电源由主控室所内盘引来,采用三相五线供电。

(3)事故照明系统:事故照明为直流电源,由主控室直流盘引来,并设专用照明配电箱,在走廓等主要通道,主控室、值班室、110kV设备间设事故照明灯,各路控制设在事故照明箱内。

(4)火灾自动报警系统:报警监控系统在站内所有安装设备的房间均设有烟感探头,每个探头控制面积,按30m2设置,集中报警信号通过控制室发到值班室。主变水喷雾系统为双路电源供电。

6、消防设计:

(1)根据建筑放火规范的有关规定,本工程各建筑物均未超过防火分区允许占地面积的限值,故本工程分别以单个建筑物为独立防火分区。

(2)水源概况:消防水源接北侧市政管网,管径DN100,通过水泵加压进入消防管道,待火灾发生时使用,站区内设消防水泵房一座,地下蓄水池容积70m3。

(3)消防排水:消防排水通过站区组织排水排入市政下水管网,主变的消防排水排入油水分离池(55m3)处理后排入市政下水管网。

(4)主变水喷雾系统:在主变压器四周分三层设置雾化喷头,火灾出现后通过感温泡及雨淋阀组启动水喷雾系统灭火。

(5)室外消火栓系统:站区配置室外消火栓井4座,室外消防管线采用环形布置,室外消火栓保护半径为50m,消火栓井选用两个出水口,口径分别为DN65和DN100。

(6)化学灭火器装置:根据各房间电气设备的性质,分别采用不同的化学灭火器材,工程配置有干粉,1211类型的灭火器,配置型号数量及规格按《电气设备典型消防规程》及供电局有关文件执行。

(7)消防电气设计:主要设备间设置烟感探头及报警系统,并设有事故烟风机,风机用量每小时按6次换气量设计。在主要设备间设事故照明,事故电源由主控室直流盘提供,站内消防泵电源电站内双路供给,保证运行可靠。

(8)主变降噪措施:主变间墙体采用吸音材料,通风百页窗选用消音百页,事故风机加消音器,通过这些措施,达到降低变压器噪音的目的。主变压器外墙采用可拆卸式,在主变安装就位后,将外墙封闭,这样外观即美观又能避免噪音向外扩散,消除对邻近建筑物的影响。由于设计为可拆卸结构,主变若要检修可将外墙拆除,但不影响建筑物的立面。

室内水电设计第5篇

【关键词】:水电站厂房;火灾危险性;消防设计

中图分类号:TU998文献标识码: A 文章编号:

一、水电站厂房火灾危险性

水电站由于设备众多、线路复杂、带油设备繁多,发电机、主变压器、油浸变压器(电抗器)、油开关、电缆、蓄电池等电力、电气设备,柴油发电机、绝缘油和透平油系统等场所火灾危险性大。水电站厂房地下部分空间密闭,一旦发生火灾,宜造成人员疏散困难,火灾扑救难度大,从而产生社会影响,造成巨大经济损失,后果严重。

二、水电站消防设计特点

1重点突出

水电站工艺布置与运行情况不同于其他工业建筑,主厂房空间高大,较长时间的烟气聚集不会影响到人员疏散,而且随着电站管理自动化程度的提高,大部分场所无人值班或少人值守,人员疏散与民用建筑有所不同。因此在消防设计中,保证机电设备安全和人员安全疏散应是水电站厂房消防设计的重点。

2消防措施综合运用

在消防设计中,首先应突出“防”,争取将火灾危险性降到最低程度;其次合理布置各个功能区,有针对性的对火灾危险性高属丙类的场所、部位进行分隔,采取多重消防灭火保障措施。在预防-报警-灭火设施启动多重环节保护下,尽量减少火灾蔓延的可能性发生。

3立足自防自救

“预防为主、防消结合”是消防工作方针。水电站一般远离城镇,可借助的社会消防力量有限,消防安全立足自防自救。在确保消防需要的前提下,充分发挥水消防优势,尽可能与正常使用的设备相结合,重点部位采用先进技术,做到保障安全、使用方便、经济合理。

三、消防设计常见问题分析

西部地区水电站厂房生产的火灾危险性类别通常为丁类。部分场所如中央控制室、油浸变压器室、油处理室、柴油发电机室、室外主变压器场等为丙类。在消防设计中通常根据厂房建筑的火灾危险性类别和危险等级,按照以下防火规范进行设计:

(1)《水利水电工程设计防火规范》SDJ 278-90、

(2)《火力发电厂与变电站设计防火规范》GB 50229-2006、

(3)《建筑设计防火规范》GB 50016-2006、

(4)《建筑内部装修设计防火规范》GB 50222—95(2001年修订版)

(5)《建筑灭火器配置设计规范》GB 50140-2005

(6)《水力发电厂房采暖通风与空气调节设计规程》(DL /T5165-2002)进行相应的消防设计。

(7)《建筑防火封堵应用技术规程》CECS 154:2003

在水电站消防设计审查中通常存在以下几个问题:

1.将主、副厂房作为同样的功能分区,划分为一个防火分区。

丙类场所内部装修设计燃烧性能等级设计不合理。顶棚、墙面材料较多使用燃烧性能等级为B1级的装修材料,地面、隔断使用B2级;丙类场所防火分隔中,建筑装修材料的燃烧性能等级设计遗漏。

厂房内各部位火灾危险性定性不全、划分不准确,导致主变室、油系统、中控室等重要部位消防设计不完整。

安全疏散不能符合新标准要求,两座水电站都仅设置了敞开楼梯间作为安全出口,且地下层与地上层共用楼梯间;作为工作人员主要聚集地的办公室只设有一条疏散线路,且设在主变室上方,无法保障人员安全疏散。

油系统事故排烟系统未独立设置,油罐和油处理室排出的油气火灾危险性大,易发生油气火灾,与厂房通风系统共用通风总管道,一旦发生火灾,势必造成火势向其他通风子系统蔓延扩大。

电站的消防电源均取自厂用电系统两端的母线上,一旦发生火灾, 则两端母线均无法供电,无法满足消防电源的要求。

对不同形式的墙、楼板、井在穿管、开洞时其防火封堵组件设计笼统,交代不清或设计不合理。

四、水电站消防设计建议

1防火分区和丙类场所防火分隔与内部装修

根据《水利水电工程设计防火规范》(SDJ278-90,以下简称《水规》)规定:水电站主厂房和高度在24m以下的副厂房,其防火分区最大允许占地面积不限,是指各自的防火分区面积不限,但并不是表明二者可以划分为一个防火分区。根据《建筑设计防火规范》(GB50016-2006,以下简称《建规》)第 2.0.20条、7.1.5条,在主、副厂房按照不同防火分区划分时,相邻之间应设置防火墙分隔,防火墙上门窗洞口应为甲级防火门、窗。

水电站厂房的丙类场所主要有:中控室、发电机配电装置室、油浸变压器室、油处理室、柴油发电机室、电缆夹层、室外主变压器等场所。根据《水规》第 4.1.1条规定,丙类生产场所应作局部防火分隔,防火分隔宜按照《建规》第 5.4.2.3、5.4.2.5条、第 5.4.3.2条规定,采用耐火极限不低于2.0h不燃烧体隔墙和耐火极限不低于1.50h的楼板及甲级防火门窗与厂房其他部分隔开。

根据《建筑内部装修设计防火规范》GB50222- 95(2001修订版)第4.0.3条规定,电子设备室等丙类场所顶棚和墙面装修材料燃烧性能不应低于 A级,地面和其他部位不应低于 B1级。中控室根据《火力发电厂与变电站设计防火规范》GB 50229-2006第 11.1.5条规定:控制室内装修应采用不燃材料。

2安全疏散出口、疏散距离和楼梯间

安全疏散出口:根据《水规》第2.0.2、4.1.1条规定,水利发电厂的主、副厂房生产的火灾危险性类别为丁类,耐火等级为二级。水电站厂房的安全疏散出口宜根据《建规》第3.7.2.4、3.7.2.5条、《水规》第4.2.4条规定设计, 按照耐火等级为二级的厂房进行设计,厂房的每个防火分区、一个防火分区内的每个楼层,当“建筑面积大于400m2,且同一时间的生产人数超过 30人”或“地下厂房其建筑面积大于 50m2,经常停留人数超过15人”时, 应当设置两个安全出口。根据《水规》第4.2.4条规定,当副厂房每层建筑面积不超过800㎡时,且同时值班人数不超过15人时,可设一个安全疏散出口。

疏散距离:根据《水规》第4.2.5条规定,发电机层室内最远工作地点到该层最近的安全疏散出口的距离不应超过60m,根据《建规》表3.7.4规定,地下厂房内任一点到最近安全出口的距离为45m。

楼梯间:水电站厂房发电机层以下部分宜设置封闭楼梯间, 根据《建规》第7.4.4条规定,地下室的楼梯间,在首层应采用耐火极限不低于2.00h的不燃烧体隔墙和乙级防火门与其他部位完全隔开, 并应直通室外。

地下厂房的楼梯间宜按照《建规》第7.4.2.1、7.4.3.1条规定要求,按照防烟楼梯间设计。

3水喷雾灭火系统

根据《水规》规定,考虑用水作为灭火介质方便、经济,一般水轮发电机、主变、绝缘油和透平油系统、 大型电缆室、电缆隧道和竖井等部位采用水喷雾灭火装置。系统设备有:火灾自动报警系统、 手动或电动球阀、压力表、喷头、末端试水及管网等。以水轮机水喷雾灭火系统设计为例:应按照《水喷雾灭火系统设计规范》(GB50129-95)要求,在发电机定子上下端各配一圈灭火环管,环管上安装水喷雾喷头,设计喷雾强度13L·min- 1·m- 2, 火灾延续时间应按时间40min计算, 最不利点水雾喷头工作压力不小于0.35MPa , 发生火灾时由火灾自动报警系统探测并自动打开电动球阀启动水喷雾灭火系统灭火,系统反应时间不大于45s,喷头选用离心雾化型水雾喷头, 末端试水在厂内进行,用于日常系统检测。

4火灾自动报警系统

根据电站保护对象的使用性质及火灾危险性的特点, 将报警区域按照防火分区及不同危险区域划分。主厂房、副厂房、开关站,其中一级保护对象有:发电机、变压器、电缆管沟、油罐和油处理室, 其余为二级保护对象。每个报警区域设置一台区域火灾报警控制器, 每个探测区域面积不大于 500m2。火灾自动报警系统划分和配置如表 1所示。

表 1火灾自动报警系统划分和配置

5消防给水系统

水电站消防给水通常有自流供水、水泵供水、消防水池方式。水电站适宜以水库水作为消防水源, 根据建筑体积和《建规》的规定, 确定室外消防用水量和室内消防用水量。在电站上游应设置一座消防水池和补水设施,通过高度差形成常高压消防给水系统, 引两根消防主干管采用环状布置分别向下游厂区和开关站的消火栓系统和水喷雾系统供水。

根据《水规》第9.2.2条规定,当给水设施采用自流供水方式时,取水口不应少于两个,必须在任何情况下保证消防给水。

在厂房周围及其它建筑外、厂房内各层按照《水规》第9.3.2、9.3.3条规定,合理布置消火栓。

6事故排烟系统

地下厂房、封闭厂房、坝内厂房的油浸变压器、油处理室、电缆室等场所应设置独立的排烟系统,不得跨越其他房间。具体按照《水力发电厂房采暖通风与空气调节设计规程》(DL /T5165-2002) 进行设计。疏散走道、楼梯间的排烟可与厂房内排风系统结合。

7建筑防火封堵

在水电站消防设计中,很少有针对不同性质的墙、楼板、井在穿管、开洞时做具体的防火封堵组件设计措施。大多仅在图纸说明中交代几句。没有根据《建筑防火封堵应用技术规程》CECS154:2003对各类孔口、建筑缝隙的不同性质、位置画图进行防火封堵组件设计。因而出现防火封堵材料使用不当,防火封堵组件设计未考虑其结构本身的稳定、开裂、位移及耐久性。

8其他需注意的事项

水电站厂房灭火器配置,应根据《建筑灭火器配置设计规范》GB 50140-2005的规定,确定各灭火器配置场所的火灾种类和危险等级;按照建筑每个防火单元的面积,经计算确定灭火器配置数量和类型。水电站厂房火灾种类一般为固体火灾(A类)、液体火灾(B类)、物体带电燃烧火灾(C类)三种类型。灭火器可选择可扑灭A、B、C类手提式干粉灭火器、卤代烷灭火器或二氧化碳灭火器;消防电源应符合二级负荷要求, 宜自备发电, 电缆布置都不得穿越易燃易爆危险场所。此外, 目前的水电站消防设计规范亟须修订,对水电站的专项消防设计应按最新消防技术规范执行。

五、结束语

水电站消防设计较为复杂,各专业应根据建筑内部功能火灾危险性及建筑空间的特点进行综合分析,根据规范要求,进行合理设计。同时积极引进先进设计理念,采用科技含量高和可靠性、自动化程度高的设施设备,以适应新的形势和经济发展要求。只有这样,才能较好地解决水电站消防设计中存在的问题和矛盾,做到安全适用、经济合理,以达到整个工程的消防安全。

参考文献:

室内水电设计第6篇

关键词:住宅区人防地下室 设计

中图分类号:S611文献标识码:A文章编号:

1工程概况

某项目总用地面积77727.10 ㎡,总建筑面积207639.19㎡(其中地上158780.440㎡,地下48858.75㎡)。地下设全埋式车库及核6级、常6级的二等人员掩蔽所,按规范要求应建人防面积为11398㎡,实建人防面积为11450㎡。本工程设全埋式人防地下室,位于地下一层。

2 人防地下室设计

地下车库平时共划分为15个防火单元,战时划分6个防护单元,每个防护单元战时各划为4个抗爆单元,每个防护单元战时掩蔽1006—1250人。车辆入口及防护单元之间的通道临战封堵,每个防护单元各设1个战时人员主要出入口,2个战时人员次要出入口。各防护单元抗力等级均为核6级、常6及,防化等级均为丙级。另设置有一个战时柴油发电机房,有关技术指标见表一。

表1防护单元面积明细表

人防地下室中每个防护单元的防护设施和内部设备皆自成系统。相邻防护单元之间设置钢筋混凝土防护密闭隔墙,墙上开设门洞处,在其两侧设置防护密闭门。 相邻抗爆单元之间设置抗爆隔墙,墙上开设连通口处,在洞口一侧设置防爆挡墙。详见平面图。

染毒区与清洁区之间设置了整体浇注的钢筋混凝土密闭隔墙,厚度250。并在染毒区一侧墙面用水泥砂浆抹光。防空地下室室内外出口处的临空墙皆为钢筋混凝土浇注,厚300mm。构造详见结构专业图纸。密闭隔墙上开设门洞,皆设置密闭门。有管道穿过时皆采取密闭措施,其构造见各专业图纸。

3 人防排水部分

3.1人防给水

本工程共有六个六级二等人员掩蔽所。仅考虑战时饮水量、生活用水量及口部洗消用水量。用水量标准见下表3:

表2 战时人防用水量表

战时用水标准

战时水箱:每个防护单元分别设二座饮用水箱、一座生活水箱。水箱选用装配式,战时安装;战时供水采用水泵加压供水。

战时给水管道:在人防地下室设1条进水管供人防水箱用水,平时用阀门截断,战时接管至战时水箱。所有穿越人防墙的管道均在墙上加设防护套管,并在穿越的管道上在防护区一侧加设工作压力不小于1.0MPa的铜芯闸阀。

3.2人防排水

在每个防护区战时主要出入口的防毒通道及其防护密闭门以外的通道、次要入口的密闭通道等设有集水坑,有效容积1.0m3,防毒通道、简易洗消区、扩散室及滤毒室的洗消废水通过防爆地漏排到集水池内;另在人防洁净区内设平战结合的集水坑,人防洁净区内的干厕冲洗废水及盥洗间等废水通过地漏排到平战结合集水池内,由潜水泵统一提升至室外。

人防给水管材采用镀锌钢管;排水管材采用给水铸铁管。

3.3消火栓给水系统

室内消火栓用水量为10L/s, 室外消火栓用水量为20L/s,室内消火栓用水由地下室消防水泵供给,两路供水,并连接成环状管网。每个人防单元设有单出口消火栓,栓口口径DN65,水枪口径DN19,衬胶水带长25m,并设有启泵按钮。室外地上设水泵接合器。室外消火栓用水采用低压制,接自市政给水管网。

3.4自动喷洒灭火系统

地下车库按中危II级设计,设计喷水强度8L/min·㎡,作用面积160㎡,最不利喷头工作压力为0.1MPa,自动喷洒灭火系统平时压力由1栋屋顶消防水箱维持,火灾时由设在地下室的喷洒水泵喷水灭火。地下车库喷头的公称动作温度为68℃。车库室外设水泵接合器。

3.5建筑灭火器设置

根据规范要求,按不同的灭火种类,设置若干具灭火器。

4暖通部分

4.1战时通风设置

本工程防空地下室设置于地下一层。平时为汽车库,战时为六级防护单元,均为二等人员掩蔽所。在人员掩蔽防护单元内设置了战时清洁式、滤毒式和隔绝式通风系统;新风标准为:清洁式通风5~7m3/h·人,滤毒式通风2~3 m3/h·人。

4.2战时通风方式的转换说明

当接到核生化武器袭击警报后,工程应立即转入隔绝式防护,然后进行隔绝式通风。

在隔绝式通风期间,防化专业队伍要通过取样管或测压管取外界空气气样进行化验,查明毒剂的浓度、种类、性质,说明本滤毒器是否能过滤该毒剂。待有人急需进出工程,或室内CO2浓度上升至2.5%以上人员难以忍受时,或者毒剂沿门缝进入工程,达到对隐蔽人员造成最低伤害浓度时,并证明过滤的毒剂且浓度较低时,才可以转入滤毒式通风。待人员出入完毕,获得以改善后,再转入隔绝式通风。

4.3战时电站通风:

柴油发电机房采用风冷,进风量按消除余热计算,防毒通道设置超压排气,换气次数满足规范要求。

5电气电讯部分

5.1战时电源

5.1.1人防工程用电负荷等级

一级负荷:应急照明、基本通信设备、应急通信设备、报警接收设备等。

二级负荷:重要的风机、水泵、通风方式信号箱、正常照明、洗消电热水器等,其余为三级负荷。

5.1.2负荷估算:

战时设备功率: Pn=173kW

战时计算设备功率: Pc=121kW

战时计算视在功率: Sc= 161kVA

5.2战时电源:人防区内设1座战时固定电站,安装2x120kW战时柴油发电机。战时市电接地下室动力配电箱,战时应急电源接战时固定电站,战时一级负荷由各防护单元应急照明配电箱供电。靠近战时固定电站的人防单元设电力防爆波电缆井,用于战时向区域内零散人防单元送战时电源。

5.3战时电力照明

(1)采用平战结合原则设计。

(2)平时照明系统同时作为战时照明使用。

(3)战时照明照度标准:出入口100lx,人员掩蔽室75lx,风机房75lx,战时固定电站100lx,光源显色指数Ra不小于80。

(4)人员主要出入口的第一道防护门外侧设置有抗爆要求的门铃按钮。

(5)防化值班室内设置通风信号控制箱,可对防护单元内的三种通风方式(清洁式、滤毒式、隔绝式)进行转换控制。在防化值班室、战时进风机房、人员出入口、连通口最里一道密闭门内侧设置通风方式音响信号箱。

(6) 各战时配电箱、控制箱均安装在清洁区内。

(7) 战时配电箱、控制箱均为挂墙明装。

5.4接地系统

(1)平时低压配电系统接地型式采用TN-S,战时柴油电站低压配电系统接地型式采用TN-S,接地电阻不大于1欧姆,接地装置利用平时接地装置(地下室结构钢筋网)。

(2)人防工程内将以下导电部分做等电位联结。

PE干线;

建筑物内金属管道和金属物;

建筑物结构钢筋,防护密闭门、密闭门、防爆波活门的金属门框;

室内电气设备金属外壳;

接地装置。

5.5通信

本人防工程内设战时电话分机,战时通信线路自通信防爆波电缆井引入。

室内水电设计第7篇

【中图分类号】TM63【文献标识码】A【文章编号】2095-2066(2015)32-0020-02

作者简介:余继兴(1980-),男,工程师,硕士,主要从事变电工程土建设计工作

1引言

我国当前使用的传统变电站逐渐难以满足不断发展的用电需求,必须通过必要的改进、升级和重建。变电站的土建设计较为复杂,需要重视施工前的设计阶段工作,其中包括前期地址选择、可行性研究、初步设计以及具体施工图设计等,注意考虑到防火、防噪音等特殊因素,才能为后期的变电站建设提供基本保证。

2变电站土建工程设计方案要点

2.1选址阶段

变电站的设计目标是为了解决电力的供应问题而建设的,因此变电站的位置必须靠近负荷中心,但是在实际的操作过程中,往往会存在许多因素在左右着变电站的选址,是需要进行慎重考虑的。

(1)从保护耕地的基本国策出发,变电站的位置不宜占用农田,特别是那种经济效益好的良田,而应该选用荒地或者是土质不好的劣地。

(2)从城镇化建设的大局进行出发,变电站的位置应该尽量避免与城市的规划建设相冲突,并且应该注意要避开在规划中的主要的交通干道例如高速公路以及高铁线路等。

(3)从保障安全上讲,变电站的位置周边最好不要有军用设置。通信设施等敏感的设备。另外还应该远离风景区、陵园等等。因为容易对这些地方造成环境影响。

(4)变电站建设作为一项大的工程,因此会涉及很多类大型的设备,所以变电站的位置所处的交通状况应该良好。

(5)为了减少一些不可抗力因素的袭扰,变电站的位置应该避开不良地质构造带以及矿产开采的地带和地势低洼处。

(6)变电站的位置综合考虑出线条件,出线应该避开大跨越、穿越人口密集区以及线路的交叉和观景走廊等情况的出现。

2.2土建设计方案可行性研究

对于变电站土建工程设方案的可行性研究,主要可以从以下几个方面着手:

(1)工程占地面积设计。由电气专业根据系统要求确定主变容量、台数以及出线回数。在此基础上,合理布置各建构筑物单元,使变电站内不同电压等级配电装置场地、主变场地、电容电抗器场地、控制室以及高压室在满足功能及规范规定的间距要求下,尽可能紧凑;合理组织交通。根据不同电压等级变电站布置主变运输道路,消防环道,相间道路等,尽量减少道路用地面积。一般主变布置在站区中央,主控室布置在站区中部靠近大门位置,高、低电压等级配电装置场地分列于站区两侧,高压室及站用变与主变相邻布置,电容电抗器、消防间、事故油池布置在主变周边,当主变之间或主变与其他建构筑物间距不满足防火要求时,可用防火墙将其隔开。

(2)施工位置选择设计。位置选择需要全面综合考虑,不仅要考虑负荷量,网络结构还要考虑征地情况,城乡规划。要做到减少土石方量,尽量不占经济效益较高的土地,而占用荒地或坡地。要做到尽量配合规划部门和城乡管理部门的统一规划,避免相互交叉的架空线路。此外,站址要靠近负荷中心,且要方便利用一些基础设施,地势平坦利于运输。

(3)地下情况处理方案。设计方案的可行性研究中,还需要了解建设变电站位置的地下情况,如果地下存在防空洞、滑坡、要塞管道或回填区等,应当尽量避开。例如:某县变电站,在对选址处进行可行性研究时,发现地下是杂土回填区,以前发生过坍塌,不仅如此地下还深埋着主要污水管道,因为要解决这些问题所需要的费用远远超出预算,最终决定另寻合适的地址。

2.3初步设计阶段

变电站土建的设计阶段主要有以下几个要点。

2.3.1变电站的布置设计

(1)总平面布置对于工程的总平面布置,需要依照国家相关规定,遵循电力系统的规程,优化周边道路运输,着力于引接、进出线位置,关注安全距离,对已确认规模的建筑物进行合理安排,尽可能少占平面用地。(2)竖向布置变电站竖向布置可采用平坡式或阶梯式,平坡式布置能较便捷地布置个建构筑物单元,便于道路的布置及排水的组织,并能减少围墙内的占地面积。阶梯式布置相比较于平坡式布置,能减少站区总用地、土方、边坡挡墙、地基处理的工程量。当站址原始地形较平缓时,优先考虑平坡式布置。当站址原始地形高差较大,可考虑阶梯式布置,以减少变电站的总投资。

2.3.2建筑结构设计

①建筑安全性设计。如果想要保证土建构件安全性,需要严格地规定结构荷载量,认真确定材料强度、荷载分项系数大小等,另外还要求保证标准荷载下具备的安全度;②建筑的牢固性设计。要求建筑在发生局部破损时不会引发大面积坍塌,来减小灾难损失;③建筑的耐久性设计。要使建筑能够在荷载压力作用下,能够持久耐用,尤其是在应对混凝土的腐蚀的情况,更要做到较大的耐用性。

2.3.3施工图纸设计阶段

施工图纸的设计是十分复杂的因为其专业的交叉多,因此必须处理好结构、给排水、建筑以及暖通之间的交界处的矛盾,为此应该注意以下的要点:①制定不同专业之间资料的交互制度,从而促进专业之间能够有效的沟通;②使用标准化的设计,从而使得设计风格相对固定;③制定信息反馈制度,能够及时的收集到工程中的问题并且不断的完善标准设计;④对总平面的布置以及主要建筑物的平面布置图应坚决执行会审制度,从而防止重大失误的出现。

3变电站土建设计方案的优化案例分析

3.1变电站土建部分工程概况分析

某110kV变电站的建设,考虑到供电范围主要是建设片区的工厂、企业等的用电需求,因此,该站址的选择应当满足位于负荷中心的基本要求;另外,需要与周边的其他110kV变电站遥相呼应,从而在满足分区供电规划要求的同时,实现变电站之间10kV配电网络的联络及转供电,大大提高该地区的供电可靠性。

3.2土建部分方案优化研究

根据该变电站对于站址的总体规划,以及对电气工艺的具体要求,决定采用半户内型的布置设计方案,其中的110kV设备采用GIS设备为本站主推荐方案。

3.2.1建筑分析

①功能布置设计。工程中的变配电装置楼,其总面积约为1040.0m2。一层的建筑面积550.0m2,层高5.0m,布置l0kV配电装置室,电容器室,安全工具间,消防器材间,警卫室等;二层建筑面积490.0m2,层高4.0m,布置二次设备室,接地变室,备品备件室,110kVGIS配电室(该室层高8.1m);②建筑装饰配电装置楼屋面采用平屋面,防水等级为二级,一道2厚聚氨醋防水涂膜,一层3厚高分子防水卷材,并做保温隔热层;③门窗除卫生间采用铝合金门外,其余房间均采用乙级钢质防火门或变压器室钢门窗户均采用铝合金窗,靠内侧安装,玻璃为无色浮法中空玻璃(5+9+5mm);④一层窗户设钢护窗。

3.2.2结构分析

对于该建筑结构的拟建场地,设计其具备的抗震设防烈度达到Ⅶ度,并设计建筑场地类别属二类,场地特征周期为0.40s,主控配电楼为地上2层钢筋混凝土框架结构柱网尺寸以10m×5.4m,5m×5.4m为主,跨度满足电气工艺要求。对于地基基础的设计,在场地的西半段,利用天然地基,运用粉质粘土作为持力层东半段主控楼、消防水池及水泵房、避雷针下部采用粉质粘土换填,换填深度3m,分层压买,压买系数不小于0.94综合考虑各种因素,优先选用方案主控配电楼采用柱下独立基础,基础埋深约2m,以天然地基为持力层。

3.3具体设计要点

3.3.1通风空调设计

不经常有人值班的空调房相关设计,需要依据《火力发电厂采暖通风与空气调节技术规程》(DL/T5035-2006)要求,夏季计算温度不宜高于32℃,屋内配电装置的夏季室温不宜超过40℃,变压器室室温不超过45℃,电抗器室室温不超过55℃通风设备应符合《公用建筑节能设计标准》(GB50189-2005)。

3.3.2给排水分析

①给水系统。采用打井取水作为供水水源,水质需满足现行国家标准《生活饮用水卫生标准》的规定,本变电站日常用水仅为值班室生活用水,最大日用水量按3.0t考虑,室外消防用水量不小于25L/s,室内消防用水量不小于10L/s。工艺流程采用生活用水:打井取地下水-水泵-屋顶水箱-生活用水点消防用水;打井取地下水-消防水池-水泵-用水点;②排水系统。站区排水采用雨污分流,雨水通过雨水口和雨水管道收集后,排入市政雨水管;生活污水通过污水排水管道收集至化粪池,再接入市政污水管;③排油系统。工程最终规模安装3台50MVA主变压器,单台主变参考油量18t,在站区西侧设置一座容量为15m3的油水分离式钢筋混凝土结构事故贮油池,主变油坑用DN150镀锌钢管与贮油池联接,贮油池的放空和清淤临时用潜水泵抽吸,事故油经油水分离后回收。

3.3.3防火设计

为主控配电楼设计设置一套火灾自动报警系统。另外,所有孔洞进行防火封堵,拟采用防火板及防火堵泥等材料室内外消防用水量总和不小于35L/s,利用打井取水作为消防水源,在站内东侧设消防水池贮水。根据规范要求,火灾持续时间按3h考虑,设置有效容积378m3消防水池,室外消防用水配备一组消防泵与稳压泵,设置2个室外消火栓(型号SS100/65~1.6),形成环网;室内设环状消防管网,从室内消防泵引出,配电楼屋顶设6m3水箱供室内火灾前10min的消防用水量。化学灭火器拟采用磷酸按盐手提式干粉灭火器消防。因是无人值班,为便于监测,及时发现火情,建筑物内均设置火灾探测器,并将信号送至地调及警卫室,警卫室内设置一台火灾报警器,发生火警时,由门卫负责操作灭火装置。火灾报警器应符合现行国家标准《建筑灭火器配置设计规范》(GB50140-2005)及《火力发电厂与变电所设计防火规范》(GB50229-2006)的规定。

4结语

变电站在社会基础建设工程中,占据非常重要的地位,是将电能输送给用户的最重要媒介,因此,变电站的土建工程质量控制非常重要,并且直接影响到我国的电网安全。因此,需进一步加强变电站土建的设计工作,在设计环节全面考虑到工程建设所可能涉及的要点和影响因素,为后续的变电站施工提供最基本的保障和重要参考。

参考文献

[1]农根.浅谈变电站建筑工程设计中几个问题的探讨[J].建材与装饰,2015:35~36.

[2]吉超.对变电站土建设计与施工技术的探讨[J].城乡建设,2010:46~47.

室内水电设计第8篇

关键词: 室内消火栓 ;充实水柱;间距 ;布置

中图分类号: TU976文献标识码: A

1 室内消火栓布置的原则

(1) 保证有一支或两支水枪的充实水柱同时到达室内的任何部位。

(2) 消火栓的间距不能太小。

(3) 应根据防火分区和使用方便来布置消火栓。

(4) 消防电梯前室消火栓是否记入室内消火栓总数内。

2 如何在实际工程中遵循上述原则

2.1 保证有一支或两支水枪的充实水柱同时到达室内的任何部位

设计规范和设计手册中,均以消火栓为圆心,以保护半径为半径作一个圆,认为圆内的部分为该消火栓的保护范围。笔者认为这样是不合理的。在实际工程中,建筑物的平面形状与内部结构细节是复杂多样的,所以应该根据灭火的实际情况确定消火栓的保护范围。

消防水龙带一般有两种长度:20 m 和25 m ,我国消防队使用的水带长度一般为20m,有的地区也采用25m长的室内消防水带,但如水带长度过长,则不便于灭火使用,故综合考虑要求建筑内设置的消防水带,其单根长度不应超过25m。

现按水龙带长度20 m考虑 ,折减系数0.8 ,实际敷设长度则为16 m。灭火时,消防队员持水枪应能进入每一个房间灭火,所以,消火栓距离所保护区域的最远端房间的门口应该在16 m 之内。队员进入房间后,可以利用充实水柱灭火。一般设计一支水枪的流量为 5L/ s ,对应的充实水柱为 11.7m(这里 ,不可机械地套用规范规定的不小于 7 m、10 m、和 13 m,如达到13 m的条件应采用13 m) ,距离门口 8.27 m的范围认为可以受到该消火栓有效保护(11.7×sin45=8.27)如果房间超出此范围,必然要调整消防队员的位置和消火栓设置位置。

2.2消火栓的间距不能太小

《建筑设计防火规范》(GB50016-2006)规定“高层工业建筑,高架库房,甲、乙类厂房,室内消火栓的间距不应大于30m ,其他单层和多层建筑不应大于50m。”

《高层民用建筑设计防火规范》(GB 50045-95 ,2005 年版)规定“高层建筑不应大于30m,裙房不应大于50m。”

笔者认为规范对室内消火栓布置间距的最大值作了限制,目的是为了防止虽然建筑物的任何部位都处在单个或两个室内消火栓的保护范围以内,但防止由于室内消火栓的相邻间距过大而延长了室内消火栓的取用时间,从而导致延误灭火战机的情况出现。可这种只限制室内消火栓布置间距的最大值,而不限制其最小值的做法也不太合理。单就双水柱情况进行分析,只要能够有效地“保证有两支水枪的充实水柱同时到达室内的任何部位”,不仅应该限制最大距离 ,更应该限制最小距离。因为要“保证有两支水枪的充实水柱同时到达室内的任何部位”,最简单、经济的办法是在保护区域的中间位置设两个消火栓。但这样布置有一定的弊端 ,当其中一个消火栓受到火灾威胁时 ,因为距离很近 ,另一个消火栓也会同样受到火灾的威胁 ,这样 ,就没有消火栓可以利用了。

因此 ,笔者认为规范不仅应该规定消火栓的最大间距 ,也应该规定消火栓的最小间距,更应该限制双栓的使用。

2.3 应根据防火分区和使用方便来布置消火栓。

防火分区是为控制燃烧范围和降低火灾损失与火灾扑救难度,采用耐火极限较高的防火分隔物划分的,能在一定时间内阻止火势扩大蔓延的防火单元。建筑火灾进入发展阶段,防火分隔物的完整性不容破坏,灭火人员一般不能利用非着火防火分区的室内消火栓通过穿越防火分隔物去扑救另一个相邻的着火防火分区的火灾。

例如,防火分区之间的门为甲级防火门 ,充满水的压力较高的水龙带从防火门通过,使防火门无法正常关闭 ,防火门不能起到防火的作用。一个防火分区着火 ,不应利用其他防火分区的消火栓。因此 ,笔者认为应该根据防火分区来布置室内消火栓。

防烟楼梯间内也不应布置消火栓。有人将防护场所需设置的消火栓设在防烟楼梯间内,这样也是不合理的。防烟楼梯间主要作用是火灾时供人员疏散,与防护场所采用防火门相连,火灾时防火门紧闭,可供人员疏散又可挡住烟气,故防火门处一个缝隙也不可有,若将消火栓设在防烟楼梯间内,防护场所失火,消防水龙带得穿过防火门才可到达防护场所救火,防火门则关不严,防烟楼梯间会充满烟气,失去其安全可靠性。故防护场所的消火栓应设在防护区内,不可设在防烟楼梯间内,否则将失去其灭火作用。

室内消火栓布局也应考虑使用方便的原则。如某商住楼1-4层为商场,5层及以上为住宅,商场部分在四角设有四部直通室外的疏散楼梯,住宅部分的楼梯及消防电梯设置在商场中部,消防电梯在1-4层设有出口,1-4层商场的室内消火栓设置在住宅楼梯及消防电梯外墙,消防电梯前室设有室内消火栓,室内消火栓的布局满足规范要求。但如此布局,商场投入使用后如货架布置不当,就极易将室内消火栓遮挡,或1-4层任一楼层发生火灾时消防人员不通过消防电梯而是直接通过疏散楼梯进攻,而疏散楼梯附近又无室内消火栓,消防人员进入火场将面临无室内消火栓可用的困境。所以室内消火栓布局也应考虑使用方便的原则。

2.4 消防电梯前室消火栓是否记入室内消火栓总数内。

《建筑设计防火规范》和《高层民用建筑设计防火规范》规定“消防电梯前室应设室内消火栓”。但是关于该消火栓是否计入总数内 ,说法不一。笔者认为 ,应该从灭火的实际出发 ,确定该不该算入总数内。

《建筑设计防火规范》(GB50016-2006)第8.4.3条条文解释明确指出:“消防电梯前室是消防人员进入室内扑救火灾的进攻桥头堡,为方便消防人员向火场发起进攻或开辟通路,在消防电梯间前室应设置室内消火栓。消防电梯间前室的消火栓与室内其他的消火栓一样,无特殊要求,但不计入消火栓总数内。”

《高层民用建筑设计防火规范》(GB 50045-95 ,2005年版)7.4.6.8条规定“消防电梯间前室应设消火栓。”条文说明指出:“消防电梯是消防人员进入高层建筑物内进行扑救的重要设施,为便于消防人员尽快使用消火栓扑救火灾并开辟通路,故规定在消防电梯间前室设有消火栓。”

以现在的认知,消防电梯间前室消火栓的用途有:⑴消防电梯间前室的防火、灭火;⑵为消防人员打开进入火场的通道;⑶为消防人员淋水降温(不直接淋水到消防人员身上)。

消防电梯间前室的消火栓有专用和兼用2种处理方式。所谓“专用”指前室消火栓只用于前室,“兼用”指前室消火栓除用于前室以外其他部位的火灾扑救。专用还是兼用,《建筑设计防火规范》和《高层民用建筑设计防火规范》说法不一,所以由工程专业人员从实际出发具体确定。《建筑设计防火规范》条文有如下表述“不计入同层消火栓总数”,这个说明指该前室消火栓属于专用,而《高层民用建筑设计防火规范》这个规定已经取消,意味着前室消火栓可以专用,也可以兼用。

消防队员利用消防电梯前室设置的消火栓 ,开辟向火场进攻的通路 ,通路打开以后 ,应该考虑利用就近的消火栓灭火。通向室内的门为乙级防火门 ,充满水的压力较高的水龙带从该门通过 ,使防火门无法正常关闭 ,防火门不能起到防火的作用。基于以上原因 , 《建筑设计防火规范》规定消防电梯前室的消火栓不能计入室内消火栓总数内。但如果高层住宅楼公共面积很小,如果每层布置3个室内消火栓,即消防电梯间设一个消火栓,楼梯间设2个消火栓,毫无疑问这样做不恰当。基于以上原因 ,《高层民用建筑设计防火规范》没有规定消防电梯前室的消火栓是否计入室内消火栓总数内。所以,笔者认为应该从实际出发 ,确定该不该算入总数内。如果公共面积很大时,消防电梯前室消火栓按“专用”考虑,如果公共面积很小时,消防电梯前室消火栓按“兼用”考虑。

专用、兼用一经确定,措施要与之配套。当专用时:⑴水带不宜过长,不然前室范围有限,水带容易打结,影响出水;⑵前室正压送风,按常规处理,因为防火门一般是关闭的;⑶不计入同层消火栓总数。当兼用时:⑴水带长度按常规处理,如20m或25m;⑵前室正压送风必须加强,因为水带从门的开口处通过;⑶可计入同层消火栓总数;⑷前室消火栓和走廊等部位的消火栓平面布置位置适当拉开距离,不宜过近。

专用或兼用《建筑设计防火规范》和《高层民用建筑设计防火规范》说法不一,但就火场的实际情况是专用的难专,实际变成兼用了。

3 结语

室内消火栓在消防系统中起着非常重要的作用,室内消火栓布置看似简单,但实际工程的千变万化又使建筑物内部布置室内消火栓变的极为复杂。笔者认为应从科学和实际应用的层面严格规范室内消火栓的布置原则。

【参考文献】

室内水电设计第9篇

关键词:贯流式水电站;消防总体设计;消防给水;CO2灭火系统;干粉灭火器;火灾自动报警及灭火控制系统

1.工程概况和消防总体设计方案

1.1概况及其特征。居龙滩水利枢纽工程是以发电为主,兼顾防洪和灌溉、供水、航运以及水库养殖等任务的综合利用工程。其工程规模为:水库总库容为7.76×107m3;电站总装机容量60MW。

该工程位于贡水左岸支流桃江下游赣县大田乡夏湖村境内,距赣县县城约28Km。桃江流域属副热带季风气候区,流域内各地多年平均气温19.4℃,极端最高气温41.2℃,极端最低气温-6℃,多年平均蒸发量1576.2mm。

工程是由挡水坝、溢流坝、河床式发电厂房、船筏道及升压开关站等建筑物组成。

本工程的主要消防对象是水电站建筑物及其机电设备。其中水电站建筑物的消防设计含主厂房、副厂房、主变压器场(开关站)、高压开关室、厂用屏配电室、油库、机修车间和坝区等。除检修期外,水电站及其机电设备一般都处于生产运行状态。

1.2消防设计依据和设计原则。

本工程消防设计依据国家、行业颁布的下列现行规程规范进行:

(1)水利水电工程设计防火规范(SDJ278-90)

(2)火灾自动报警系统设计规范(GB50116-98)

(3)建筑设计防火规范(GB50016-2006)

(4)自动喷水灭火系统设计规范(GB50084-2005)

(5)建筑灭火器配置设计规范(GB50140-2005)

(6)二氧化碳灭火系统设计规范(GB50193-93)(99年版)

(7)电力系统设备典型消防规程(GB5027-93)

(8)采暖通风与空气调节设计规范(GB50019-2003)

(9)水力发电厂机电设计技术规范(DL/T5186-2004)

(10)中华人民共和国消防法(1998-04-29)

(11)火灾报警控制器通用技术条件(GB4717-93)

(12)水库工程管理设计规范(SL106-96)

为贯彻“预防为主,防消结合”和确保重点、兼顾一般、便于管理、经济实用的方针,并结合居龙滩水利枢纽工程的具体情况,确定了如下基本设计原则:

在消防区内,按规范要求统一规划畅通的安全通道,设置安全出口及其标志;

以生产重要性和火灾危险性设置消防设施和器材,特殊部位按防火规范采取其它消防措施;

在电站设置消防控制中心(计算机房旁)和火灾报警系统,消防电源采用双可靠独立电源;

采取消防车、消火栓、CO2灭火和干粉灭火器四种灭火方式,消防用水取自可靠而充足的水源;

设置通风排烟系统;

选用阻燃、难燃或非燃性材料为绝缘介质的电气设备或采取其它保护措施以防止或减少火灾发生;

有火灾危险性设备之间,采用耐火材料制成的墙或门隔离,孔洞用耐火材料封堵以防止火灾的漫延与扩散。

1.3消防总体设计方案。枢纽总体配备一辆消防水车,若遇重大火灾时,则由县消防部门支援扑救。工程消防系统按其生产及防火功能要求分为主厂房、副厂房、开关站、高压开关室、油库、机修间及大坝(含启闭机室、坝区用电变房)七个区,其中主厂房、副厂房采用自动灭火与灭火器具结合的灭火方式,开关站、高压开关室、油库、机修间、大坝则采用灭火器具灭火。

为确保消防区灭火要求,本工程消防水源及电源均按双水源、双电源设置,互为备用。当其中之一停止工作时,备用水源及备用电源均能自动切换投入。二台消防水泵从上游水库取水或下游取水,水泵扬程为52m,作为消火栓消防备用水源,两台消防水泵布置在技术供水设备室;另外,由两台深井泵从水井取水给高位水池(V=100m3)供水,作为消防水源及生活用水,为保证消防水源的可靠性,应经常检查消防水泵是否能正常运转。

在主、副厂房等建筑物设计中,防火设计要求:

(1)建筑物的耐火等级为二级。

(2)重点火警防护区,按消防要求设置防火隔墙、防火门或防爆门。

(3)建筑物层间不少于两座楼梯(含爬梯)。每片消防分区不少于两个安全疏散出口通道。

(4)开关站及绝缘油库设车道,供消防车通行的消防车道宽度为5m。

2.工程消防设计

2.1生产厂房火灾危险性分类及耐火等级。厂房各主要生产场所火灾危险性分类及耐火等级要求见表1。

2.2主要场所和主要机电设备的消防设计

2.2.1主、副厂房消防。居龙滩水利枢纽工程采用灯泡贯流式机组,厂区主要由主厂房和安装间、电气副厂房、中控室、机修间和室外绝缘油库等部分组成,厂区机修门外、绝缘油库门外设室外SS100-1.6型消火栓2个、开关站设SS100-1.6型室外消火栓2个。

电站主厂房长66.70m,宽19m,高约50.0m,共分运行层(高程112.20m)、中间层(高程103.20m)、水轮机层(高程84.70m)。

运行层主要布置有调速器和油压装置等设备,在每个机组段(运行层、中间层)上游侧各设1个SN65(带报警)型消火栓箱和2个MT3型手提式CO2灭火器。

考虑发电机水喷雾灭火装置的要求,在运行层每个机组段上游侧各设一个发电机消火栓箱为发电机内部消火提供水源,手动报警装置1个,发电机内部灭火及火警装置由制造厂家设计提供。

建筑物危险性分类及耐火等级表生产场所名称火灾危险性类别耐火等级类别主厂房丁类二级透平油库丙类二级绝缘油库丙类二级户外开关站丙类二级中央控制室、微机房丙类二级坝区用电变室、厂用变室丁类二级高压开关室丁类二级电缆、电缆道丙类二级发电机设备小间、资料室丙类二级空压机及贮气罐室丁类二级水清测报站丁类二级载波通信室丁类二级大坝监测室丁类二级高压试验室丁类三级机修车间丁类三级其它戊类三级水轮廊道层主要布置有轴承回油箱,调速系统漏油箱等,每机组段拟设MT3型CO2灭火器2个,另在与该层相通的渗漏排水泵房设MT3型CO2灭火器2个,手动报警装置1个。

为扑灭厂内桥机电器设备引起的火灾,在桥机上设置MT3型CO2型灭火器2个。

电站安装间位于厂房右侧(从上游往下游看),长28m,宽19m,安装间上、下游侧各设SN65型消火栓1个和MT3型CO2灭火器4个。

空压机室设在安装间的下层,在该室油处理室上游侧设SN65消火栓1个及MT3型CO2灭火器4个,空压机室布置两个灭火器设置点。布置两个离子型感烟探测器,手动报警装置1个。

在副厂房的电缆层(高程107.70m)入口处设MT3型CO2灭火器4个,即每个进人门布置一个灭火器安置点(各2个MT3型CO2灭火器);每个入口门设自动控制防火门,手动报警装置1个;此外还配置若干个防毒面具、呼吸器,电缆穿过楼板或进入各屏柜的孔洞均须用耐火材料封堵以防止火灾漫延,耐火极限不小于1小时。结合设备与电缆布置情况,每隔一定距离集中布置MT3型CO2灭火器2个,在电缆桥架每层均敷设缆式线型感温探测器。

技术供水层位于副厂房的100.40m高程处。其门外布置MT3型CO2灭火器4个。

在高程112.20的微机房及中控室拟设置固定CO2灭火系统,采用固定管网消防,即组合分配系统,共用一套CO2储藏装置,保护这两个防护区的消防灭火系统,其设计用量按其中最大的中控室需要量设置,不考虑备用,经计算选用20个70L储存钢瓶,同时在每个地方均设置有烟温复合探测器,当感温感烟探测器同时报警时,控制器将立即停断该区风机与空调,声光报警器鸣响,提醒人员迅速撤离,延时30秒(可调)后,关闭防火门,启动灭火装置灭火,30秒全部喷完,另外门口设手动报警装置1个,进人门口设气体放气信号灯,声光报警器,布置MT3型CO2灭火器4个。

固定CO2自动灭火系统,既可在现地手动操作,也可与火灾自动报警系统相连。

2.2.2水轮发电机组消防。水轮发电机组安装在密闭的灯泡体内,其消防措施由制造厂解决,电站提供水源,相应在机组段布置发电机消火栓箱,采用固定式水喷雾灭火装置。灯泡体内同时设置感温、感烟探测装置及其控制装置,发电机内部管路设备均有机组制造商按规程规范配套供应。

2.2.3油库和机修间消防

2.2.3.1油库消防。居龙滩水利枢纽油库分为厂内透平油库和厂外绝缘油库,油库采用防火墙与其他房间分隔,油罐室设有两扇门与外界相通,出口门为向外开启的甲级防火门,油库内设有可靠的防雷接地装置和挡油槛,室内立式油罐之间间距大于2.0m。油罐与墙之间的距离大于油罐半径,油处理室与油罐室相接部位用防火墙隔开,烘箱电源开关和插座设在小间外,油库内灯具和电器设备均采用防爆的灯具和电器设备。透平油库设在安装间下面(高程103.20m),内有20m3的立式油罐2个,并设油处理室等,采用消火栓灭火,设置感烟探测器,油处理室设置手动报警装置1个。

绝缘油库布置在室外,靠近厂房公路边,发生火灾时,消防车能顺利抵达现场救火。绝缘油库内布置有15m3立式油罐2个,30m3立式油罐1个,油库设有油处理室、滤纸烘箱室。

根据有关规范,在绝缘油罐和透平油罐室各设置2台MFT35型推车式磷酸铵盐干粉灭火器和1个100×100×60cm3砂箱,每个砂箱配2把铁锹;两个油处理室各设3个MF3型磷酸铵盐干粉灭火器,同时在透平油处理室与空压机室联接处设SN65型消火栓1个,在绝缘油库室外设SS100-1.6型地面消火栓1个。

油库内防火门自动关闭,风机停止排风并可自动启动消防泵,为了预防和控制火灾,火灾报警后,并确认火灾位置后,在中控室手动关闭厂房内相应部位的排风机,此时防火阀连动关闭。火灾结束后,重新开启排风机进行排烟,然后通风系统恢复正常。

2.2.3.2机修间消防。机修间靠近安装场布置,面积为15×20m2,内设小型机修设备,机修间除设置1个SN65型消火栓外,另配MF3型磷酸铵盐干粉灭火器8个,分二个设置点,每个设置点配置4个。在机修间外设SS100-1.6型地面消火栓1个。

设置感温、感烟探测装置及手动报警装置1个,自动向消防控制中心报警。

2.2.4高压开关柜室和厂用电变消防,坝用电变消防。两个高压开关柜室共设置开关柜16面,低压开关柜室设置低压柜10面,以上两个高压开关柜室内均设置1台MTT35型推车式CO2灭火器和4只MT3型CO2灭火器并设置向外开启的防火门。

坝用电配电室、厂用变室、柴油发电机房,布置在独立的小间内,小间配置3只MT3型CO2灭火器,并配置1台MFT35推车式磷酸铵盐干粉灭火器。

同时在每个地方均设置有烟温复合探测器,另外口门设手动报警装置1个,进人门口设气体放气信号灯,声光报警器。

2.2.5主变和户外开关站消防。主变露天布置,2台主变间距离大于10米,与建筑物距离大于12米以满足防火要求,每台主变均设置可储存一台变压器油量和20min消防水量之和的事故储存坑,坑内装设金属栅格(其净距不大于40mm)并铺设粒径50~80mm,厚度为250mm的卵石层。事故时,变压器油可迅速由排油管排至设置在厂房右侧的事故集油池内。另外,每台主变附近均设置2台MFT35推车式磷酸铵盐干粉灭火器和2个砂箱(100×100×100cm3)。另设置专门房间放置灭火器具。户外开关站附近设SS100-1.6型地面消火栓2个。户外110kV开关站,设置4只MT3型CO2灭火器。

2.2.6坝区消防。坝区内溢洪道8座液压泵房,每座配置2个MF3型磷酸铵盐干粉灭火器,坝顶每50米设置SS100-1.6型地面消火栓1个,计3个。每座液压泵房设置1个感烟探测装置。

2.3消防给水设计。居龙滩水利枢纽水库水质清晰、泥沙含量较少,可以作为消防水源。设四个消防取水口,为防止取水口堵塞可以用吹扫气管供气对水泵取水口进行吹扫;根据电站所配置的消防设备供水压力及消防用水量的要求,选用二台XBD5.2/30-125-200型水泵,扬程为52m,流量为108m3/h,两台水泵互为备用;消防水泵可与火灾自动报警系统相连,以便及时发现并经确认后能尽快消灭火灾。消防水泵及附属设施均布置在技术供水设备室(高程100.40m)。另外,由两台深井泵从水井取水给高位水池(底部高程160.00米,V=100m3)供水,作为消防主水源及生活用水,消防水泵供水作为备用水源。

2.4消防电气和监测报警系统

2.4.1消防电气。本电站设专用消防动力盘,并标有明显消防标志,由双电源供电,以保证消防设备由2个可靠的电源。消防用电设备采用单独的供电回路并穿管敷设,当发生火灾时,仍能保证消防用电。

厂房内主要疏散通道、楼梯间及安全出口处,均设置火灾事故照明及疏散指示标志。正常时,事故照明由交流电源供电,交流电源失去时,通过交直流切换装置自动切换为蓄电池直流供电。疏散用的事故照明其最低照度不低于0.5lx,疏散指示灯正常时由交流电源供电,交流电源失去时,通过其自配的备用电源供电,其连续供电时间不少于20分钟。

事故照明灯和疏散指示标志灯,均设置非燃烧材料制作的保护罩。

2.4.2火灾自动报警及灭火控制系统。本电站的火灾自动报警及灭火控制系统采用控制中心报警系统的形式,电站的消防控制中心设于消防控制房。

消防控制中心内设有火灾自动报警及联动控制屏,对厂内的火灾报警设备及消防灭火设备进行集中控制,并对发电机组设备火灾报警及联动控制器进行重复显示及控制。火灾自动报警控制系统选用总线编码智能型。火灾自动报警控制屏接收来自设备火灾报警控制器、厂内各部位安装的点式感烟、感温探测器、缆式定温探测器、手动报警按钮及输入模块传送来的信号,自动或手动发出灭火指令;向控制模块发出控制信号,控制风机、防火阀、固定式CO2灭火系统等消防灭火设备的运行;同时经通信接口自动启动工业电视监控系统进行跟踪及录像,并显示、记录、打印产生报警或故障信号的时间、地点及有关火灾信息,发出声光报警。并将所有火警或故障信息经通信接口送给全厂计算机监控系统。

主要设备布置区如中控室、计算机室、1G10.5kV开关柜室、2G10.5kV开关柜室、400V厂用配电屏室、透平油库、油处理室、空压机室、高压试验室、柴油发电机房、400V大坝用电配电室、电缆层、技术、消防供水泵层等地均设置有点式感烟探测器;在主厂房运行层及安装场和中间层设置有红外光束感烟探测器;在安装有固定式CO2灭火系统的设备区(即中控室、计算机室),电缆层及电缆廊道均另外设置有点式感温探测器或缆式定温探测器。在厂内各重要通道、走廊均安装手动报警按钮及声光报警器。

上述区域,按其重要性和所配置的消防灭火设备的要求选择报警、报警及手动灭火、报警及自动灭火等不同的处理方式。

一旦发生火灾,任何一个探测器探测到火警信号,控制器发出火灾报警声光信号,通知运行值班人员,值班人员根据火灾自动报警控制屏显示的报警地址到现场证实或经工业电视监控系统证实后,即可采用干粉灭火器或手动启动消火栓、固定式CO2系统,指挥救火。固定式CO2系统的远方手动操作在火灾自动报警控制屏上进行。火灾自动报警控制屏也可以设定为自动灭火方式,如果CO2灭火保护区域内同时有感温、感烟两种类型的探测器报警或手动报警按钮按下后,经控制器分析判断后自动停断对应区域内的风机、关闭对应区域内的防火阀、投入灭火装置。无论是在手动方式还是在自动方式下,控制器在发出火警信号的同时都自动启动工业电视监控系统对相关部位进行跟踪、显示及录像,以备日后事故分析。

根据规范及电站的实际布置进行探测器、手动报警按钮的配置;根据灭火设备的自动控制要求配置联动模块。

火灾自动报警控制系统的所有线路均采用屏蔽型电缆,以防电厂的磁场引起干扰;所有线路均穿管暗敷。

相关文章
相关期刊
友情链接